Имеется двухканальная простейшая смо с отказами. Математические модели простейших систем массового обслуживания

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

Рассмотрим -канальную СМО с отказами. Будем нумеровать состояния системы по числу занятых каналов (или, что в данном случае то же, по числу заявок, связанных с системой). Состояния будут:

Все каналы свободны,

Занят ровно один канал, остальные свободны,

Заняты ровно k каналов, остальные свободны,

Заняты все каналов.

Граф состояний СМО представлен на рис. 5.3. Разметим граф, т. е. проставим у стрелок интенсивности соответствующих потоков событий.

По стрелкам слева направо систему переводит один и тот же поток - ноток заявок с интенсивностью к. Если система находится в состоянии (занято k каналов) и пришла новая заявка, система переходит (перескакивает) в состояние

Определим интенсивности потоков событий, переводящих систему по стрелкам справа налево.

Пусть система находится в состоянии 5, (занят один канал). Тогда, как только закончится обслуживание заявки, занимающей этот канал, система перейдет в значит, поток событий, переводящий систему по стрелке имеет интенсивность Очевидно, если обслуживанием занято два канала, а не один, поток обслуживание переводящий систему но стрелке будет вдвое интенсивнее если занято k каналов в k раз интенсивнее Проставим соответствующие интенсивности у стрелок, ведущих справа налево.

Из рис. 5.3 видно, что процесс, протекающий в СМО, представляет собой частный случай процесса гибели и размножения, рассмотренного нами в § 8 гл. 4.

Пользуясь общими правилами, можно составить уравнения Колмогорова для вероятностей состояний:

Уравнения (4.1) называются уравнениями Эрланга. Естественными начальными условиями для их решения являются:

(в начальный момент система свободна).

Интегрирование системы уравнений (4.1) в аналитическом виде довольно сложно; на практике такие системы дифференциальных уравнений обычно решаются численно, на АВМ или ЭЦВМ. Такое решение дает нам все вероятности состояний

как функции времени.

Естественно, нас больше всего будут интересовать предел -ные вероятности состояний характеризующие установившийся режим работы СМО (при ). Для нахождения предельных вероятностей воспользуемся уже готовым решением задачи, полученным для схемы гибели и размножения в § 8 гл. 4. Согласно этому решению,

В этих формулах интенсивность потока заявок и интенсивность потока обслуживаний (для одного канала) не фигурируют по отдельности, а входят только своим отношением Обозначим это отношение

и будем называть величину р «приведенной интенсивностью» потока заявок. Физический смысл ее таков: величина представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом этого обозначения, формулы (4.2) примут вид:

Формулы (4.3) называются формулами Эрланга. Они выражают предельные вероятности всех состояний системы в зависимости от параметров ( - интенсивность потока чаявок, - интенсивность обслуживания, п - число каналов СМО).

Зная все вероятности состояний

можно найти характеристики эффективности СМО: относительную пропускную способность q, абсолютную пропускную способность А и вероятность отказа .

Действительно, заявка получает отказ, если приходит в момент, когда все каналов заняты. Вероятность этого равна

Вероятность того, что заявка будет принята к обслуживанию (она же относительная пропускная способность q) дополняет Яотк до единицы:

Абсолютная пропускная способность:

Одной из важных характеристик СМО с отказами является среднее число занятых каналов (в данном случае оно совпадает со средним числом заявок, находящихся в системе). Обозначим это среднее число

Величину k можно вычислить непосредственно через вероятности по формуле:

как математическое ожидание дискретной случайной величины, принимающей значения с вероятностями Однако значительно проще выразить среднее число занятых каналов через абсолютную пропускную способность А, которую мы уже знаем. Действительно, А есть не что иное, как среднее число заявок, обслуживаемых в единицу времени-, один занятый канал обслуживает в среднем за единицу времени заявок; среднее число занятых каналов получится делением А на

Классификация СМО и их основные характеристики

Системы массового обслуживания делятся на типы (или классы) по ряду признаков. Первое деление: СМО с отказами и СМО с очередью . В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует. Примеры СМО с отказами встречаются в телефонии: заявка на разговор, пришедшая в момент, когда все каналы связи заняты, получает отказ и покидает СМО необслуженной. В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной. На практике чаще встречаются (и имеют большее значение) СМО с очередью; недаром теория массового обслуживания имеет второе название: «теория очередей».

СМО с очередью подразделяются на разные виды, в зависимости от того, как организована очередь-ограничена она или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания (так называемые «СМО с нетерпеливыми заявками»). При анализе СМО должна учитываться также и «дисциплина обслуживания» - заявки могут обслуживаться либо в порядке поступления (раньше пришла, раньше обслуживается), либо в случайном порядке. Нередко встречается так называемое обслуживание с приоритетом - некоторые заявки обслуживаются вне очереди. Приоритет может быть как абсолютным - когда заявка с более высоким приоритетом «вытесняет» из-под обслуживания заявку с низшим (например, пришедший в парикмахерскую клиент высокого ранга прогоняет с кресла обыкновенного клиента), так и относительным - когда начатое обслуживание доводится до конца, а заявка с более высоким приоритетом имеет лишь право на лучшее место в очереди.

Существуют СМО с так называемым многофазовым обслуживанием, состоящим из нескольких последовательных этапов или «фаз» (например, покупатель, пришедший в магазин, должен сначала выбрать товар, затем оплатить его в кассе, затем получить на контроле).

Кроме этих признаков, СМО делятся на два класса: «открытые» и «замкнутые». В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО - зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже неисправно и ждет наладки. Это - пример замкнутой СMO.

В зависимости от типа СМО при оценке её эффективности могут применяться те или иные величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик её продуктивности является так называемая абсолютная пропускная способность – среднее число заявок, которое может обслужить система за единицу времени. Наряду с абсолютной, часто рассматривается относительная пропускная способность – средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа обслуживаемых в единицу времени заявок к среднему числу поступающих заявок за это время). Помимо этого при анализе СМО с отказами могут интересовать ещё среднее число занятых каналов, среднее относительное время простоя системы в целом и отдельного канала и т.д.


Характеристики СМО с ожиданиями. Для СМО с неограниченным ожиданием абсолютные и относительные пропускные способности теряют смысл. Зато важными являются: среднее число заявок в очереди, среднее число заявок в системе (в очереди и под обслуживанием), среднее время ожидания заявки в очереди, среднее время пребывания заявки в системе и другие. Для СМО с ограниченным ожиданием интерес представляют обе группы характеристик.

Для анализа процесса, протекающего в СМО, существенно знать основные параметры системы: число каналов n , интенсивность потока заявок l, производительность каждого канала (среднее число заявок , обслуживаемых непрерывно занятым каналом в единицу времени), условия образования очереди (ограничения, если они есть).

Условимся все потоки событий, переводящие СМО из состояния в состояние, считать пуассоновскими.

Простейшая задача. Пусть СМО состоит только из одного канала (n=1 ) и на нее поступает пуассоновский поток заявок с интенсивностью l, зависящей в общем случае от времени l=l(t) (9.1). Заявка, заставшая канал занятым, получает отказ и покидает систему. Обслуживание заявки продолжается в течение случайного времени Т об, распределенного по показательному закону с параметром m f(t)= me - m t (t>0) (9.2).

Из этого следует, что «поток обслуживаний» - простейший, с интенсивностью m. Требуется найти: абсолютную (А) и относительную (q ) пропускные способности.

Рассмотрим единственный канал обслуживания как физическую систему S, которая может находиться в одном из двух состояний: S 0 – свободен, S 1 – занят. Обозначим вероятности состояний p 0 (t) и p 1 (t) . Очевидно:

"t p 0 (t)+p 1 (t)=1 (9.3).

Граф состояний системы


По графу состояний системы составим дифференциальные уравнения Колмогорова:

(9.4)

В соответствии с (9.3) одно уравнение в (9.4) лишнее. Отбросим второе уравнение, а первое перепишем с учетом (9.3):

или (9.5).

Это уравнение естественно решать при начальных условиях p 0 (0)=1; p 1 (0)=0. Уравнение (9.5) легко может быть решено не только для простейшего потока заявок (l=const), но и для случая l=l(t). Приведем решение (9.5) только для случая l=const: .


Для нашего случая вероятность p 0 есть не что иное, как q .

Действительно, p 0 есть вероятность того, что в момент t канал свободен, иначе вероятность того, что заявка, пришедшая в момент t , будет обслужена. А значит, для данного момента времени t среднее число обслуженных заявок к числу поступивших также равно p 0: q= p 0 .

В пределе, при t®¥, когда процесс обслуживания уже установится, предельное значение q будет равно .

Легко найти и А, зная q . Они связаны очевидным соотношением:. В пределе, при t®¥, А тоже установится и будет равна .

Зная q (вероятность того, что пришедшая в момент t заявка будет обслужена) легко найти вероятность отказа: P отк =1-q. P отк есть не что иное, как средняя доля необслуженных заявок среди поданных. В пределе, при t®¥ .

СМО с отказами (задача Эрланга)

Рассматривается N-канальная СМО с отказами:

λобслуживания

Любая заявка может быть обслужена любым свободным каналом. Если все каналы заняты, заявка немедленно получает отказ в обслуживании и покидает систему (теряется). Интенсивности входных и выходных потоков:

Считаем, что в этой системе имеются следующие потоки событий:

1) поступление заявок на вход СМО из источника заявок G;

2) обслуживание заявок в каналах.

1) интенсивность потока поступающих заявок характеризуется λ

2) интенсивность обслуживания одним каналом:

- мат.ожидание длительности обслуживания

Т.о. входной поток с интенсивностью λ и поток обслуживания с интенсивностью µ распределены по экспоненциальному закону и следовательно данные потоки являются простейшими, а сами процессы в системе Марковскими. Представим граф схему переходов для этого случая:

Состояния СМО в данном случае нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди состояния, в котором находится система, совпадает с числом занятых каналов)

S0 - все каналы свободны, система свободна

S1 - занят один канал

Sk - заняты k каналов, остальные (n-k) свободны

Sn - заняты все n каналов


Из состояния Si-1 всегда с интенсивностью входного потока λ система переходит в следующее состояние Si, т.е. в данном случае будет заняе еще один канал и интенсивность перехода в следующее состояние равно интенсивности входного потока λ. Интенсивность обратного перехода возрастает с ростом числа параллельно работающих каналов. Чем больше их работает, тем интенсивнее процесс их освобождения. Для простейших потоков имеем:

Данная схема называется схемой гибели и размножения. Такое название происходит от того, что связаны соседние состояния. Математический аппарат - это Марковский процесс, с дискретными состояниями и непрерывным временем. Для заданной СМО матрица интенсивностей Λ имеет вид:


Пользуясь матрицей Λ запишем уравнения, которые позволяют рассчитать вероятности пребывания системы в каждом из указанных состояний. Распределение вероятностей P0,P1,…,Pn по состояниям S0,…,Sn определяется как решение системы дифференциальных уравнений.

Система Эрланга
В качестве показателей эффективности СМО с отказами будем рассматривать:
А - абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени;
Q - относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;
P отк. - вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;
- среднее число занятых каналов (для многоканальной системы).
Одноканальная система с отказами . Рассмотрим задачу.
Имеется один канал, на который поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ 1 . Найти предельные вероятности состояний системы и показатели ее эффективности.
Система S (СМО) имеет два состояния: S 0 - канал свободен, S 1 - канал занят. Размеченный граф состояний представлен на рис. 6.

Рис. 6
В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид.
(18)
т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p 0 +p 1 =1, найдем из (18) предельные вероятности состояний
(19)
которые выражают среднее относительное время пребывания системы в состоянии S 0 (когда канал свободен) и S 1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P отк:
(20)
(21)
Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов
(22)
Задача 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью λ, равной 90 заявок в час, а средняя продолжительность разговора по телефону об. =2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.
Решение. Имеем λ=90 (1/ч), об. =2 мин. Интенсивность потока обслуживании μ=1/ об =1/2=0,5 (1/мин)=30 (1/ч). По (20) относительная пропускная способность СМО (Q=30/(90+30)=0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит Р отк. =0,75 (см. (21)). Абсолютная пропускная способность СМО по (29) ,A=90∙0,25=22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.
Многоканальная система с отказами . Рассмотрим классическую задачу Эрланга.
Имеется n каналов, на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.
Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 , S 2 , …, S k , …, S n , где S k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.
Граф состояний СМОсоответствует процессу гибели и размножения и показан на рис. 7.

Рис. 7
Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние. S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2μ. Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 . будет иметь интенсивность Зμ, т.е. может освободиться любой из трех каналов и т.д.
В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния
(23)
где членыразложения будут представлять собой коэффициенты приp 0 в выражениях для предельных вероятностей p 1 , p 2 , …, p k , …, p n . Величина
(24)
называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь
(25) есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов
(30)
или, учитывая (29), (24):
(31)



Поделиться