Примеры решения задач систем массового обслуживания. Международный студенческий научный вестник

В качестве показателей эффективности СМО с отказами будем рассматривать:

1) A - абсолютную пропускную способность СМО , т.е. среднее число заявок, обслуживаемых в единицу времени;

2) Q - относительную пропускную способность , т.е. среднюю долю пришедших заявок, обслуживаемых системой;

3) P_{\text{otk}} - вероятность отказа , т.е. того, что заявка покинет СМО необслуженной;

4) \overline{k} - среднее число занятых каналов (для многоканальной системы).

Одноканальная система (СМО) с отказами

Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.


Примечание. Здесь и в дальнейшем предполагается, что все потоки событий, переводящие СМО из состояния в состояние, будут простейшими. К ним относится и поток обслуживании - поток заявок, обслуживаемых одним непрерывно занятым каналом. Среднее время обслуживания обратно по величине интенсивности \mu , т.е. \overline{t}_{\text{ob.}}=1/\mu .

Система S (СМО) имеет два состояния: S_0 - канал свободен, S_1 - канал занят. Размеченный граф состояний представлен на рис. 6.

В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид (см. выше правило составления таких уравнений)

\begin{cases}\lambda\cdot p_0=\mu\cdot p_1,\\\mu\cdot p_1=\lambda\cdot p_0,\end{cases}


т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p_0+p_1=1 , найдем из (18) предельные вероятности состояний

P_0=\frac{\mu}{\lambda+\mu},\quad p_1=\frac{\lambda}{\lambda+\mu}\,


которые выражают среднее относительное время пребывания системы в состоянии S_0 (когда канал свободен) и S_1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P_{\text{otk}}:

Q=\frac{\mu}{\lambda+\mu}\,

P_{\text{otk}}=\frac{\lambda}{\lambda+\mu}\,.

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов

A=\frac{\lambda\mu}{\lambda+\mu}\,.

Пример 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью \lambda , равной 90 заявок в час, а средняя продолжительность разговора по телефону мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем \lambda=90 (1/ч), \overline{t}_{\text{ob.}}=2 мин. Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{2}=0,\!5 (1/мин) =30 (1/ч). По (20) относительная пропускная способность СМО Q=\frac{30}{90+30}=0,\!25 , т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P_{\text{otk}}=0,\!75 (см. (21)). Абсолютная пропускная способность СМО по (29) A=90\cdot0.\!25=22,\!5 , т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система (СМО) с отказами

Рассмотрим классическую задачу Эрланга . Имеется n каналов, на которые поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S_0,S_1,S_2,\ldots,S_k,\ldots,S_n , где S_k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 7.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью \lambda . Интенсивность же потока обслуживании, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S_2 (два канала заняты), то она может перейти в состояние S_1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2\mu . Аналогично суммарный поток обслуживании, переводящий СМО из состояния S_3 (три канала заняты) в S_2 , будет иметь интенсивность 3\mu , т.е. может освободиться любой из трех каналов и т.д.

В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния

P_0={\left(1+ \frac{\lambda}{\mu}+ \frac{\lambda^2}{2!\mu^2}+\ldots+\frac{\lambda^k}{k!\mu^k}+\ldots+ \frac{\lambda^n}{n!\mu^n}\right)\!}^{-1},

где члены разложения \frac{\lambda}{\mu},\,\frac{\lambda^2}{2!\mu^2},\,\ldots,\,\frac{\lambda^k}{k!\mu^k},\,\ldots,\, \frac{\lambda^n}{n!\mu^n} , будут представлять собой коэффициенты при p_0 в выражениях для предельных вероятностей p_1,p_2,\ldots,p_k,\ldots,p_n . Величина

\rho=\frac{\lambda}{\mu}


называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала . Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь

P_0={\left(1+\rho+\frac{\rho^2}{2!}+\ldots+\frac{\rho^k}{k!}+\ldots+\frac{\rho^n}{n!}\right)\!}^{-1},

P_1=\rho\cdot p,\quad p_2=\frac{\rho^2}{2!}\cdot p_0,\quad \ldots,\quad p_k=\frac{\rho^k}{k!}\cdot p_0,\quad \ldots,\quad p_n=\frac{\rho^n}{n!}\cdot p_0.

Формулы (25) и (26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все я каналов системы будут заняты, т.е.

P_{\text{otk}}= \frac{\rho^n}{n!}\cdot p_0.

Относительная пропускная способность - вероятность того, что заявка будет обслужена:

Q=1- P_{\text{otk}}=1-\frac{\rho^n}{n!}\cdot p_0.

Абсолютная пропускная способность:

A=\lambda\cdot Q=\lambda\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Среднее число занятых каналов \overline{k} есть математическое ожидание числа занятых каналов:

\overline{k}=\sum_{k=0}^{n}(k\cdot p_k),


где p_k - предельные вероятности состояний, определяемых по формулам (25), (26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы A есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем \mu заявок (в единицу времени), то среднее число занятых каналов

\overline{k}=\frac{A}{\mu}

Или, учитывая (29), (24):

\overline{k}=\rho\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Пример 6. В условиях примера 5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (25) \rho=\frac{90}{30}=3 , т.е. за время среднего (по продолжительности) телефонного разговора \overline{t}_{\text{ob.}}=2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n=2,3,4,\ldots и определим по формулам (25), (28), (29) для получаемой n-канальной СМО характеристики обслуживания. Например, при n=2 имеем

З_0={\left(1+3+ \frac{3^2}{2!}\right)\!}^{-1}=0,\!118\approx0,\!12;\quad Q=1-\frac{3^2}{2!}\cdot0,\!118=0,\!471\approx0,\!47;\quad A=90\cdot0,\!471=42,\!4 и т.д.


Значение характеристик СМО сведем в табл. 1.

По условию оптимальности Q\geqslant0,\!9 , следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q=0,\!9 - см. табл. 1). При этом в час будут обслуживаться в среднем 80 заявок (A=80,\!1) , а среднее число занятых телефонных номеров (каналов) по формуле (30) \overline{k}=\frac{80,\!1}{30}=2,\!67 .

Пример 7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию n=3,~\lambda=0,\!25 (1/ч), \overline{t}_{\text{ob.}} =3 (ч). Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{3}=0,\!33 . Интенсивность нагрузки ЭВМ по формуле (24) \rho=\frac{0,\!25}{0,\!33}=0,\!75 . Найдем предельные вероятности состояний:

– по формуле (25) p_0={\left(1+0,\!75+ \frac{0,\!75^2}{2!}+ \frac{0,\!75^3}{3!}\right)\!}^{-1}=0,\!476 ;

– по формуле (26) p_1=0,!75\cdot0,\!476=0,\!357;~p_2=\frac{0,\!75^2}{2!}\cdot0,\!476=0,\!134;~p_3=\frac{0,\!75^3}{3!}\cdot0,\!476=0,\!033 ;


т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, P_{\text{otk}}=p_3=0,\!033 .

По формуле (28) относительная пропускная способность центра Q=1-0,\!033=0,\!967 , т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (29) абсолютная пропускная способность центра A=0,\!25\cdot0,\!967=0,\!242 , т.е. в один час в среднем обслуживается. 0,242 заявки.

По формуле (30) среднее число занятых ЭВМ \overline{k}=\frac{0,\!242}{0,\!33}=0,\!725 , т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на \frac{72,\!5}{3}= 24,\!2%. .

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью l . Интенсивность потока обслуживания равна m (т. е. в среднем непрерывно занятый канал будет выдавать m обслуженных заявок). Длительность обслуживания - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 5.2.

Рис. 5.2. Граф состояний одноканальной СМО с ожиданием
(схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S 0 –­­ «канал свободен»;

S 1 ­–­­­ «канал занят» (очереди нет);

S 2 – «канал занят» (одна заявка стоит в очереди);

S k – «канал занят» (k-1 заявокстоит в очереди);

S m +1 – «канал занят» (m заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

Пользуясь уравнениями для процесса гибели и размножения получим:

(5.10)

где – приведенная интенсивность (плотность) потока;

Тогда вероятность что занят 1 канал и k-1 мест в очереди:

Следует отметить, что выполнение условия стационарности < 1 для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превышать m ), а не соотношением между интенсивностями входного потока, т. е. не отношением .

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной m :

вероятность отказа в обслуживании заявки;

; (5.11)

относительная пропускная способность системы:

; (5.12)

абсолютная пропускная способность:

А = ql ; (5.13)

среднее число заявок, находящихся в очереди:

; (5.14)

среднее число заявок, находящихся под обслуживанием:

(5.15)

среднее число заявок, находящихся в системе(связанных с СМО):

среднее время пребывания заявки в системе:

Т сист. = Т ож. + t об ; (5.17)

средняя продолжительность пребывания клиента (заявки) в очереди:


. (5.18)

Если имеется неограниченное число мест ожидания в очереди m , то вышеуказанные формулы справедливы только при ρ < 1, так как при ρ 1 нет установившегося режима (очередь неограниченно растет) и при q=1, A=λq=λ .

Рассмотрим пример одноканальной СМО с ожиданием.

Пример. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность l = 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

Решение.

Интенсивность обслуживания автомобилей:

(авто/час)

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей l и m, т. е.

Вычислим предельные вероятности системы:

Вероятность отказа в обслуживании автомобиля:

P отк = P 4 = r 4 ×P 0 » 0,158 .

Значит 15,8% автомобилей получат отказ в обслуживании так как не будет свободных постов и мест в очереди.

Относительная пропускная способность поста диагностики:

q = 1 - P отк = 1 - 0,158 = 0,842 .

Это означает что обслуживается в среднем 82,4% автомобилей.

Абсолютная пропускная способность поста диагностики

А = lq = 0,85 × 0,842 = 0,716 (автомобиля в час).

Среднее число автомобилей, находящихся в системе – среднее число заявок, находящихся в очереди плюс среднее число заявок, находящихся под обслуживанием:

Среднее время пребывания автомобиля в системе складывается из среднего времени ожидания в очереди и продолжительности обслуживания (если заявка принята к обслуживанию):

Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обслуживает автомобили в среднем в 15,8% случаев (Р отк = 0,158).

Задача 1. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой). Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно (m = 6). Если в очереди уже находится 6 машин, очередная машина, прибывшая к станции, в очередь не становится, а проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность λ = 0,95 (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин. Определить:

· вероятность отказа;

· относительную и абсолютную пропускную способности СМО;

· среднее число машин, ожидающих заправки;

· среднее число машин, находящихся на АЗС (включая и обслуживаемую);

· среднее время ожидания машины в очереди;

· среднее время пребывания машины на АЗС (включая обслуживание).

· доход АЗС за 10 часов при стоимости литра бензина равной 20 руб. и среднем объеме одной заправки автомобиля равной 7,5 литров.

Задача 2. Вспомним о ситуации, рассмотренной в задаче 1, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслуживание автомобилей, т. е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероятностных характеристик:

· вероятности состояний системы (поста диагностики);

· среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

· среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);

· среднее число автомобилей в очереди на обслуживании;

· среднюю продолжительность пребывания автомобиля в очереди.

Задача 3. На железнодорожную сортировочную горку прибывают составы с интенсивностью λ = 2 (состава в час). Среднее время, в течение которого горка обрабатывает состав, равно 0,4 часа. Составы, прибывшие в момент, когда горка занята, становятся в очередь и ожидают в парке прибытия, где имеются три запасных пути, на каждом из которых может ожидать один состав. Состав, прибывший в момент, в очередь на внешний путь. Все потоки событий – простейшие. Найти:

· среднее число составов, ожидающих очереди (как в парке прибытия, так и вне его);

· среднее время ожидания состава в парке прибытия и на внешних путях;

· среднее время нахождения состава на сортировочной станции (включая ожидание и обслуживание);

· вероятность того, что прибывший состав займет место на внешних путях.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

3. Контрольная задача

1. Одноканальная СМО с отказами

Простейшей из всех задач теории массового обслуживания является модель одноканальной СМО с отказами (потерями).

При этом система массового обслуживания состоит только из одного канала (n = 1) и на нее поступает пуассоновский поток заявок с интенсивностью, зависящей, в общем случае, от времени:

Заявка, заставшая канал занятым, получает отказ и покидает систему. Обслуживание заявки продолжается в течение случайного времени, распределенного по показательному закону с параметром:

Из этого следует, что «поток обслуживания» -- простейший, с интенсивностьюЧтобы представить себе этот поток, вообразим один непрерывно занятый канал, который будет выдавать обслуженные заявки потоком с интенсивностью

Требуется найти:

1) абсолютную пропускную способность СМО (А);

2) относительную пропускную способность СМО (q).

Рассмотрим единственный канал обслуживания как физическую систему S, которая может находиться в одном из двух состояний:-- свободен,-- занят.

ГСП системы показан на рис. 5.6, а.

Рис. 5.6 ГСП для одноканальной СМО с отказами (а); график решения уравнения (5.38) (б)

Из состояниявсистему, очевидно, переводит поток заявок с интенсивностью; изв-- «поток обслуживания» с интенсивностью.

Вероятности состояний: и. Очевидно, для любого момента t:

Составим дифференциальные уравнения Колмогорова для вероятностей состояний согласно правилу, данному выше:

Из двух уравнений (5.37) одно является лишним, так каки связаны соотношением (5.36). Учитывая это, отбросим второе уравнение, а в первое подставим вместовыражение:

Поскольку в начальный момент канал свободен, уравнение следует решать при начальных условиях:= 1,=0.

Линейное дифференциальное уравнение (5.38) с одной неизвестной функциейлегко может быть решено не только для простейшего потока заявок, но и для случая, когда интенсивность этого потока со временем меняется.

Для первого случая решение есть:

Зависимость величиныот времени имеет вид, изображенный на рис. 5.6, б. В начальный момент (при t = 0) канал заведомо свободен ((0) = 1). С увеличением t вероятностьуменьшается и в пределе (при) равна. Величина, дополняющаядо единицы, изменяется так, как показано на том же рисунке.

Нетрудно убедиться, что для одноканальной СМО с отказами вероятностьесть не что иное, как относительная пропускная способность q. Действительно,есть вероятность того, что в момент t канал свободен, или вероятность того, что заявка, пришедшая в момент t, будет обслужена. Следовательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно

В пределе, при, когда процесс обслуживания уже установится, предельное значение относительной пропускной способности будет равно:

Зная относительную пропускную способность q, легко найти абсолютную А. Они связаны очевидным соотношением:

В пределе, при, абсолютная пропускная способность тоже установится и будет равна

Зная относительную пропускную способность системы q (вероятность того, что пришедшая в момент t заявка будет обслужена), легко найти вероятность отказа:

или среднюю часть необслуженных заявок среди поданных. При

2. Многоканальная СМО с отказами

Рассмотрим n-канальную СМО с отказами. Будем нумеровать состояния системы по числу занятых каналов (или, что в данном случае то же, по числу заявок, находящихся в системе или связанных с системой). Состояния системы:

Все каналы свободны;

Занят ровно один канал, остальные свободны;

Заняты ровно к каналов, остальные свободны;

Заняты все п каналов.

ГСП СМО представлен на рис. 5.7. Около стрелок поставлены интенсивности соответствующих потоков событий. По стрелкам слева направо систему переводит один и тот же поток -- поток заявок с интенсивностью. Если система находится в состоянии(занято к каналов) и пришла новая заявка, то система переходит в состояние

Рис. 5.7 ГСП для многоканальной СМО с отказами

Определим интенсивности потоков событий, переводящих систему по стрелкам справа налево. Пусть система находится в состоянии(занят один канал). Тогда, как только закончится обслуживание заявки, занимающей этот канал, система перейдет в; значит, поток событий, переводящий систему по стрелке, имеет интенсивность. Очевидно, если обслуживанием занято два канала, а не один, поток обслуживания, переводящий систему по стрелкебудет вдвое интенсивнее; если занято k каналов -- в к раз интенсивнее. Соответствующие интенсивности указаны у стрелок, ведущих справа налево.

Из рис. 5.7 видно, что процесс, протекающий в СМО, представляет собой частный случай процесса размножения и гибели, рассмотренного выше.

Пользуясь общими правилами, можно составить уравнения Колмогорова для вероятностей состояний:

Уравнения (5.39) называют уравнениями Эрланга. Поскольку при t = 0 система свободна, начальными условиями для их решения являются:

Интегрирование системы уравнений (5.39) в аналитическом виде довольно сложно; на практике такие системы дифференциальных уравнений обычно решаются численно и такое решение дает все вероятности состояний как функции времени.

Наибольший интерес представляют предельные вероятности состоянийхарактеризующие установившийся режим СМО (при). Для нахождения предельных вероятностей воспользуемся ранее полученными соотношениями (5.32)--(5.34), полученными для модели размножения и гибели. Согласно этим соотношениям,

В этих формулах интенсивность потока заявоки интенсивность потока обслуживании (для одного канала)не фигурируют по отдельности, а входят только своим отношением. Это отношение обозначается:

и называется приведенной интенсивностью потока заявок. Величинапредставляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

С учетом этого обозначения, соотношения (5.40) принимают вид:

Соотношения (5.41) называются формулами Эрланга. Они выражают предельные вероятности всех состояний системы в зависимости от параметрови n.

Имея вероятности состоянийможно найти характеристики эффективности СМО: относительную пропускную способность q, абсолютную пропускную способность А и вероятность отказа.

Вероятность отказа. Заявка получает отказ, если приходит в момент, когда все и каналов заняты. Вероятность этого равна

Относительная пропускная способность. Вероятность того, что заявка будет принята к обслуживанию (относительная пропускная способность а), дополняетдо единицы:

Абсолютная пропускная способность:

Среднее число заявок в системе. Одной из важных характеристик СМО с отказами является среднее число занятых каналов (в данном случае оно совпадает со средним числом заявок, находящихся в системе). Обозначим это среднее число. Величинуможно вычислить через вероятности по формуле

как математическое ожидание дискретной случайной величины, однако проще выразить среднее число занятых каналов через абсолютную пропускную способность А, которая уже известна. Действительно, А есть не что иное, как среднее число заявок, обслуживаемых в единицу времени; один занятый канал обслуживает в среднем за единицу временизаявок; среднее число занятых каналов получится делением А на:

или, переходя к обозначению,

пропускной вероятность максимизация доход

Контрольная задача 3. Игра с природой.

Швейная фабрика выпускает детские платья и костюмы, сбыт которых зависит от состояния погоды.

Задача заключается в максимизации средней величины дохода от реализации выпущенной продукции, учитывая капризы погоды.

1) AC:1910*(13-6)+590*(44-23)=13370+12390=25760

2) AD:590*(13-6)+880*(44-23)-(1910-590)*6=(22610-1320)*6=127740

3) BC:590*(13-6)+880*(44-23)-(880-590)*23=(22610-290)*23=513360

4) BD:590*(13-6)+880*(44-23)=4130+18480=22610

Доход при теплой и при холодной погоде

25760*x+127740*(1-x)=513360*x+22610*(1-x)

25760*x+127740-127740*x=513360*x+22610-22610*x

25760*x-127740-513360*x+22610*x=22610-127740=0

592730*x=-105130/*(-1)

Рассчитаем ассортимент фабрики:

(1910+590)*0,177+(880+590)*0,823=(1910*0,177+590*0,823)+(880*0,177+590*0,823)=(338,07+485,57)+(155,76+485,57)=824платьев+641костюмов

Рассчитаем доход:

1) При теплой погоде

25760*0,177+127740*0,823=4559,52+105130,02=109689,54

2) При холодной погоде

513360*0,177+22610*0,823=90864,72+18608,03=109472,75

Ответ: 824 платьев и 641 костюмов, доход равен 109689,54 д.ед.

Список используемой литературы

1. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем. Учебное пособие. М., Финансы и статистика, 2005.

2. Глухов В.В. Математические методы и модели для менеджмента: учебное пособие. СПБ; М.; Краснодар: Лань, 2005.

3. Грицюк С.Н. Математические методы и модели в экономике: учебник. Ростов н/Д: Феникс, 2007.

4. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике: Учебник. М., Изд-во «Дело и сервис», 2004.

5. Исследование операций в экономике. Учебное пособие для вузов/Под ред. проф. Н.Ш. Кремера. М., ЮНИТИ, 2005.

Размещено на Allbest.ru

...

Подобные документы

    Моделирование процесса массового обслуживания. Разнотипные каналы массового обслуживания. Решение одноканальной модели массового обслуживания с отказами. Плотность распределения длительностей обслуживания. Определение абсолютной пропускной способности.

    контрольная работа , добавлен 15.03.2016

    Понятие случайного процесса. Задачи теории массового обслуживания. Классификация систем массового обслуживания (СМО). Вероятностная математическая модель. Влияние случайных факторов на поведение объекта. Одноканальная и многоканальная СМО с ожиданием.

    курсовая работа , добавлен 25.09.2014

    Общие понятия теории массового обслуживания. Особенности моделирования систем массового обслуживания. Графы состояний СМО, уравнения, их описывающие. Общая характеристика разновидностей моделей. Анализ системы массового обслуживания супермаркета.

    курсовая работа , добавлен 17.11.2009

    Понятие и критерии оценивания системы массового обслуживания, определение ее типа, всех возможных состояний. Построение размеченного графа состояний. Параметры, характеризующие ее работу, интерпретация полученных характеристик, эффективность работы.

    контрольная работа , добавлен 01.11.2010

    Построение модели многоканальной системы массового обслуживания с ожиданием, а также использованием блоков библиотеки SimEvents. Вероятностные характеристики аудиторской фирмы как системы массового обслуживания, работающей в стационарном режиме.

    лабораторная работа , добавлен 20.05.2013

    Функциональные характеристики системы массового обслуживания в сфере автомобильного транспорта, ее структура и основные элементы. Количественные показатели качества функционирования системы массового обслуживания, порядок и главные этапы их определения.

    лабораторная работа , добавлен 11.03.2011

    Изучение теоретических аспектов эффективного построения и функционирования системы массового обслуживания, ее основные элементы, классификация, характеристика и эффективность функционирования. Моделирование системы массового обслуживания на языке GPSS.

    курсовая работа , добавлен 24.09.2010

    Решение системы дифференциальных уравнений методом Рунге-Кутта. Исследованы возможности применения имитационного моделирования для исследования систем массового обслуживания. Результаты моделирования базового варианта системы массового обслуживания.

    лабораторная работа , добавлен 21.07.2012

    Элементы теории массового обслуживания. Математическое моделирование систем массового обслуживания, их классификация. Имитационное моделирование систем массового обслуживания. Практическое применение теории, решение задачи математическими методами.

    курсовая работа , добавлен 04.05.2011

    Система массового обслуживания типа M/M/1, ее компоненты. Коэффициент использования обслуживающего устройства. Обозначение M/D/1 для системы массового обслуживания. Параметры и результаты моделирования систем. Среднее время ожидания заявки в очереди.

Введение........................................................................................................... 3

1 Марковские цепи с конечным числом состояний и дискретным временем 4

2 Марковские цепи с конечным числом состояний и непрерывным временем 8

3 Процессы рождения и гибели.................................................................... 11

4 Основные понятия и классификация систем массового обслуживания... 14

5 Основные типы открытых систем массового обслуживания.................... 20

5.1 Одноканальная система массового обслуживания с отказами.............. 20

5.2 Многоканальная система массового обслуживания с отказами........... 21

5.3 Одноканальная система массового обслуживания с ограниченной длиной очереди........................................................................................................................ 23

5.4 Одноканальная система массового обслуживания с неограниченной очередью........................................................................................................................ 26

5.5 Многоканальная система массового обслуживания с ограниченной очередью........................................................................................................................ 27

5.6 Многоканальная система массового обслуживания с неограниченной очередью........................................................................................................................ 30

5.7 Многоканальная система массового обслуживания с ограниченной очередью и ограниченным временем ожидания в очереди............................................. 32

6 Метод Монте-Карло................................................................................... 36

6.1 Основная идея метода............................................................................. 36

6.2 Разыгрывание непрерывной случайной величины................................ 36

6.3 Случайная величина с экспоненциальным распределением................. 38

7 Исследование системы массового обслуживания..................................... 40

7.1 Проверка гипотезы о показательном распределении............................ 40

7.2 Расчет основных показателей системы массового обслуживания........ 45

7.3 Выводы о работе исследуемой СМО..................................................... 50

8 Исследование видоизмененной СМО........................................................ 51

Заключение.................................................................................................... 53

Список использованных источников............................................................ 54

Введение

Темой моей дипломной работы является исследование системы массового обслуживания. В своем изначальном состоянии рассматриваемая мной СМО представляет собой один из классических случаев, а конкретно M/M/2/5 по принятому обозначению Кэндалла. После исследования системы были сделаны выводы о неэффективности ее работы. Были предложены методы оптимизации работы СМО, но с этими изменениями система перестает быть классической. Основная проблема при исследовании систем массового обслуживания заключается в том, что в реальности они могут быть исследованы с использованием классической теории массового обслуживания только в редких случаях. Потоки входящих и исходящих заявок могут оказаться не простейшими, следовательно, нахождение предельных вероятностей состояний с использованием системы дифференциальных уравнений Колмогорова невозможно, в системе могут присутствовать приоритетные классы, тогда расчет основных показателей СМО также невозможен.

Для оптимизации работы СМО была введена система из двух приоритетных классов и увеличено число обслуживающих каналов. В таком случае целесообразно применить методы имитационного моделирования, например метод Монте-Карло. Основная идея метода заключается в том, что вместо неизвестной случайной величины принимается ее математическое ожидание в достаточно большой серии испытаний. Производится разыгрывание случайной величины (в данном случае это интенсивности входящего и исходящего потоков) изначально равномерно распределенной. Затем осуществляется переход от равномерного распределения к показательному распределению, посредством формул перехода. Была написана программа на языке VisualBasic, реализующая этот метод.

1 Марковские цепи с конечным числом состояний и дискретным временем

Пусть некоторая система S может находиться в одном из состояний конечного (или счетного) множества возможных состояний S 1 , S 2 ,…, S n , а переход из одного состояния в другое возможен только в определенные дискретные моменты времени t 1 , t 2 , t 3 , называемые шагами.

Если система переходит из одного состояния в другое случайно, то говорят, что имеет место случайный процесс с дискретным временем.

Случайный процесс называется марковским, если вероятность перехода из любого состояния S i в любое состояние S j не зависит от того, как и когда система S попала в состояние S i (т.е. в системе S отсутствует последствие). В таком случае говорят, что функционирование системы S описывается дискретной цепью Маркова.

Переходы системы S в различные состояния удобно изображать с помощью графа состояний (рис. 1).

Рисунок 1 – Пример размеченного графа состояний

Вершины графа S 1 , S 2 , S 3 обозначают возможные состояния системы. Стрелка, направленная из вершины S i в вершину S j обозначает переход ; число, стоящее рядом со стрелкой, обозначает величину вероятности этого перехода. Стрелка, замыкающаяся на i-той вершине графа, обозначает, что система остается в состоянии S i с вероятностью, стоящей у стрелки.

Графу системы, содержащему n вершин, можно поставить в соответствие матрицу NxN, элементами которой являются вероятности переходов p ij между вершинами графа. Например, граф на рис. 1 описывается матрицей P:

называемой матрицей вероятностей переходов. Элементы матрицы p ij удовлетворяют условиям:

Элементы матрицы p ij – дают вероятности переходов в системе за один шаг. Переход

S i – S j за два шага можно рассматривать как происходящий на первом шаге из S i в некоторое промежуточное состояние S k и на втором шаге из S k в S i . Таким образом, для элементов матрицы вероятностей переходов из S i в S j за два шага получим:

В общем случае перехода за m шагов для элементов матрицы вероятностей переходов справедлива формула:


(3)

Получим два эквивалентных выражения для :

Пусть система S описывается матрицей вероятностей переходов Р:

Если обозначить через Р(m) матрицу, элементами которой являются рi вероятности переходов из S i в S j за m шагов, то справедлива формула

где матрица Р m получается умножением матрицы P саму на себя m раз.

Исходное состояние системы характеризуется вектором состояния системы Q(q i) (называемым также стохастическим вектором).


где q j - вероятность того, что исходным состоянием системы является S j состояние. Аналогично (1) и (2) справедливы соотношения

Обозначим через

вектор состояния системы после m шагов, где q j – вероятность того, что после m шагов система находится в S i состоянии. Тогда справедлива формула

Если вероятности переходов P ij остаются постоянными, то такие марковские цепи называются стационарными. В противном случае марковская цепь называется нестационарной.

2. Марковские цепи с конечным числом состояний и непрерывным временем

Если система S может переходить в другое состояние случайным образом в произвольный момент времени, то говорят о случайном процессе с непрерывным временем. В отсутствии последействия такой процесс называется непрерывной марковской цепью. При этом вероятности переходов для любых i и j в любой момент времени равны нулю (в силу непрерывности времени). По этой причине вместо вероятности перехода вводится величина - плотность вероятности перехода из состояния в состояние , определяемая как предел:

Если величины не зависят от t, то марковский процесс называется однородным. Если за время система может изменить свое состояние не более чем один раз, то говорят, что случайный процесс является ординарным. Величину называют интенсивностью перехода системы из S i в S j . На графе состояний системы численные значения ставят рядом со стрелками, показывающими переходы в вершины графа.

Зная интенсивности переходов можно найти величины p 1 (t), p 2 (t),…, p n (t) – вероятности нахождения системы S в состояниях S 1 , S 2 ,…, S n соответственно. При этом выполняется условие:


Распределение вероятностей состояний системы, которое можно характеризовать вектором , называется стационарным, если оно не зависит от времени, т.е. все компоненты вектора являются константами.

Состояния S i и Sj называются сообщающимися, если возможны переходы .

Состояние S i называется существенным, если всякое S j , достижимое из S i , является сообщающимся с S i . Состояние S i называется несущественным, если оно не является существенным.

Если существуют предельные вероятности состояний системы:

,

не зависящие от начального состояния системы, то говорят, что при в системе устанавливается стационарный режим.

Система, в которой существуют предельные (финальные) вероятности состояний системы, называется эргодической, а протекающий в ней случайный процесс эргодическим.

Теорема 1. Если S i – несущественное состояние, то т.е. при система выходит из любого несущественного состояния.

Теорема 2. Чтобы система с конечным числом состояний имела единственное предельное распределение вероятностей состояний, необходимо и достаточно, чтобы все ее существенные состояния сообщались между собой.

Если случайный процесс, происходящий в системе с дискретными состояниями является непрерывной марковской цепью, то для вероятностей p 1 (t), р 2 (t),…, p n (t) можно составить систему линейных дифференциальных уравнений, называемых уравнениями Колмогорова. При составлении уравнений удобно пользоваться графом состояний системы. В левой части каждого из них стоит производная вероятности какого-то (j-го) состояния. В правой части – сумма произведений вероятностей всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков, минус суммарная интенсивность всех потоков, выводящих систему из данного (j-го) состояния, умноженная на вероятность данного (j-го) состояния.

3 Процессы рождения и гибели

Так называется широкий класс случайных процессов, происходящих в системе, размеченный граф состояний которой изображен на рис. 3.

Рисунок 2 – Граф состояний для процессов гибели и размножения

Здесь величины , ,…, – интенсивности переходов системы из состояния в состояние слева направо, можно интерпретировать как интенсивности рождения (возникновения заявок) в системе. Аналогично, величины ,,…, – интенсивности переходов системы из состояния в состояние справа налево, можно интерпретировать как интенсивности гибели (выполнения заявок) в системе.

Поскольку все состояния являются сообщающимися и существенными, существует (в силу теоремы 2) предельное (финальное) распределение вероятностей состояний. Получим формулы для финальных вероятностей состояний системы.

В стационарных условиях для каждого состояния поток, входящий в данное состояние должен равняться потоку, исходящему из данного состояния. Таким образом, имеем:

Для состояния S 0:

Следовательно:


Для состояния S 1:

Следовательно:

С учетом того, что :

(4)


, ,…, (5)

4. Основные понятия и классификация систем массового обслуживания

Заявкой (или требованием) называется спрос на удовлетворение какой-либо потребности (далее потребности предполагаются однотипными). Выполнение заявки называется обслуживанием заявки.

Системой массового обслуживания (СМО) называется любая система для выполнения заявок, поступающих в неё в случайные моменты времени.

Поступление заявки в СМО называется событием. Последовательность событий, заключающихся в поступлении заявок в СМО, называется входящим потоком заявок. Последовательность событий, заключающихся в выполнении заявок в СМО, называется выходящим потоком заявок.

Поток заявок называется простейшим, если он удовлетворяет следующим условиям:

1) отсутствие последействия, т.е. заявки поступают независимо друг от друга;

2) стационарность, т.е. вероятность поступления данного числа заявок на любом временном отрезке зависит лишь от величины этого отрезка и не зависит от значения t 1 , что позволяет говорить о среднем числе заявок за единицу времени, λ, называемом интенсивностью потока заявок;

3) ординарность, т.е. в любой момент времени в СМО поступает лишь одна заявка, а поступление одновременно двух и более заявок пренебрежимо мало.

Для простейшего потока вероятность p i (t) поступления в СМО ровно i заявок за время t вычисляется по формуле:

(6)


т.е. вероятности распределены по закону Пуассона с параметром λt. По этой причине простейший поток называется также пуассоновским потоком.

Функция распределения F(t) случайного интервала времени T между двумя последовательными заявками по определению равна . Но , где – вероятность того, что следующая после последней заявки поступит в СМО по истечении времени t, т.е. за время t в СМО не поступит ни одна заявка. Но вероятность этого события находится из (6) при i = 0. Таким образом:

Плотность вероятности f(t) случайной величины T определяется формулой:

,

Математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины T равны соответственно:

Каналом обслуживания называется устройство в СМО, обслуживающее заявку. СМО, содержащее один канал обслуживания, называется одноканальной, а содержащее более одного канала обслуживания – многоканальной.

Если заявка, поступающая в СМО, может получить отказ в обслуживании (в силу занятости всех каналов обслуживания) и в случае отказа вынуждена покинуть СМО, то такая СМО называется СМО с отказами.

Если в случае отказа в обслуживании заявки могут вставать в очередь, то такие СМО называются СМО с очередью (или с ожиданием). При этом различают СМО с ограниченной и неограниченной очередью. Очередь может быть ограничена как по количеству мест, так и по времени ожидания. Различают СМО открытого и замкнутого типа. В СМО открытого типа поток заявок не зависит от СМО. В СМО замкнутого типа обслуживается ограниченный круг клиентов, а число заявок может существенно зависеть от состояния СМО (например, бригада слесарей – наладчиков, обслуживающих станки на заводе).

СМО могут также различаться по дисциплине обслуживания.

Если в СМО нет приоритета, то заявки отбираются из очереди в канал по различным правилам.

· Первым пришел – первым обслужен (FCFS – First Came – First Served)

· Последним пришел – первым обслужен (LCFS – Last Came – First Served)

· Первоочередное обслуживание требований с кратчайшей длительностью обслуживания (SPT/SJE)

· Первоочередное обслуживание требований с кратчайшей длительностью дообслуживания (SRPT)

· Первоочередное обслуживание требований с кратчайшей средней длительностью обслуживания (SEPT)

· Первоочередное обслуживание требований с кратчайшей средней длительностью дообслуживания (SERPT)

Приоритеты бывают двух типов – абсолютный и относительный.

Если требование в процессе обслуживания может быть удалено из канала и возвращено в очередь (либо вовсе покидает СМО) при поступлении требования с более высоким приоритетом, то система работает с абсолютным приоритетом. Если обслуживание любого требования, находящегося в канале не может быть прервано, то СМО работает с относительным приоритетом. Существуют также приоритеты, осуществляемые с помощью конкретного правила или набора правил. Примером может служить приоритет, изменяющийся с течением времени.

СМО описываются некоторыми параметрами, которые характеризуют эффективность работы системы.

– число каналов в СМО;

– интенсивность поступления в СМО заявок;

– интенсивность обслуживания заявок;

– коэффициент загрузки СМО;

– число мест в очереди;

– вероятность отказа в обслуживании поступившей в СМО заявки;

– вероятность обслуживания поступившей в СМО заявки (относительная пропускная способность СМО);

При этом:

(8)

А – среднее число заявок, обслуживаемых в СМО в единицу времени (абсолютная пропускная способность СМО)

– среднее число заявок, находящихся в СМО

– среднее число каналов в СМО, занятых обслуживанием заявок. В тоже время это – среднее число заявок, обслуживаемых в СМО за единицу времени. Величина определяется как математическое ожидание случайного числа занятых обслуживанием n каналов.

, (10)

где – вероятность нахождения системы в S k состоянии.

– коэффициент занятости каналов

– среднее время ожидания заявки в очереди

– интенсивность ухода заявок из очереди

– среднее число заявок в очереди. Определяется как математическое ожидание случайной величины m – числа заявок, состоящих в очереди

(11)

Здесь – вероятность нахождения в очереди i заявок;

– среднее время пребывания заявки с СМО

– среднее время пребывания заявки в очереди

Для открытых СМО справедливы соотношения:

(12)


Эти соотношения называются формулами Литтла и применяются только для стационарных потоков заявок и обслуживания.

Рассмотрим некоторые конкретные типы СМО. При этом будет предполагаться, что плотность распределения промежутка времени между двумя последовательными событиями в СМО имеет показательное распределение (7), а все потоки являются простейшими.

5. Основные типы открытых систем массового обслуживания

5.1 Одноканальная система массового обслуживания с отказами

Размеченный граф состояний одноканальной СМО представлен на рисунке 3.

Рисунок 3 – Граф состояний одноканальной СМО

Здесь и – интенсивность потока заявок и выполнения заявок соответственно. Состояние системы S o обозначает, что канал свободен, а S 1 – что канал занят обслуживанием заявки.

Система дифференциальных уравнений Колмогорова для такой СМО имеет вид:

где p o (t) и p 1 (t) – вероятности нахождения СМО в состояниях So и S1 соответственно. Уравнения для финальных вероятностей p o и p 1 получим, приравнивая нулю производные в первых двух уравнениях системы. В результате получим:

(14)


(15)

Вероятность p 0 по своему смыслу есть вероятность обслуживания заявки p обс, т. к. канал является свободным, а вероятность р 1 по своему смыслу является вероятностью отказа в обслуживании поступающей в СМО заявки р отк, т. к. канал занят обслуживанием предыдущей заявки.

5.2 Многоканальная система массового обслуживания с отказами

Пусть СМО содержит n каналов, интенсивность входящего потока заявок равна , а интенсивность обслуживания заявки каждым каналом равна . Размеченный граф состояний системы изображён на рисунке 4.

Рисунок 4 – Граф состояний многоканальной СМО с отказами

Состояние S 0 означает, что все каналы свободны, состояние S k (k = 1, n) означает, что обслуживанием заявок заняты k каналов. Переход из одного состояния в другое соседнее правое происходит скачкообразно под воздействием входящего потока заявок интенсивностью независимо от числа работающих каналов (верхние стрелки). Для перехода системы из одного состояния в соседнее левое неважно, какой именно канал освободится. Величина характеризует интенсивность обслуживания заявок при работе в СМО k каналов (нижние стрелки).

Сравнивая графы на рис. 3 и на рис. 5 легко увидеть, что многоканальная СМО с отказами является частным случаем системы рождения и гибели, если в последней принять и


(16)

При этом для нахождения финальных вероятностей можно воспользоваться формулами (4) и (5). С учётом (16) получим из них:

(17)

(18)

Формулы (17) и (18) называются формулами Эрланга – основателя теории массового обслуживания.

Вероятность отказа в обслуживании заявки р отк равна вероятности того, что все каналы заняты, т.е. система находится в состоянии S n . Таким образом,

(19)

Относительную пропускную способность СМО найдём из (8) и (19):

(20)

Абсолютную пропускную способность найдём из (9) и (20):

Среднее число занятых обслуживанием каналов можно найти по формуле (10), однако сделаем это проще. Так как каждый занятый канал в единицу времени обслуживает в среднем заявок, то можно найти по формуле:

5.3 Одноканальная система массового обслуживания с ограниченной длиной очереди

В СМО с ограниченной очередью число мест m в очереди ограничено. Следовательно, заявка, поступившая в момент времени, когда все места в очереди заняты, отклоняется и покидает СМО. Граф такой СМО представлен на рисунке 5.

S 0

Рисунок 5 – Граф состояний одноканальной СМО с ограниченной очередью

Состояния СМО представляются следующим образом:

S 0 – канал обслуживания свободен,

S 1 – канал обслуживания занят, но очереди нет,

S 2 – канал обслуживания занят, в очереди одна заявка,

S k +1 – канал обслуживания занят, в очереди k заявок,

S m +1 – канал обслуживания занят, все m мест в очереди заняты.

Для получения необходимых формул можно воспользоваться тем обстоятельством, что СМО на рисунок 5 является частным случаем системы рождения и гибели, представленной на рисунке 2, если в последней принять и


(21)

Выражения для финальных вероятностей состояний рассматриваемой СМО можно найти из (4) и (5) с учётом (21). В результате получим:

При р = 1 формулы (22), (23) принимают вид

При m = 0 (очереди нет) формулы (22), (23) переходят в формулы (14) и (15) для одноканальной СМО с отказами.

Поступившая в СМО заявка получает отказ в обслуживании, если СМО находится в состоянии S m +1 , т.е. вероятность отказа в обслуживании заявки равна:

Относительная пропускная способность СМО равна:

Среднее число заявок, стоящих в очереди L оч, находится по формуле


и может быть записано в виде:

(24)

При формула (24) принимает вид:

– среднее число заявок, находящихся в СМО, находится по формуле(10)

и может быть записано в виде:

(25)

При , из (25) получим:

Среднее время пребывания заявки в СМО и в очереди находится по формулам (12) и (13) соответственно.

5.4 Одноканальная система массового обслуживания с неограниченной очередью

Примером такой СМО может служить директор предприятия, вынужденный рано или поздно решать вопросы, относящиеся к его компетенции, или, например, очередь в булочной с одним кассиром. Граф такой СМО изображён на рисунке 6.

Рисунок 6 – Граф состояний одноканальной СМО с неограниченной очередью

Все характеристики такой СМО можно получить из формул предыдущего раздела, полагая в них . При этом необходимо различать два существенно разных случая: а) ; б) . В первом случае, как это видно из формул (22), (23), р 0 = 0 и p k = 0 (при всех конечных значениях k). Это означает, что при очередь неограниченно возрастает, т.е. этот случай практического интереса не представляет.

Рассмотрим случай, когда . Формулы (22) и (23) при этом запишутся в виде:

Поскольку в СМО отсутствует ограничение на длину очереди, то любая заявка может быть обслужена, т.е.


Абсолютная пропускная способность равна:

Среднее число заявок в очереди получим из формулы (24) при :

Среднее число обслуживаемых заявок есть:

Среднее время пребывания заявки в СМО и в очереди определяются формулами (12) и (13).

5.5 Многоканальная система массового обслуживания с ограниченной очередью

Пусть на вход СМО, имеющей каналов обслуживания, поступает пуассоновский поток заявок с интенсивностью . Интенсивность обслуживания заявки каждым каналом равна , а максимальное число мест в очереди равно .

Граф такой системы представлен на рисунке 7.

Рисунок 7 – Граф состояний многоканальной СМО с ограниченной очередью

– все каналы свободны, очереди нет;

– заняты l каналов (l = 1, n), очереди нет;

Заняты все n каналов, в очереди находится i заявок (i = 1, m).

Сравнение графов на рисунке 2 и рисунке 7 показывает, что последняя система является частным случаем системы рождения и гибели, если в ней сделать следующие замены (левые обозначения относятся к системе рождения и гибели):

Выражения для финальных вероятностей легко найти из формул (4) и (5). В результате получим:

(26)


Образование очереди происходит, когда в момент поступления в СМО очередной заявки все каналы заняты, т.е. в системе находятся либо n, либо (n+1),…, либо (n + m– 1) заявок. Т.к. эти события несовместны, то вероятность образования очереди p оч равна сумме соответствующих вероятностей :

(27)

Относительная пропускная способность равна:


Среднее число заявок, находящихся в очереди, определяется по формуле (11) и может быть записано в виде:

(28)

Среднее число заявок, находящихся в СМО:

Среднее время пребывания заявки в СМО и в очереди определяется формулами (12) и (13).

5.6 Многоканальная система массового обслуживания с неограниченной очередью

Граф такой СМО изображен на рисунке 8 и получается из графа на рисунке 7 при .

Рисунок 8 – Граф состояний многоканальной СМО с неограниченной очередью


Формулы для финальных вероятностей можно получить из формул для n-канальной СМО с ограниченной очередью при . При этом следует иметь в виду, что при вероятность р 0 = р 1 =…= p n = 0, т.е. очередь неограниченно возрастает. Следовательно, этот случай практического интереса не представляет и ниже рассматривается лишь случай . При из (26) получим:

Формулы для остальных вероятностей имеют тот же вид, что и для СМО с ограниченной очередью:

Из (27) получим выражение для вероятности образования очереди заявок:

Поскольку очередь не ограничена, то вероятность отказа в обслуживании заявки:


Абсолютная пропускная способность:

Из формулы (28) при получим выражение для среднего числа заявок в очереди:

Среднее число обслуживаемых заявок определяется формулой:

Среднее время пребывания в СМО и в очереди определяется формулами (12) и (13).

5.7 Многоканальная система массового обслуживания с ограниченной очередью и ограниченным временем ожидания в очереди

Отличие такой СМО от СМО, рассмотренной в подразделе 5.5, состоит в том, что время ожидания обслуживания, когда заявка находится в очереди, считается случайной величиной, распределённой по показательному закону с параметром , где – среднее время ожидания заявки в очереди, а – имеет смысл интенсивности потока ухода заявок из очереди. Граф такой СМО изображён на рисунке 9.


Рисунок 9 – Граф многоканальной СМО с ограниченной очередью и ограниченным временем ожидания в очереди

Остальные обозначения имеют здесь тот же смысл, что и в подразделе.

Сравнение графов на рис. 3 и 9 показывает, что последняя система является частным случаем системы рождения и гибели, если в ней сделать следующие замены (левые обозначения относятся к системе рождения и гибели):

Выражения для финальных вероятностей легко найти из формул (4) и (5) с учетом (29). В результате получим:

,

где . Вероятность образования очереди определяется формулой:


Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е. вероятность отказа в обслуживании:

Относительная пропускная способность:

Абсолютная пропускная способность:

Среднее число заявок, находящихся в очереди, находится по формуле (11) и равно:

Среднее число заявок, обслуживаемых в СМО, находится по формуле (10) и равно:


Среднее время пребывания заявки в СМО складывается из среднего времени ожидания в очереди и среднего времени обслуживания заявки:

6. Метод Монте-Карло

6.1 Основная идея метода

Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину Х, математическое ожидание которой равно а: М(Х)=а.

Практически же поступают так: производят n испытаний, в результате которых получают n возможных значений Х; вычисляют их среднее арифметическое и принимают в качестве оценки (приближённого значения) a * искомого числа a:

Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний.

6.2 Разыгрывание непрерывной случайной величины

Пусть необходимо получить значения случайной величины , распределенной в интервале с плотностью . Докажем, что значения можно найти из уравнения

где – случайная величина, равномерно распределенная на интервале .

Т.е. выбрав очередное значение надо решить уравнение (30) и найти очередное значение . Для доказательства рассмотрим функцию:

Имеем общие свойства плотности вероятности:

Из (31) и (32) следует, что , а производная .

Значит, функция монотонно возрастает от 0 до 1. И любая прямая , где , пересекает график функции в единственной точке, абсциссу которой мы и принимаем за . Таким образом, уравнение (30) всегда имеет одно и только одно решение.

Выберем теперь произвольный интервал , содержащийся внутри . Точкам этого интервала отвечают ординаты кривой, удовлетворяющие неравенству . Поэтому, если принадлежит интервалу , то

Принадлежит интервалу , и наоборот. Значит: . Т.к. равномерно распределена в , то

, а это как раз и означает, что случайная величина , являющаяся корнем уравнения (30) имеет плотность вероятностей .

6.3 Случайная величина с экспоненциальным распределением

Простейшим потоком (или потоком Пуассона) называется такой поток заявок, когда промежуток времени между двумя последовательными заявками есть случайная величина, распределенная на интервале с плотностью

Вычислим математическое ожидание:

После интегрирования по частям, получим:

.

Параметр есть интенсивность потока заявок.

Формулу для розыгрыша получим из уравнения (30), которое в данном случае запишется так: .

Вычислив интеграл, стоящий слева, получим соотношение . Отсюда, выражая , получим:

(33)

Т.к. величина распределена также как и , следовательно, формулу (33) можно записать в виде:



7 Исследование системы массового обслуживания

7.1 Проверка гипотезы о показательном распределении

Исследуемое мной предприятие представляет собой двухканальную систему массового обслуживания с ограниченной очередью. На вход поступает пуассоновский поток заявок с интенсивностью λ. Интенсивности обслуживания заявок каждым из каналов μ, а максимальное число мест в очереди m.

Начальные параметры:

Время обслуживания заявок имеет эмпирическое распределение, указанное ниже и имеет среднее значение .

Мной были проведены контрольные замеры времени обработки заявок, поступающих в данную СМО. Чтобы приступить к исследованию, необходимо установить по этим замерам закон распределения времени обработки заявок.

Таблица 6.1 – Группировка заявок по времени обработки


Выдвигается гипотеза о показательном распределении генеральной совокупности.

Для того чтобы, при уровне значимости проверить гипотезу о том, что непрерывная случайная величина распределена по показательному закону, надо:

1) Найти по заданному эмпирическому распределению выборочную среднюю . Для этого, каждый i – й интервал заменяем его серединой и составляем последовательность равноотстоящих вариант и соответствующих им частот.

2) Принять в качестве оценки параметра λ показательного распределения величину, обратную выборочной средней:

3) Найти вероятности попадания X в частичные интервалы по формуле:

4) Вычислить теоретические частоты:

где - объем выборки

5) Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, приняв число степеней свободы , где S – число интервалов первоначальной выборки.


Таблица 6.2 – Группировка заявок по времени обработки с усредненным временным интервалом

Найдем выборочную среднюю:

2) Примем в качестве оценки параметра λ экспоненциального распределения величину, равную . Тогда:

()

3) Найдем вероятности попадания X в каждый из интервалов по формуле:

Для первого интервала:


Для второго интервала:

Для третьего интервала:

Для четвертого интервала:

Для пятого интервала:

Для шестого интервала:

Для седьмого интервала:

Для восьмого интервала:

4) Вычислим теоретические частоты:


Результаты вычислений заносим в таблицу. Сравниваем эмпирические и теоретические частоты с помощью критерия Пирсона.

Для этого вычислим разности , их квадраты, затем отношения . Суммируя значения последнего столбца, находим наблюдаемое значение критерия Пирсона. По таблице критических точек распределения при уровне значимости и числу степеней свободы находим критическую точку

Таблица 6.3 – Результаты вычислений

i
1 22 0,285 34,77 -12,77 163,073 4,690
2 25 0,204 24,888 0,112 0,013 0,001
3 23 0,146 17,812 5,188 26,915 1,511
4 16 0,104 12,688 3,312 10,969 0,865
5 14 0,075 9,15 4,85 23,523 2,571
6 10 0,053 6,466 3,534 12,489 1,932
7 8 0,038 4,636 3,364 11,316 2,441
8 4 0,027 3,294 0,706 0,498 0,151
122

Т.к. , то нет оснований отвергнуть гипотезу о распределении X по показательному закону. Другими словами, данные наблюдений согласуются с этой гипотезой.

7.2 Расчет основных показателей системы массового обслуживания

Данная система представляет собой частный случай системы гибели и размножения.

Граф данной системы:

Рисунок 10 – Граф состояний исследуемой СМО

Поскольку все состояния являются сообщающимися и существенными, то существует предельное распределение вероятностей состояний. В стационарных условиях поток, входящий в данное состояние должен быть равен потоку, выходящему из данного состояния.

(1)

Для состояния S 0:

Следовательно:

Для состояния S 1:


Следовательно:

С учетом того, что :

Аналогично получаем уравнения для остальных состояний системы. В результате получим систему уравнений:

Решение этой системы будет иметь вид:

; ; ; ; ;

; .


Или, с учетом (1):

Коэффициент загруженности СМО:

С учетом этого предельные вероятности перепишем в виде:

Наивероятнейшее состояние – оба канала СМО заняты и заняты все места в очереди.

Вероятность образования очереди:

Отказ в обслуживании заявки происходит, когда все m мест в очереди заняты, т.е.:

Относительная пропускная способность равна:

Вероятность того, что вновь поступившая заявка будет обслужена, равна 0,529

Абсолютная пропускная способность:

СМО обслуживает в среднем 0,13225 заявок в минуту.

Среднее число заявок, находящихся в очереди:

Среднее число заявок в очереди близко к максимальной длине очереди.

Среднее число заявок, обслуживаемых в СМО, может быть записано в виде:

В среднем все каналы СМО постоянно заняты.

Среднее число заявок, находящихся в СМО:

Для открытых СМО справедливы формулы Литтла:

Среднее время пребывания заявки с СМО:

Среднее время пребывания заявки в очереди:

7.3 Выводы о работе исследуемой СМО

Наиболее вероятное состояние данной СМО – занятость всех каналов и мест в очереди. Приблизительно половина всех поступающих заявок покидают СМО необслуженными. Приблизительно 66,5% времени ожидания приходиться на ожидание в очереди. Оба канала постоянно заняты. Все это говорит о том, что в целом данная схема СМО неудовлетворительна.

Чтобы снизить загрузку каналов, сократить время ожидания в очереди и снизить вероятность отказа необходимо увеличить число каналов и ввести систему приоритетов для заявок. Число каналов целесообразно увеличить до 4. Также необходимо сменить дисциплину обслуживания с FIFO на систему с приоритетами. Все заявки теперь будут иметь принадлежность к одному из двух приоритетных классов. Заявки I класса имеют относительный приоритет по отношению к заявкам II класса. Для расчета основных показателей этой видоизмененной СМО целесообразно применить какой-либо из методов имитационного моделирования. Была написана программа на языке VisualBasic, реализующая метод Монте-Карло.

8 Исследование видоизмененной СМО

Пользователю при работе с программой необходимо задать основные параметры СМО, такие как интенсивности потоков, количество каналов, приоритетных классов, мест в очереди (если количество мест в очереди равно нулю, то СМО с отказами), а также временной интервал модуляции и количество испытаний. Программа преобразовывает сгенерированные случайные числа по формуле (34), таким образом, пользователь получает последовательность временных интервалов , распределенных показательно. Затем отбирается заявка с минимальным , и ставится в очередь, согласно ее приоритету. За это же время происходит перерасчет очереди и каналов. Затем эта операция повторяется до окончания времени модуляции, задаваемого изначально. В теле программы присутствуют счетчики, на основании показаний которых и формируются основные показатели СМО. Если для увеличения точности было задано несколько испытаний, то в качестве конечных результатов принимается оценка за серию опытов. Программа получилась достаточно универсальной, с ее помощью могут быть исследованы СМО с любым количеством приоритетных классов, либо вообще без приоритетов. Для проверки корректности работы алгоритма, в него были введены исходные данные классической СМО, исследуемой в разделе 7. Программа смоделировала результат близкий к тому, который был получен с помощью методов теории массового обслуживания (см. приложение Б). Погрешность, возникшая в ходе имитационного моделирования, может быть объяснена тем, что проведено недостаточное количество испытаний. Результаты, полученные с помощью программы для СМО с двумя приоритетными классами и увеличенным числом каналов, показывают целесообразность этих изменений (см. приложение В). Высший приоритет был присвоен более «быстрым» заявкам, что позволяет быстро обследовать короткие задания. Сокращается средняя длина очереди в системе, а соответственно минимизируется средство для организации очереди. В качестве основного недостатка данной организации можно выделить то, что «долгие» заявки находятся в очереди длительно время или вообще получают отказ. Введенные приоритеты могут быть переназначены после оценки полезности того или иного типа заявок для СМО.

Заключение

В данной работе была исследована двухканальная СМО методами теории массового обслуживания, рассчитаны основные показатели, характеризующие ее работу. Был сделан вывод о том, что данный режим работы СМО не является оптимальным и были предложены методы, снижающие загруженность и повышающие пропускную способность системы. Для проверки этих методов была создана программа, моделирующая метод Монте-Карло, с помощью которой были подтверждены результаты вычислений для исходной модели СМО, а также рассчитаны основные показатели для видоизмененной. Погрешность алгоритма может быть оценена и снижена путем увеличения количества испытаний. Универсальность программы позволяет использовать ее при исследовании различных СМО, в том числе и классических.

1 Вентцель, Е.С. Исследование операций / Е.С. Вентцель. - М.: «Советское радио», 1972. - 552 с.

2 Гмурман, В.Е. Теория вероятностей и математическая статистика / В.Е. Гмурман. - М.: «Высшая школа», 2003. - 479 с.

3 Лаврусь, О.Е. Теория массового обслуживания. Методические указания/ О.Е. Лаврусь, Ф.С. Миронов. - Самара: СамГАПС, 2002.- 38 с.

4 Саакян, Г.Р. Теория массового обслуживания: лекции / Г.Р. Саакян. - Шахты: ЮРГУЭС, 2006. - 27 с.

5 Авсиевич, А.В. Теория массового обслуживания. Потоки требований, системы массового обслуживания / А.В. Авсиевич, Е.Н. Авсиевич. - Самара: СамГАПС, 2004. - 24 с.

6 Черненко, В.Д. Высшая математика в примерах и задачах. В 3. т. Т. 3/ В.Д. Черненко. - Санкт – Петербург: Политехника, 2003. - 476 с.

7 Клейнрок, Л. Теория массового обслуживания / Л. Клейнрок. Пер.с англ./ Пер. И.И. Грушко; под ред. В.И. Нейман. - М.: Машиностроение, 1979. - 432 с.

8 Олзоева, С.И. Моделирование и расчет распределенных информационных систем. Учебное пособие / С.И. Олзоева. - Улан-Удэ: ВСГТУ, 2004. - 66 с.

9 Соболь, И.М. Метод Монте-Карло / И.М. Соболь. - М.: «Наука», 1968. - 64 с.



Поделиться