Мультипликативную модель условно можно выразить следующей формулой. Двухфакторные мультипликативные модели

Назначение сервиса . С помощью онлайн-калькулятора определяется мультипликативная индексная двухфакторная модель.

Инструкция . Для решения подобных задач выберите количество строк. Полученное решение сохраняется в файле MS Word .

Количество данных (количество строк) 1 2 3 4 5 6 7 8 9 10

Индекс – это относительный показатель сравнения двух состояний простого или сложного явления, состоящего из соизмеримых или несоизмеримых элементов, во времени или пространстве.
Основными задачами индексного метода являются :

  • оценка динамики обобщающих показателей, характеризующих сложные, непосредственно несоизмеримые совокупности;
  • анализ влияния отдельных факторов на изменение результативных обобщающих показателей;
  • анализ влияния структурных сдвигов на изменение средних показателей однородной совокупности;
  • оценка территориальных, в том числе международных, сравнений.
Индексы классифицируют по степени охвата , по базе сравнения , по виду весов , по форме построения и по составу явления . По степени охвата индексы бывают индивидуальные и общие (сводные). По базе сравнения – динамические, индексы выполнения плана, территориальные. По виду весов – с постоянными весами и с переменными весами. По форме построения – агрегатные и средневзвешенные. По составу явления – постоянного состава и переменного состава.

Общие (сводные) индексы бывают только групповые; динамические индексы бывают базисные и цепные; индексы с постоянными весами – стандартные, базисного периода, отчетного периода; средневзвешенные индексы – арифметические и гармонические.

Условные обозначения, используемые в теории индексного метода:
р - цена за единицу товара (услуги);
q - количество (объем) какого-либо продукта (товара) в натуральном выражении;
pq - общая стоимость продукции данного вида (товарооборот);
z - себестоимость единицы продукции (изделия);
zq - общая себестоимость продукции данного вида (денежные затраты на ее производство);
Т - общие затраты времени на производство продукции или общая численность работников;
w= q/ T - производство продукции данного вида в единицу времени (либо выработка продукции на одного работника, т.е. производительность труда);
t= T/ q - затраты рабочего времени на единицу продукции (трудоемкость единицы продукции);
1 - подстрочный символ показателя текущего (отчетного) периода;
0 - подстрочный символ показателя предшествующего (базисного) периода

Индивидуальный индекс ( i) характеризует динамику уровня изучаемого явления во времени за два сравниваемых периода или выражает соотношение отдельных элементов совокупности.
Основным элементом индексного соотношения является индексируемая величина. Индексируемая величина – это признак, изменение которого характеризует индекс.
Основные формулы вычисления индивидуальных индексов:
Индекс физического объема (количества) продукции

Индекс цен

Индекс стоимости продукции

Индекс себестоимости единицы продукции

Индекс затрат на производство продукции

Индекс трудоемкости

Индекс количества продукции, произведенной в единицу времени

Индекс производительности труда (по трудоемкости)

Взаимосвязь индексов



Виды мультипликативных индексных двухфакторных моделей

Двухфакторная мультипликативная модель как правило применяется для анализа показателей разнородной продукции предприятия.
  1. Мультипликативная индексная двухфакторная модель товарооборота: Q 1 = Q 0 i p i q
    С аналитической точки зрения i q показывает, во сколько раз увеличилась (или уменьшилась) общая сумма выручки под влиянием изменения объема продажи в натуральных единицах.
    Аналогично i p показывает, во сколько раз изменилась общая сумма выручки под влиянием изменения цены товара. Очевидно, что
    i Q = i q i p , или Q 1 = Q 0 i q i p
    Формула Q 1 = Q 0 i q i p представляет двухфакторную индексную мультипликативную модель итогового показателя. Посредством такой модели находят прирост итога под влиянием каждого фактора в отдельности.
    Так, если выручка от продажи некоторого товара возросла с 8 млн. руб. в предыдущем периоде до 12,180 млн. руб. в последующем и известно, что это объясняется увеличением количества проданного товара на 5 % при цене на 45 % большей, чем в предыдущем периоде, то можно записать следующее соотношение:
    12,180 = 8 × 1,05 × 1,45 (млн. руб.).
    Распределения общего прироста по факторам в двухфакторной индексной мультипликативной модели
    Общий прирост выручки в сумме 12,180-8 = 4,180 млн. руб. объясняется изменением объема продажи и цены. Прирост выручки за счет изменения объема продажи (в натуральном выражении) составит
    ΔQ(q) = Q 0 (i q -1)
    Для нашего примера: ΔQ(q) = 8(1,05-1)=+0,4 млн. руб.
    Тогда за счет изменения цены данного товара сумма выручки изменилась на
    ΔQ(p) = Q 0 i q (i p -1) или ΔQ(p) = 8*1,05(1,45-1) = +3,78 млн.руб.
    Общий прирост товарооборота складывается из приростов, объясняемых каждым фактором в отдельности, т.е. ΔQ = Q 1 – Q 0 = ΔQ(q) + ΔQ(p)
    или ΔQ = 12,18-8=0,4+3,78 = 4,18 млн.руб.
  2. Мультипликативная индексная двухфакторная модель себестоимости (затрат, издержек обращения): Q 1 = Q 0 i z i q

Страница
6

Примером мультипликативной модели является двухфакторная модель объема реализации

где Ч - среднесписочная численность работников;

CB - средняя выработка на одного работника.

Кратные модели:

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:

,

где ЗТ - средний запас товаров; ОР - однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.

Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.

Если исходная факторная модель

то модель примет вид

.

Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:

.

Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.

.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: · место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; · модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие; · при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 - фактические значения факторов;

ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Рассмотрим пример:

Таблица 2

Исходные данные для факторного анализа

Показатели

Условные обозначения

Базисные значения

Фактические значения

Изменение

Абсолютное (+,-)

Относительное (%)

Объем товарной продукции, тыс. руб.

Количество работников, чел

Выработка на одного работающего, тыс.руб.

Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:

Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:

Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.

Преимущества данного способа: универсальность применения, простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: · при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; · если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.

Использование в анализе хозяйственной деятельности экономико-математических методов.

Способы пропорционального деления и интегральный способ.

Способы цепной подстановки, абсолютных и относительных разниц.

Приемы и способы, используемые в анализе хозяйственной деятельности

Л3. Приемы и способы, используемые в АХД.

Сравнение – сопоставление изучаемых данных и фактов хозяйственной жизни. Различают горизонтальный сравнительный анализ, который применяется для определения абсолютных и относительных отклонений фактического уровня исследуемых показателей от базового; вертикальный сравнительный анализ, используемый для изучения структуры экономических явлений; трендовый анализ, применяемый при изучении относительных темпов роста и прироста показателей за ряд лет к уровню базисного года, т.е. при исследовании рядов динамики.

Обязательным условием сравнительного анализа является сопоставимость сравниваемых показателей, предполагающая:

· единство объемных, стоимостных, качественных, структурных показателей;

· единство периодов времени, за которые производится сравнение;
· сопоставимость условий производства;

· сопоставимость методики исчисления показателей.

Средние величины – исчисляются на основе массовых данных о качественно однородных явлениях. Они помогают определять общие закономерности и тенденции в развитии экономических процессов.

Группировки – используются для исследования зависимости в сложных явлениях, характеристика которых отражается однородными показателями и разными значениями (характеристика парка оборудования по срокам ввода в эксплуатацию, по месту эксплуатации, по коэффициенту сменности и т.д.)

Балансовый метод состоит в сравнении, соизмерении двух комплексов показателей, стремящихся к определенному равновесию. Он позволяет выявить в результате новый аналитический (балансирующий) показатель.

Например, при анализе обеспеченности предприятия сырьем сравнивают потребность в сырье, источники покрытия потребности и определяют балансирующий показатель – дефицит или избыток сырья.

Графический способ. Графики являются масштабным изображением показателей и их зависимости с помощью геометрических фигур.

Графический способ не имеет в анализе самостоятельного значения, а используется для иллюстрации измерений.

Индексный метод основывается на относительных показателях, выражающих отношение уровня данного явления к его уровню, взятому в качестве базы сравнения. Статистика называет несколько видов индексов, которые применяются при анализе: агрегатные, арифметические, гармонические и т.д.



Использовав индексные пересчеты и построив временной ряд, характеризующий, например, выпуск промышленной продукции в стоимостном выражении, можно квалифицированно проанализировать явления динамики.

Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями не находящимися в функциональной зависимости, т.е. связь проявляется не в каждом отдельном случае, а в определенной зависимости.

С помощью корреляции решаются две главные задачи:
· составляется модель действующих факторов (уравнение регрессии);
· дается количественная оценка тесноты связей (коэффициент корреляции).

Матричные модели представляют собой схематическое отражение экономического явления или процесса с помощью научной абстракции. Наибольшее распространение здесь получил метод анализа «затраты-выпуск», строящийся по шахматной схеме и позволяющий в наиболее компактной форме представить взаимосвязь затрат и результатов производства.

Математическое программирование – это основное средство решения задач по оптимизации производственно-хозяйственной деятельности.

Метод исследования операций направлен на изучение экономических систем, в том числе производственно-хозяйственной деятельности предприятий, с целью определения такого сочетания структурных взаимосвязанных элементов систем, которое в наибольшей степени позволит определить наилучший экономический показатель из ряда возможных.

Теория игр как раздел исследования операций - это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Одной из задач факторного анализа является моделирование взаимосвязей между результативными показателями и факторами, которые определяют их величину. Сущность моделирования заключается в том, что взаимосвязь исследуемого показателя с факторными передается в форе конкретного математического уравнения.

В факторном анализе различают модели детерминированные (функциональные) и стохастические (корреляционные). С помощью детерминированных факторных моделей исследуется функциональная связь между результативным показателем (функцией) и факторами (аргументами).

При моделировании детерминированных факторных систем необходимо выполнять ряд требований:

1. Фактор3ы, которые включаются в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями. Иначе говоря, построенная факторная система должна иметь познавательную ценность. Факторные модели, которые отражают причинно-следственные отношения между показателями, имеют значительно большее познавательное значение, чем модели, созданные при помощи приемов математической абстракции.

Последнее можно проиллюстрировать следующим образом. Возьмем две модели:

1) ВП = КР* ГВ;

2) ГВ = ВП/КР,

где ВП - валовая продукция предприятия; КР - численность (количество) работников на предприятии; ГВ - среднегодовая выработка продукции одним работником.

В первой системе факторы находятся в причинной связи с результативным показателем, а во второй - в математическом соотношении. Значит, вторая модель, построенная на математических зависимостях, имеет меньшее познавательное значение, чем первая.

3. Все показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.

4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это значит, что в ней должна учитываться соразмерность изменений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.

В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей:

1. Аддитивные модели используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.

У = Х1+Х2+Х3+…+Хп

2. Мультипликативные модели применяются тогда, когда результативный показатель представляет собой произведение нескольких факторов.

У = Х1*Х2*Х3*…*Хп

3. Кратные модели применяются тогда, когда результативный показатель получают делением одного факторного на величину другого.

4. Смешанные модели – это сочетание в различных комбинациях предыдущих моделей.

У = (а+в)/с; У = а/(в+с); У = (а*в)/с; У = (а+в)*с.

Моделирование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители. Например, при исследовании процесса формирования объема производства продукции можно применять такие детерминированные модели, как:

ВП=КР*ГВ; ВП=КР*Д*ДВ; ВП=КР*Д*П*СВ

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей, а пределах установленных правил.

За счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от целей исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его основные элементы.

Например: VРП= VВП-ВИ (объем внутрихозяйственного использования). В хозяйстве продукция использовалась в качестве семян (С) и кормов (К). Тогда приведенную исходную модель можно записать следующим образом: VРП= VВП–(С+К).

К классу кратных моделей применяют следующие способы их преобразования: удлинения, формального разложения, расширения и сокращения.

Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей. Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменение суммы затрат (3 ) и объема выпуска продукции (VВП ). Исходная модель этой факторной системы будет иметь вид: С=З/ VВП

Если общую сумму затрат (3 ) заменить отдельными их элементами, такими, как оплата труда (ОТ ), сырье и материалы (СМ ), амортизация основных средств (А ), накладные затраты (НЗ ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:

С=ОТ/ VВП+ СМ/ VВП+ А/ VВП+ НЗ/ VВП=х1+х2+х3+х4,

где X1- трудоемкость продукции; Х2 - материалоемкость продукции; Х3 - фондоемкость продукции; Х4- уровень накладных затрат.

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей. Если b = l + m + n + p, то у=а/в=а/ l + m + n + p.

В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р): Р=П/З

Где П - сумма прибыли от реализации продукции; 3 - сумма затрат на производство и реализацию продукции. Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид: Р=П/ОТ+СМ+А+НЗ.

Себестоимость одного тонно-километра зависит от суммы затрат на содержание и эксплуатацию автомобиля (3 ) и от его среднегодовой выработки (ГВ ). Исходная модель этой системы будет иметь вид: C т/км = 3 / ГВ. Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов: C т/км = 3 / ГВ=3 /Д*П*СВ.

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель у=а/в ввести новый показатель с , то модель примет вид: у=а/в=а*с/в*с=а/с*с/в=х1*х2.

В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП / КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (åД), то получим следующую модель годовой выработки:

ГВ = ВП *åД / åД *КР= ВП/åД * åД/ КР = ДВ*Д

где ДВ – среднедневная выработка, Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (åТ) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П).

ГВ = ВП *åД *åТ / åД КР * åТ = ВП/åТ * åТ / КР * åТ /åТ = СВ*Д*П

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель:

у=а/в=а:с/в:с=х1/х2.

Фондоотдача определяется отношением валовой (ВП)или товарной продукции (ТП)к среднегодовой стоимости основных производственных фондов (ОПФ):

ФО=ВП/ОПФ

Разделив числитель и знаменатель на среднегодовое количество рабочих (КР), получим содержательную кратную модель с другими факторными показателями: среднегодовой выработки продукции одним рабочим (ГВ), характеризующей уровень производительности труда, и фондовооруженности труда (Фв):

ФО=ВП:КР/ОПФ:КР=ГВ/Фв

Необходимо заметить, что на практике для преобразования одной и той же модели может быть последовательно использовано несколько методов. Например:

ФО=РП/ОПФ=(П+СБ)/ОПФ=П/ОПФ+СБ/ОПФ= П/ОПФ+ОС/ОПФ*СБ/ОС

где РП – объем реализованной продукции(выручка); СБ – себестоимость реализованной продукции, П – прибыль, ОС – средние остатки основных средств.

В этом случае для преобразования исходной факторной модели, которая построена на математических зависимостях, использованы способы удлинения и расширения. В результате получилась более содержательная модель, которая имеет большую познавательную ценность, т.к. учитывает причинно-следственные связи между показателями. Полученная конечная модель позволяет исследовать, как влияет на фондоотдачу рентабельность основных средств производства, соотношения между основными и оборотными средствами, а также коэффициент оборачиваемости оборотных средств.

Т.о., результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в виде различных типов детерминированных моделей. Выбор способа моделирования зависит от объекта исследования, поставленной цели, а также профессиональных знаний и навыков исследователя.

Одним из важнейших методологических вопросов в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном анализе для этого используются следующие способы: цепной подстановки, абсолютных разниц, относительных разниц, пропорционального деления и интегральный метод.

Первых четыре способа основываются на методе элиминирования. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д. при неизменности остальных. Это позволяет определить влияние каждого фак­тора на величину исследуемого показателя в отдельности.

Наиболее универсальным из них является прием цепной подстановки . Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или другого фактора позволяет элиминироваться (устранять, исключать) от влияния всех факторов, кроме одного, и определить воздействие последнего на прирост результативного показателя.

ВП=ЧР*Д*П*ЧВ

ВПп=ЧРп*Дп*Пп*ЧВп ∆ ВПчр= ВПусл 1 - ВПп

ВП усл 1 = ЧРф*Дп*Пп*ЧВп ∆ ВПд= ВПусл 2 - ВПусл 1

ВП усл 2 = ЧРф*Дф*Пп*ЧВп ∆ ВПп= ВП усл 3 - ВПусл 2

ВП усл 3 = ЧРф*Дф*Пф*ЧВп ∆ ВПчв= ВПф - ВП усл 3

ВП ф= ЧРф*Дф*Пф*ЧВф

∆ ВПобщ =∆ ВПчр+ ∆ ВПд + ∆ ВПп +∆ ВПчв

∆ ВПобщ = ВП ф - ВПп

дробная модель:

ФО = ВП / ОПФ

ФОп = ВПп / ОПФп ∆ФОвп = ФОусл-ФОп

ФОусл = ВПф / ОПФп ∆ФОопф = ФОф-ФОусл

ФОф = ВПф / ОПФф

∆ФОобщ = ∆ФОвп +∆ФОопф

∆ФОобщ = ФОф-ФОп

Задание . На основе данных, скорректированных на инфляцию, о прибыли компании за 12 кварталов (табл.) построить мультипликативной модель тренда и сезонности для прогнозирования прибыли компании на следующие два квартала. Дать общую характеристику точности модели и сделать выводы.

Решение проводим с помощью калькулятора Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 375 - - -
2 371 657.5 - -
3 869 653 655.25 1.33
4 1015 678 665.5 1.53
5 357 708.75 693.38 0.51
6 471 710 709.38 0.66
7 992 718.25 714.13 1.39
8 1020 689.25 703.75 1.45
9 390 689.25 689.25 0.57
10 355 660.5 674.88 0.53
11 992 678.25 669.38 1.48
12 905 703 690.63 1.31
13 461 685 694 0.66
14 454 690.5 687.75 0.66
15 920 - - -
16 927 - - -

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.33 1.53
2 0.51 0.66 1.39 1.45
3 0.57 0.53 1.48 1.31
4 0.66 0.66 - -
Всего за период 1.74 1.85 4.2 4.28
Средняя оценка сезонной компоненты 0.58 0.62 1.4 1.43
Скорректированная сезонная компонента, S i 0.58 0.61 1.39 1.42

Для данной модели имеем:
0.582 + 0.617 + 1.399 + 1.428 = 4.026
Корректирующий коэффициент: k=4/4.026 = 0.994
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
16a 0 + 136a 1 = 10872.41
136a 0 + 1496a 1 = 93531.1
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 0 = 3.28, a 1 = 651.63
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10872.41}/{16} = 679.53
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 648.87 1 421026.09 648.87 654.92 940.05 36.61
2 605.46 4 366584.89 1210.93 658.2 5485.32 2780.93
3 625.12 9 390770.21 1875.35 661.48 2960.37 1322.21
4 715.21 16 511519.56 2860.82 664.76 1273.1 2544.83
5 617.72 25 381577.63 3088.6 668.04 3819.95 2532.22
6 768.66 36 590838.18 4611.96 671.32 7944.97 9474.64
7 713.6 49 509219.75 4995.17 674.6 1160.83 1520.44
8 718.73 64 516571.58 5749.83 677.88 1536.93 1668.26
9 674.82 81 455381.82 6073.38 681.17 22.14 40.28
10 579.35 100 335647.52 5793.51 684.45 10034.93 11045.26
11 713.6 121 509219.75 7849.56 687.73 1160.83 669.14
12 637.7 144 406656.13 7652.35 691.01 1749.71 2842.39
13 797.67 169 636280.07 10369.73 694.29 13958.53 10687.5
14 740.92 196 548957.15 10372.83 697.57 3768.85 1878.69
15 661.8 225 437983.3 9927.05 700.85 314.08 1524.97
16 653.2 256 426667.57 10451.17 704.14 693.14 2594.6
136 10872.41 1496 7444901.2 93531.1 10872.41 56823.71 53162.96

Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 651.634 + 3.281t
Подставляя в это уравнение значения t = 1,...,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 375 0.58 648.87 654.92 378.5 0.99 12.23
2 371 0.61 605.46 658.2 403.31 0.92 1044.15
3 869 1.39 625.12 661.48 919.55 0.95 2555.16
4 1015 1.42 715.21 664.76 943.41 1.08 5125.42
5 357 0.58 617.72 668.04 386.08 0.92 845.78
6 471 0.61 768.66 671.32 411.36 1.14 3557.43
7 992 1.39 713.6 674.6 937.79 1.06 2938.24
8 1020 1.42 718.73 677.88 962.03 1.06 3359.96
9 390 0.58 674.82 681.17 393.67 0.99 13.45
10 355 0.61 579.35 684.45 419.4 0.85 4147.15
11 992 1.39 713.6 687.73 956.04 1.04 1293.1
12 905 1.42 637.7 691.01 980.66 0.92 5724.7
13 461 0.58 797.67 694.29 401.25 1.15 3569.68
14 454 0.61 740.92 697.57 427.44 1.06 705.39
15 920 1.39 661.8 700.85 974.29 0.94 2946.99
16 927 1.42 653.2 704.14 999.29 0.93 5225.65

Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 16
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10874}/{16} = 679.63
16 927 61194.39 136 10874 1252743.75

R^{2} = 1 - {43064.467}/{1252743.75} = 0.97
Следовательно, можно сказать, что мультипликативная модель объясняет 97% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.
F = {R^{2}}/{1 - R^{2}}{(n - m -1)}/{m} = {0.97^{2}}/{1 - 0.97^{2}}{(16-1-1)}/{1} = 393.26
где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.6
Поскольку F > Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 651.634 + 3.281t
Получим
T 17 = 651.634 + 3.281*17 = 707.416
Значение сезонного компонента за соответствующий период равно: S 1 = 0.578
Таким образом, F 17 = T 17 + S 1 = 707.416 + 0.578 = 707.994
T 18 = 651.634 + 3.281*18 = 710.698
Значение сезонного компонента за соответствующий период равно: S 2 = 0.613
Таким образом, F 18 = T 18 + S 2 = 710.698 + 0.613 = 711.311
T 19 = 651.634 + 3.281*19 = 713.979
Значение сезонного компонента за соответствующий период равно: S 3 = 1.39
Таким образом, F 19 = T 19 + S 3 = 713.979 + 1.39 = 715.369
T 20 = 651.634 + 3.281*20 = 717.26
Значение сезонного компонента за соответствующий период равно: S 4 = 1.419
Таким образом, F 20 = T 20 + S 4 = 717.26 + 1.419 = 718.68

Пример . На основе поквартальных данных построена мультипликативная модель временного ряда . Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 - I квартал, 1,2 - II квартал и 1,3 - III квартал. Определите значение сезонной компоненты за IV квартал.
Решение. Поскольку сезонные воздействия за период (4 квартала) взаимопогашаются, то имеем равенство: s 1 + s 2 + s 3 + s 4 = 4. Для наших данных: s 4 = 4 - 0.8 - 1.2 - 1.3 = 0.7.
Ответ: Сезонная компонента за IV квартал равна 0.7.



Поделиться