Сколько весит водолазный скафандр. покорение глубин- водолазное снаряжение и подводные аппараты

Военно-морской флот закончил испытания уникальных нормобарических скафандров, создающих водолазу на большой глубине атмосферные «земные» условия. Скафандры серии АС, созданные петербургской компанией «Дайвтехносервис», представляют собой гибрид батискафа и водолазного костюма. Они позволяют подводникам выполнять работы на глубинах свыше 500 м.

При помощи механических манипуляторов скафандра водолаз может совершать почти ювелирные операции, доступные только человеческим рукам. Изделие также предотвращает развитие кессонной болезни, когда из-за быстрого понижения давления при подъеме с глубины газы, растворенные в крови и тканях организма (азот, гелий, водород), начинают выделяться в виде пузырьков в кровь, разрушая стенки сосудов и блокируя кровоток.

В настоящее время испытания скафандров уже завершены, - рассказал «Известиям» представитель Военно-морского флота, знакомый с ситуацией. - В ходе работ были проведены не только глубоководные погружения в различных гидрографических и гидрологических условиях, но и выполнен ряд сложных монтажных глубоководных работ. В частности, с помощью двух скафандров с номерами АС-54 и АС-55 провели на Северном флоте ремонт линий связи, расположенных на глубине в несколько сот метров.

В «Дайвтехносервисе» «Известиям» подтвердили, что поставили российскому Военно-морскому флоту два одноместных и два двухместных нормобарических скафандра, которые получили наименования АС (автономные станции) и порядковые номера с 54-го по 57-й. Правда, от дальнейших комментариев в «Дайвтехносервисе» воздержались.

По данным «Известий», в настоящее время одна пара АС передана Черноморскому флоту, оставшиеся два - Северному флоту.

Внешне нормобарический скафандр, несмотря на свое название, напоминает скорее миниатюрный батискаф. При длине 2,5 м и ширине 1,5 м одноместный АС весит 1,5 т. В верхней части аппарата размещен обзорный купол, а по бокам корпуса крепятся металлические руки-манипуляторы. За счет использования четырех электродвигателей одноместные скафандры могут развивать под водой скорость до трех узлов, а система погружения позволяет опускаться на глубину до 600 м.

Двухместная версия - это два соединенных друг с другом одноместных скафандра. Один оператор отвечает за передвижение самого аппарата, а второй управляет работой рук-манипуляторов. Такой вариант скафандра весит чуть более 3 т.

Погружаются АС только в паре, помогая друг другу выполнять работы, а в случае необходимости проводят эвакуацию вышедшего из строя скафандра. При этом обе версии аппарата чрезвычайно мобильны, компактны и приспособлены к доставке с помощью вертолета.

В настоящее время подводная инфраструктура достигла того уровня сложности, когда применение телеуправляемых подводных аппаратов уже не позволяет оперативно устранять все возникающие чрезвычайные ситуации, - рассказал «Известиям» редактор интернет-проекта «Отвага-2004» Леонид Карякин. - Манипуляторы телеуправляемых комплексов не имеют точности и ограничены по времени действия, при этом обслуживание подобных машин стоит значительных средств.

По словам эксперта, российскому флоту необходимы легкие обитаемые батискафы -нормобарические скафандры, способные погружаться на достаточную глубину, где применение специалистов-водолазов уже невозможно. В то же время они должны иметь достаточно совершенные манипуляторы, чтобы устранять неисправности инфраструктуры. Это особенно актуально в свете наращивания российского военного присутствия в Арктике.

Несколько иначе обстояло дело с созданием жестких скафандров. Еще в 1715 г., примерно за 50 лет до гидростатической машины Фремине с ее охлаждавшимися водой трубами для "регенерации" воздуха, англичанин Джон Лесбридж изобрел первый бронированный, т. е, жесткий, водолазный костюм. Изобретатель полагал, что такой скафандр защитит водолаза от воздействия давления воды и позволит ему дышать атмосферным воздухом.

Как и следовало ожидать, скафандр не принес славы его создателю. Во-первых, деревянный панцирь (высотой 183 см, диаметром 76 см у головы и 28 см у ног) оставлял незащищенными руки водолаза. Кроме того, для подачи воздуха с поверхности служили мехи, совершенно неспособные создать сколько-нибудь значительное давление. В довершение всего водолаз практически был лишен возможности пошевелиться, вися лицом вниз в этом сооружении, к тому же не отличавшемся водонепроницаемостью.

Вероятно, именно одно из детищ Лесбриджа посчастливилось увидеть некоему Дезагюлье, авторитетному специалисту того времени по водолазным костюмам. В 1728 г. он следующим образом описал результаты испытаний скафандра, свидетелем которых явился: "... Эти бронированные машины совершенно бесполезны. Водолаз, у которого из носа, рта и ушей текла кровь, умер вскоре после окончания испытаний". Надо полагать, что именно так и было.

Если многолетние старания изобрести мягкий водолазный скафандр увенчались в 1837 г. созданием костюма Зибе, то творцам жесткого скафандра потребовалось еще почти сто лет, чтобы сконструировать пригодный для практического применения образец, хотя англичанин Тейлор изобрел первый жесткий скафандр с шарнирными соединениями за год до появления костюма Зибе. К несчастью, шарнирные соединения были защищены от давления воды всего лишь слоем парусины, а руки водолаза опять-таки оставались открытыми. Поскольку под водой он должен был дышать атмосферным воздухом, при погружении на любую сколько-нибудь значительную глубину их неизбежно расплющило бы давлением воды.

В 1856 г. американцу Филипсу посчастливилось предугадать основные особенности тех немногих удачных по конструкции жестких скафандров, которые были созданы уже в XX веке. Скафандр защищал не только тело, но и конечности водолаза; для выполнения различных работ предназначались управляемые водолазом клещи-захваты, проходившие через водонепроницаемые сальники, а шарнирные соединения вполне удовлетворительно решали проблему защиты от давления воды. К сожалению, всего Филипс предусмотреть не мог. Перемещение водолаза под водой обеспечивалось по мысли изобретателя небольшим гребным винтом, который располагался примерно в центре скафандра - напротив пупка водолаза - и приводился в движение вручную. Необходимую плавучесть создавал наполненный воздухом шар размером с баскетбольный мяч, закрепленный в верхней части шлема. Такой поплавок вряд ли поднял бы на поверхность даже обнаженного ныряльщика, не говоря уже о водолазе, облаченном в металлические доспехи, весившие не одну сотню килограммов.

К концу XIX в. появилось великое множество жестких скафандров самых разнообразных конструкций. Однако ни один из них ни на что не годился - их изобретатели обнаружили удивительное невежество в отношении реальных условий пребывания человека под водой, хотя к тому времени в данной области уже были накоплены некоторые данные.

В 1904 г. итальянец Рестуччи выступил с предложением, чрезвычайно сложным с точки зрения его технического осуществления, но научно вполне обоснованным. В разработанном им скафандре предусматривалась одновременная подача воздуха при атмосферном давлении в скафандр и сжатого - в шарнирные соединения. В результате отпадала необходимость в декомпрессии и обеспечивалась водонепроницаемость соединений. К сожалению, эта весьма привлекательная идея так никогда и не была осуществлена на практике.

Спустя несколько лет, в 1912 г., два других итальянца Леон Дюран и Мельчиорре Бамбино разработали, несомненно, наиболее оригинальную из всех ранее изобретенных конструкций жесткого скафандра. Он был снабжен четырьмя шарообразными колесами, изготовленными из дуба, которые позволяли буксировать скафандр по морскому дну. На шасси этого фантастического сооружения, кроме того, устанавливались фары и рулевое колесо. Не хватало только мягких сидений. Но они и не требовались. Как и в скафандре Лесбриджа, водолаз должен был лежать на животе. В этом удобнейшем положении снабженный всем необходимым мученик мог беспрепятственно разъезжать по всем подводным шоссе, которые ему посчастливилось бы найти. К счастью, до постройки дело не дошло.

Океан был первой чужеродной средой, куда мы отправили своего представителя. И эволюционный путь, который прошёл костюм для изучения океанских глубин, поражает воображение…В древности при попытках погружения под воду (например, в охотничьих целях) человек мог рассчитывать только на свою выносливость и отвагу. При этом первые упоминания о технических приспособлениях для погружения под воду встречаются ещё в трудах Аристотеля в IV веке до нашей эры. В своих трудах он пишет, что во времена Александра Македонского ныряльщики могли дышать под водой, опуская в него перевёрнутый котёл, в котором оставался воздух. По сути, этот перевёрнутый котёл был прототипом придуманного лишь в XVI веке водолазного колокола.


1689 г.
Дени Папен предложил дополнить водолазный колокол мощным поршневым насосом, который позволял бы восполнять использованный воздух.


Конец 17 века. Устройство для погружения на большую глубину английского королевского астронома, геофизика, математика, метеоролога, физика и демографа Эдмунда Галлея, конец 17 века.

"Колокол опустился на дно. Затем ассистент одел на голову другой, маленький колокол, и смог немного походить по дну – насколько ему позволяла трубка, через которую он дышал оставшимся в большом колоколе воздухом. После этого сверху были сброшены бочки с дополнительным запасом воздуха, утяжелённые грузом. Ассистент отыскал их и подтащил к колоколу".



1715 г. Костюм для погружения французского аристократа Пьера Реми де Бова,
Один из двух шлангов тянулся к поверхности – через него поступал воздух для дыхания; другой служил для отвода выдыхаемого воздуха.


1715 г. Аппарат для погружения Джона Летбриджа.
Эта герметичная дубовая бочка предназначалась для поднятия ценностей с затонувших судов. В том же году, другой англичанин Эндрю Бекер разработал похожую систему, которая была снабжена системой трубок для вдоха и выдоха.


1797 г. Аппарат для погружения Карла Клингерта,
"Он состоял из куртки, штанов из непромокаемой кожи и шлема с иллюминатором. Шлем соединялся с башенкой, в которой находился резервуар с запасом воздуха. Резервуар не пополнялся, так что время пребывания под водой было ограничено".

1810 г. Костюм Чонси Холл.

1819 г. Первый глубоководный скафандр с тяжёлыми башмаками Августа Зибе (Германия)
Водолазное снаряжение, состоящее из металлического шлема с иллюминатором, жестко соединенного с открытой кожаной рубахой, которую утяжеляли грузы. В шлем с поверхности подавался воздух, излишек которого выходил из-под нижнего края рубахи. Водолазный скафандр Зибе представлял собой миниатюрный водолазный колокол, позволявший водолазу погружаться на небольшую глубину и находиться под водой только в вертикальном положении. Этот вариант скафандра нашел практическое применение в 1834 году при водолазных работах на затонувшем корабле «Ройял Джордж».

19 век Трёхболтовое водолазное снаряжение, «трёхболтовка»
Данное стандартное водолазное снаряжение используется в российском ВМФ и гражданском флоте с ХIХ века и по сей день. Им комплектуются водолазные станции морских и рейдовых водолазных ботов, спасательных судов и буксиров. Не изолирует водолаза от давления внешней среды (воды). Оснащается переговорным устройством.
Состав: медный шлем, водолазная рубаха, водолазные, водолазные груза, водолазный нож в футляре, воздушный шланг или шланг-кабель,сигнальный конец или кабель-сигнал, водолазное бельё.

1878 г. Водолазный костюм с 20 маленькими иллюминаторами Альфонса и Теодора Кармагноль, Марсель, Франция,


1878г.
Аппарат Генри Флюсса
Разработал устройство для спасения горных рабочих из затопленных водой участков шахт и горных выработок. Устройство представляло собой маску, закрывающую лицо водолаза и соединенную герметичными трубками с кислородным баллоном, дыхательным мешком и коробкой с веществом, поглощающим углекислый газ из выдыхаемого воздуха (каустической содой). Изобретение Флюсса явилось первым работоспособным ребризером. Водолаз спускается на дно у берегов Чили, где произошло крушение британского судна Cape Horn, чтобы поднять груз меди, 1900 г.

1906 г. Один из первых водолазных костюмов с поддержанием давления, разработан М. де Плюви

1911 г. Костюм из алюминиевого сплава Честера Макдуффи весом около 200 кг


1917-1940 гг. Три поколения водолазных костюмов немецкой фирмы «Нойфельд и Кунке»
Костюм третьего поколения (произведён между 1929 и 1940 годами) позволял погружаться на глубину 160 м. и был снабжён встроенным телефоном.


1925 г. Мистер Перес и его новый стальной водолазный костюм, г. Лондон


1930 г. Инструктор проверяет состояние студента, лежащего в декомпрессионной камере во время занятий в школе водолазов, Кент, Англия

Странички из журнала с инструкциями о том, как смастерить собственный костюм для подводного плавания из подручных материалов вроде банки для хранения печенья или сосуда для нагревания воды


Надувной костюм


1933 г. Мини-подводная лодка для одного человека

В конструкциях жестких скафандров можно выделить два направления. Первое направление - создание аппаратов с бронированным корпусом и шарнирными сочленениями, второе - на пружинной основе, без шарниров. Шарниры герметизировались парусиной, а кисти рук оставались открытыми. Воздух подавался с поверхности, а его излишки выходили через клапан на шлеме.
Через несколько лет, в 1912 г., итальянцы Л. Дюран (L. Durand) и М. Бамбино (М. Bambino) предложили буксируемую конструкцию жесткого скафандра , снабженную четырьмя сферическими дубовыми колесами. Проект не был реализован.
Основная проблема жестких скафандров - шарнирные соединения, которые не обеспечивали достаточной подвижности человека под водой в условиях повышенного внешнего давления. Пружинные скафандры также не обеспечивали необходимую подвижность, так как под давлением воды пружины сжимались. Другая проблема- снабжение водолаза воздухом. Шланговая подача воздуха дает возможность достаточно долго находиться под водой, но ограничивает свободу действий водолаза и глубину погружения и этим сводит до минимума достоинства жестких скафандров . Чтобы устранить этот недостаток, конструкторы отказывались от систем подачи воздуха с поверхности в ущерб времени пребывания под водой. В целом эти проблемы могут быть решены только с помощью систем регенерации воздуха.
Лишь спустя 200 лет после Лесбриджа создается реальная действующая модель жесткого скафандра . Его авторами были Нейфельдт и Кунке (1920). Аппарат весил 385 кг, имел автономность 6 ч и глубину погружения более 200 м (рис. 1.12). Плавучесть регулировалась как в подводной лодке - с помощью балластных цистерн, которые для погружения заполнялись водой, а для всплытия осушались запасом сжатого воздуха. В этой модели впервые была решена проблема шарнирных сочленений - внутри шарниров находились шариковые подшипники, а герметичность обеспечивалась резиновыми уплотнениями. Работоспособность скафандра была испытана фирмой «Сорима сэлвидж и Ко» при подъеме американского парохода «Вашингтон» с глубины около 100 м.
Затем были разработаны достаточно удачные скафандры Р. Галеацци и Дж. Перреса (1930). Жесткий скафандр Дж. Перреса «Тритония», в котором шарнирные поверхности изолировались специальной жидкостью, исключавшей усиление трения поверхностей при возрастающем внешнем давлении, послужил прототипом для серии современных нормобарических скафандров , названных так в честь первого испытателя «Тритонии» - Дж. Ларрета (Jim Larret). Эти скафандры изготовляются из легких сплавов или пластиков, имеют рабочую глубину погружения до 610 м при массе 410 кг (в воде около 27 кг). В 1970 г. в ходе эксперимента «Ихтиандр-70», проходившего на мысе Тарханкут (Крым, Черное море), акванавт И. Опша пробыл на глубинах 5-10 м 26 ч 15 мин. Для этих целей был сконструирован специальный скафандр (рис. 1.13). Затем это время было увеличено до 37 ч 40 мин С. Хацетом.
Как уже отмечалось, нормальное развитие жестких водолазных скафандров было невозможно без эффективных систем подачи воздуха. Предложенная Р. Дэйвисом в его наблюдательной камере система регенерации воздуха была затем реализована в аппаратах Левита (1918) и в других жестких скафандрах. Однако идея регенерации воздуха не являлась новой, если вспомнить жесткий скафандр Фреминета, а также идею российского инженера А. Н. Лодынина (1871). Аппарат Лодынина представлял собой герметичный сосуд, в котором располагалась установка для электролиза воды.
Дышать водолаз должен был кислородно-водородной смесью. В 1873 г. мичман российского флота А. Хотинский предложил

Сегодня в разделе “Фантастика” будет не рассказ, а статья о скафандрах, которые предшествовали появлению современных “оболочек” для космических путешественников.

К самой теме космоса они непосредственного отношения не имеют, однако дизайн этих изделий и их практическое применение оказало на разработку космических скафандров определенное влияние.

Например, работы на большой глубине доставляют не меньше проблем, чем в космическом пространстве. Если не больше.

Да и высотные скафандры тоже представляли собой, в своё время, последнее слово науки и техники.

Начнем как-раз с глубоководной темы, тем более, что интересных конструкций здесь имеется достаточно. Оцените глубину конструкторской мысли 19-20 веков!

Вот к примеру, жёсткий водолазный скафандр для подводного наблюдения и выполнения водолазных работ оператором находящимся в условиях нормального внутреннего давления. Это изделие немецких инженеров.

Короткая заметка:

“Первый пригодный для практического использования глубоководный водолазный скафандр был выпущен германской фирмой “Нейфельдт и Кунке” в 1923г. Он представлял собой полую металлическую конструкцию из двух частей,соединявшихся с помощью болтов на уровне груди водолаза. Внутри были установлены последовательно открывавшиеся водолазом баллоны с шестичасовым запасом сжатого воздуха.

Размеры скафандра позволяли водолазу время от времени вытаскивать руки из металлических клешней-захватов, с помощью которых он мог выполнять некоторые несложные виды работ. Подвижные элементы скафандра были снабжены шарнирными соединениями с шарикоподшипниками и водонепроницаемыми резиновыми уплотнениями. По окружности скафандра располагался балластный резервуар, придававший ему необходимую положительную или отрицательную плавучесть. Масса скафандра составляла 385 кг. Он успешно прошел испытания на глубине 152 м.”

К этому можно лишь добавить, что плавбаза “Saar” плавала преимущественно только на Балтийском море, где глубины совсем небольшие.

Не менее серьёзная и даже более высокотехнологичная (и эстетичная) конструкция ещё одного немецкого глубоководного скафандра. Было разработано, по меньшей мере, две модели. Одна из них представлена на фотографии, а вторая, судя по всему, сохранилась только в эскизах. По всей видимости, данный скафандр предполагалось использовать на глубинах около 100 метров.

А как вам вот такой скафандр? Кажется, как будто он сделан для фантастического фильма, однако это совершенно не так (хотя вполне могло бы быть). Читаем дословно из первоисточника:

“In 1914, mr MacDuffy constructed the first suit with ball bearings as the medium to provide movement to a joint.
The suit was tested in New York in 214 feet of water.
Source: Gary Harris, History of the Iron Suit.”
В переводе на русский это означает следующее:
“В 1914 году мистер МакДаффи сконструировал первый скафандр с шариковыми сочленениями как средства для предоставления движения сустава. Скафандр тестировался в Нью-Йорке на глубине 214 футов (около 70 метров).”


Правда, больше о нём информации нет.

Не менее интересна история скафандра разработанного братьями Карманьолле (Alphonse and Theodore Carmagnolle). Помимо тяжелой железной “брони” при разработке водолазного шлема они применили интересный технологический приём. Поскольку глубина погружения была свыше 30 метров давление на поверхность скафандра сильно возрастало. На иллюминаторы в том числе. Вот Карманьолле и решили сделать не три больших иллюминатора, а 20(!) более мелких. Определенный смысл в этом, конечно же, имелся. Но вот обзорность уменьшалась достаточно сильно.
Самое интересное заключается в том, что скафандры этого типа, первый их которых был собран в 1882(!) году, использовались более 20 лет. Весьма вероятно, что именно он подтолкнул создателей игры “Bioshock” (2007 год) на появление Big Daddy в специфических скафандрах со множеством иллюминаторов в шлеме.

Или вот такой скафандр, разработанный инженерами Бачененом и Гордоном (John Buchanan, Alexander Gordon) в очень далеком, теперь уже, 1894 году. Не правда ли, очень напоминает “космические технологии”. Справедливости ради надо отметить, что вплоть до 40-х гг. 20-го века космические скафандры представлялись если не именно такими, то по крайней мере очень похожими.
Обратите внимание, что в отличии от других скафандров Гордон предпринял попытку сделать свою конструкцию более гибкой, что позволило бы водолазу работать под водой с меньшими затратами сил. Взять к примеру тот же скафандр братьев Карманьолле, который весил больше человека и особыми удобствами не отличался. Правда, скафандр Гордона особо не прижился и дальнейшие сведения о нём отсутствуют.

Теперь перейдем к скафандрам высотным.

Первым на очереди снова будет немецкий скафандр летчиков-испытателей. Использовали его в 1944-1945 гг. Предназначался он для истребителей которые должны были действовать на высотах до 16 км. предполагалось, что именно с такой высоты можно будет проводить атаки на боевые порядки американских “летающих крепостей”. В данном случае скафандр использовался в процессе испытаний самолёта Horten Ho.229. Возможно, специально для него он и разрабатывался.

Второй снимок показывает нам британского пилота Ф.Свейна (F.Swain), совершившего в 1936 году на самолёте Bristol 138A подъём на высоту 15500 метров. Полёт состоялся 28-го октября – время не самое подходящее из-за сильных ветров, но тогда Великобритании надо было показать, что её пилоты и авиационная промышленность ничем не хуже итальянской. А ведь тогда было от чего кусать локти! Ведь до этого рекорд высоты был поставлен на серийном истребителе И-15 с высотным оборудованием, а немного после итальянцы “перебили” его на своём уже специализированном самолёте.

Кстати, по поводу итальянцев имеется такая историческая справка.

“1934 год – 14433 м. Коммандер Ренато Донати, вылетев 11 апреля 1934 года из Рима на Caproni Ca 161, установил новый мировой рекорд высоты. В конце 1930-х годов на таком самолете подполковник М. Пецци еще дважды бил мировые рекорды высоты. В 1938 году на Ca 161 bis (на фото) он набрал высоту 17 069 м – последний официальный мировой рекорд высоты, установленный на самолете с поршневым мотором.”


И это при том, сто Са.161 был бипланом с открытой кабиной пилота!

Последний фотоколлаж из советского журнала Наука и Жизнь за 1978 год.

Образцы первых высотных скафандров (слева направо): скафандр Ч–З (СССР, середина 30–х годов); скафандр Вилли Поста (США, середина 30–х годов); скафандр СК–ЦАГИ–8 (СССР, 1940 г.); скафандр ВСС–04 (СССР, 1950 г.).
Между прочим, упомянутый летчик Вилли Пост был одноглазым и, помимо высотных полётов, совершил несколько рекордных перелётов на дальность. Причем далеко не на самых совершенных самолётах. Героический был человек, одним словом.

Немного ссылок и первоисточников напоследок:
divingheritage.com – Armored Diving Suits
reibert.info – Форум Кушиуке – глубоководный скафандр
lib.ru – Джозеф Н.Горз. Подъем затонувших кораблей



Поделиться