Структура и механические свойства пористых алюминиевых сплавов, полученных методом направленной кристаллизации. Вспененный алюминий – материал будущего

В последние годы проявляется повышенный интерес к двум пористым
материалам на основе алюминия, обладающим многими
привлекательными свойствами.

Материал с закрытыми порами, получаемый методом вспенивания
расплавленного или полурасплавленного алюминия, называют
закрытоячеистым пеноалюминием. Другой материал с открытыми
порами, именуемый открытоячеистым (пористым) алюминием, получают
методом литейного производства с использованием удаляемого
наполнителя или путем гальванического покрытия на удаляемом
затем пенополиуретане.

Закрытоячеистый пеноалюминий

Свойства

В ходе исследований пеноалюминия в Институте перспективных
материалов им. Фраунгофера (Германия) установлено, что наряду с
теплоизоляционными и звукопоглощающими свойствами пеноалюминий
показывает при деформации сильно нелинейное поведение,
характерное для пористых структур. Это свойство может быть
использовано для демпфирования удара. Электрическая и
термическая проводимости значительно меньше, чем у сплошного
металла, но лежат в области свойств обычных металлических
материалов. Как и вспененные пластмассы, металлические пены
обладают отличными энергоабсорбирующими свойствами, но на более
высоком уровне прочности. Широкая температурная область
применения и негорючесть материала являются другими его
преимуществами. Хорошая рециклируемость пеноалюминия
представляет собой не менее ценный параметр. Материал хорошо
обрабатывается пилением, сверлением, фрезерованием, обточкой. В
качестве способов соединения могут быть использованы склеивание,
пайка или специальная сварка.

В отличие от ячеистых бетонов и древесностружечных плит у
пеноалюминия низкая гигроскопичность (1- 3%), что обусловливает
морозостойкость и отсутствие трещин при перепаде температур. Его
не нужно пропитывать антисептиками и антипиренами. На его
поверхность свободно наклеиваются различные декоративные
материалы, он хорошо воспринимает краску.

Применение

Алюминиевые пены используются:

  • Для защиты от удара
  • Для повышения жесткости полых профилей
  • Для изготовления негорючих фасадных элементов зданий и легких и огнестойких кабин лифтов,в производстве теплостойких демпфирующих материалов,
  • Для упрочнения анкеров в бетонных стенах

Наибольший интерес к пеноалюминию проявляют иностранные
автомобилестроители. В 1998 году на автошоу в детройте Вильгельм
Карманн представил новинку, в которой при изготовлении кузова
использовались трехслойные алюминиевые листы с алюминиевой пеной
(afs — aluminium foam sandwich). Такой материал обладает высокой
удельной жесткостью, малой термической и электрической
проводимостью, не горит и хорошо подходит для поглощения или
демпфирования энергии. Низкая масса подобной конструкции
уменьшает расход бензина. Кузов на 50% легче соответствующего
стального, но в 10 раз стабильней. Трехмерные многослойные
структуры усиливают жесткость рамы, из них можно изготавливать
также заднюю стенку кузова и сидения. Карманн предлагает идею
безопасного автомобиля XXI века, в котором будут использоваться
не плоские алюминиевые элементы, а трехмерные многослойные
детали с пеноалюминием — от дверец до сложной группы днища.
Такие детали очень легкие и имеют в 15 раз более высокую
жесткость, чем обычные листовые конструкции. Заметны
преимущества пеноалюминия по шумоглушению при повышенных
частотах (более 800 гц).

Пеноалюминий применяется в строительстве в виде несгораемых
перегородок и облицовочного материала.

Открытоячеистый (пористый) алюминий.

Свойства.

Плотность пористого алюминия лежит обычно в диапазоне от 0,9 до
1,2 г/см3, что соответствует пористости от 55 до 67%.
Механические свойства этого материала изучались до последнего
времени не так интенсивно, как пеноалюминия. Механическое
поведение его весьма близко к тому, какое имеют пены с закрытой
пористостью: начальный, почти линейный подъем напряжения
сменяется областью значительной пластической деформации и затем
при очень большой деформации переходит в уплотнение всей
структуры при соответствующих высоких усилиях. Они требуются,
чтобы деформировать пористую структуру. Таким образом, материал
обладает высокой жесткостью. Прочность на сжатие соответствует
почти тем же значениям, что и у пеноалюминия.

Проницаемость

Для многих сфер применения желательна контролируемая и
управляемая проницаемость материала газами или жидкостями.
Пористый алюминий имеет высокую развитую внутреннюю поверхность,
составляющую при плотности 1,1 г/см3 от 1 до 2 м2/г. Это
свойство может быть использовано в компактных теплообменниках.

Акустические характеристики.

Эти показатели несколько хуже, чем у специальных шумогасящих
материалов, однако пористый алюминий имеет много других полезных
свойств (негорючесть, высокая стойкость к температурным
изменениям, негигроскопичность и др.), Которые делают выгодным
его применение для шумоглушения.

Возможности применения.

  • Шумоглушители. Пористый алюминий используется в конструкциях шумоглушителей, в которых путем декомпрессии шум, возникающий от выхода газа, уменьшается (например, в пневматических установках и компрессорах). Шумогасящие элементы, изготовленные из неплотно спеченных порошков бронзы или стали, довольно дороги. Пористый алюминий, полученный литейным способом, может быть при изготовлении сочленен со сплошным металлом с резьбой, и соединение с выходом газа при этом становится простым. Первые технические испытания показали, что таким образом достигаются по крайней мере те же результаты, что и у спеченной бронзы.
  • Фильтры. Область применения пористого алюминия в качестве фильтров довольно широка. Ими можно отделять твердые частички, например сажи, от жидкостей или газов.
  • Носители катализаторов. Вследствие развитой внутренней поверхности в комбинации с хорошей проницаемостью пористый алюминий может использоваться в качестве несущей решетки для катализаторов. Высокая теплопроводность материала имеет значение при сильных экзотермических реакциях, например, при окислении этилена в этиленоксид.
  • Теплообменники. Высокая теплопроводность алюминия предполагает использование пористых конструкций из этого металла с развитой поверхностью для теплообмена между жидкостями, газами или между жидкостью и газом.
  • Другие области применения. Пористые материалы, в том числе алюминий, могут употребляться в качестве накопителей жидкости для последующей ее дозированной подачи, например, в пористых валках, в деталях подшипников скольжения (поры заполняют смазкой). При подаче газа через пористые материалы его можно в распределенном виде барботировать в жидкость или с помощью воздушной подушки создать поверхность скольжения (воздушный подшипник). Наконец, пористый алюминий благодаря своей теплопроводности используется в конструкциях пламягасителей.

Рассматриваются пористые материалы на основе алюминия и его сплавов, обладающие пониженной плотностью, повышенной удельной прочностью, проницаемостью. Их применение возможно в качестве материалов для облегченных строительных деталей, теплообменников, фильтров, звукопоглотителей и т. д. Материал получают методом направленной кристаллизации жидкого металла, насыщенного газом. Этот способ также носит название метода газо-эвтектической реакции или газар-процесс.
Ключевые слова : алюминий, сплавы AlMg3, AlMg6, направленная кристаллизация, насыщение газом, механические свойства.

УДК 620.193.55.001.5

Структура и механические свойства пористых алюминиевых сплавов, полученных методом направленной кристаллизации

Карпов Владимир Юрьевич
Доктор технических наук, профессор.
Национальная металлургическая академия Украины,
Днепропетровск


Комиссарчук Ольга Валериевна
Аспирантка. Национальная металлургическая академия Украины,
Днепропетровск

Получение пористых материалов с определенными параметрами структуры и свойств является одной из важнейших задач современной промышленности. Применение направленной кристаллизации для металлов насыщенных газом позволяет управлять их пористой структурой и соответствующими свойствами . Для чистых металлов этот процесс достаточно хорошо изучен, но для получения пористых сплавов, которые имеют больший промышленный потенциал, это сложнее. В связи с этим рассматривается процесс получения пористого алюминия и его промышленного сплава AlMg3, AlMg6, которые широко используются промышленностью.
Для изготовления пористых сплавов методом направленной кристаллизации использовалась установка с поворотным механизмом на 90° (рис.1). Основным характерным отличием новой установки стала система нагрева - печь сопротивления была замещена индукционной системой нагрева. Это позволило значительно увеличить скорость нагрева металла, соответственно, увеличилась и производительность работы. Кроме того, при использовании индукционной печи происходит интенсивное перемешивание расплава, что значительно ускоряет процесс насыщения расплава водородом. При применении устройства с 90°- поворотным механизмом, расплав выливается равномерно, разливка происходит плавно и процесс перемешивания расплава выражен гораздо слабее. В этом случае образцы получаются качественнее, с более однородной структурой.
Условия для проведения экспериментов были едины для всех алюминиевых сплавов. В эксперименте был использован алюминий

Рис.1. Схема и установка с поворотным механизмом на 90о:
1 - тигель, 2 - индуктор, 3 - форма; 4 - водоохлаждаемый холодильник, 5 - камера с водяным охлаждением, 6 - лейка; 7-расплав; 8 - термопара; 9 - охлаждающая вода; 10 - газовый клапан.

промышленной чистоты (0,3% примесей), сплавы АМг3, АМг6 и АМг35 в качестве основных материалов. Их расплавляли при 7500С и выдерживали в течение некоторого времени в тигле. Температуру печи контролировали с помощью вольфрам-рениевой термопары с диаметром проволоки 0,35 мм. Автоматический потенциометр служил для регистрации температуры расплава в тигле. Водород вводили в камеру высокого давления для того, чтобы насытить расплав до определенной степени (в дальнейшем будем использовать термин давление насыщения - Рнас). Контроль над давлением кристаллизации проводили с помощью манометра. Чем выше было давление насыщения, тем выше ожидалась конечная пористость образцов.
Форма в эксперименте была изготовлена из стали толщиной 0,3 мм. Тонкий слой антипригарного покрытия был нанесен на форму и летку для предотвращения прямого контакта с металлом. Форма крепилась на медном водоохлаждаемом холодильнике.
После плавления шихты из АМг сплавов, производилась выдержка около 15 минут, что давало возможность установиться равновесию в системе
газ - расплав.
Перед переворотом установки для разливки расплава устанавливалось
требуемое значение давления кристаллизации (Ркр). Эта величина определяла размер пор в отливках газаров. Затем расплав выливался из тигля в форму, где он кристаллизовался в одном направлении.
Образцы для изучения разрезались как вдоль, так и поперек их сечения. Для удобства изучения структуры образцы разрезались на две или три части.
Для выявления макроструктуры, использовался стандартный травитель. Макроструктура образцов газаров после полировки и травления исследовалась при увеличении (5 ¸ 25). Тонкая структура пор изучалась с помощью сканирующего электронного микроскопа (СЭМ) фирмы ZEISS. Пористость и средний диаметр пор были оценены с помощью программного обеспечения микроскопа.
В соответствии с литературными данными растворимость водорода в чистом алюминии очень низкая, примерно 0,5 см3 /100 г под давлением 0,1 МПа и температуре 6600С. Эксперименты с алюминием промышленной чистоты показали, что для образцов, изготовленных при: Pнас = 0,2 МПа, Т = 7500С, t = 25 минут, Pкр = 0,05 МПа получается относительно хорошая пористая структура (рис.2 а,б). Тем не менее, в ходе работы были установлены некоторые проблемы, решение которых может привести к лучшим результатам. Для чистого алюминия, проблема влияния плотной оксидной пленки на процессы кристаллизации остается основной. Окисная пленка на поверхностью расплава, вероятно, усложняет свободное проникновение водорода в жидкий металл, а при кристаллизации росту газовых пузырьков.
На рис. 2а видно, что в нижней части образца, где скорость кристаллизации достаточно велика, нет времени для формирования пор. На высоте порядка 20 мм от дна начинается рост пор. Относительно однородная пористая зона имеет протяженность до высоты 55 - 65 мм. Поры имеют форму удлиненного эллипса, 1,5 - 2,5 мм длиной и диаметром 0,2-0,3 мм. Радиальные поры в этой зоне образца отсутствуют за счет утепления формы. В верхней части образца существует зона больших радиальных пор 1-1,5 мм в диаметре и длинной 2-3 мм, а в центре образца наблюдаются редкие скопления сферических пор, что связано с конструкцией формы (место с устройством соединения половинок формы). Эта зона имеет протяженность около 15 мм, а затем переходит в область аксиальных пор, аналогичных по размеру предыдущего отрезка. Поперечное сечение образца алюминия, сделанного на высоте 30 мм от дна представлено на рис. 2 б,в. Видно, что поры имеют цилиндрическую форму, но отличаются по размеру и распределены неравномерно по сечению образца.
Далее исследовались такие промышленные сплавы на основе алюминия, как АМг с различным содержанием Mg, а также изучены их механические свойства. Известно, что на растворимость водорода в жидком алюминии существенно влияют легирующие элементы. Существуют экспериментальные данные о том, что растворимость водорода в жидких сплавах системы Al-Mg монотонно возрастает от чистого алюминия к чистому магнию . При температурах 660-7000С растворимость водорода в алюминии с увеличением в нем содержания магния возрастает почти линейно. Так, например, при температуре 7000С растворимость водорода в алюминии составляет - 0,9 см3/100 г, в сплаве Al+ 4% Mg - 1,6 см3/100 г, а в сплаве Al+ 6% Mg - 2,0 см3/100 г.
В ходе исследования промышленного сплава АМг3 была отмечена значительная зависимость структуры от давления кристаллизации, аналогично результатам по пористому промышленному алюминию. При кристаллизации сплава АМг3 зон видимых окисных плен обнаружено не было, что говорит об изменении их свойств. Поры имели более неправильную форму, изменяющуюся от сферической к эллиптической (рис. 3).
При изучении структуры пор, были отчетливо видны дендриты, проросшие внутрь пор (рис. 3). Это связано с интервалом температур, в котором проходила кристаллизация образцов сплава.

Рис. 2. Макроструктура образца алюминия промышленной чистоты: а - продольное сечение, б - поперечный срез на высоте 30мм от дна образца, в - поперечное сечение при большем увеличении

В ходе работы было исследовано влияние концентрации магния на пористую структуру образцов из сплавов АМг. Как видно на рис.4, с увеличением количества Mg от 3 % до 35 % структура отливки изменяется, размер пор значительно увеличивается, поры приобретают вытянутую эллиптическую форму. Сплав АМг35 имеет состав, близкий к эвтектическому (33%), поэтому его кристаллизация проходит аналогично чистым металлам. Образец имеет множество удлиненных пор, а в связи с высоким содержанием Mg, они имеют относительно однородную структуру.

Рис. 3. Электронные микрофотографии образца пористого АМг3,
а - верхняя часть; б - средняя часть; в - нижняя часть слитка

Однако, механические свойства этого сплава резко ухудшаются, сплав становится хрупким и не пригоден для практического применения.
В исследовании проводились механических испытаний на сжатие цилиндрических образцов размером 20х20 мм из пористых и плотных сплавов Al-Mg.
В ходе испытаний было обнаружено, что пористые образцы сплавов Al-Mg обладают большей прочностью на сжатие, чем плотные, что связано с наличием в них армирующих пор. Также отмечено, что сплав АМг3 является более пластичным, чем АМг6 (рис. 5 а,б).
Газары продемонстрировали высокую анизотропию свойств: мягкие и вязкие вдоль пор; прочные и устойчивые - поперек их. Результаты тестов на сжатие доказали, что разница между пористыми и плотными образцами относительно не высока. Как видно на рис.5 - пористые и плотные образцы АМг3 и АМг6 показывают близкие результаты. Это дает возможность использовать их в промышленности на тех же условиях, что и плотные

Рис. 4. Макроструктуры образца из сплава алюминия с 35% магния.

сплавы, однако, изделия будут обладать меньшим весом, что даст экономию расходных материалов.
Испытания показали, что пластичность образцов из сплава АМг3 и АМг6 резко отличается от пластичности образцов из АМг35 (рис.6). Видно, что образец из АМг35 разрушается с применением минимальной силы и это указывает на его крайне низкие механические свойства.

1. Пористый алюминий промышленной чистоты имеет эллиптические поры, которые расположенные вдоль оси кристаллизации. Слой окисных плен собирается в верхней части образцов, что снижает выход качественного пористого алюминия. Этот слой является самым большим препятствием на пути получения качественной отливки газара из алюминия.



Рис.5. Результаты испытания газаров на сжатие: а - прочность пористого и плотного образцов сплавов АМг3 и АМг6, б - пластичность образцов из сплавов АМг3 и АМг6

Рис.6. Вид пористых образцов после испытаний на сжатие: а - образец сплава АМг6, б - образец сплава АМг35

2. Способность водорода растворяться в жидком алюминии в значительной степени зависит от легирующих элементов. Растворимость водорода в жидком сплаве АМг с увеличением в нем содержания Mg. С увеличением содержания Mg величина и количество пор значительно возрастает. Их форма также претерпевает изменения, особенно при содержании Mg около эвтектической точки (35%). В этом случае процесс кристаллизации происходит аналогично чистому металлу, что дает структуру с вытянутыми цилиндрическими порами.
3. Тесты на сжатие показали, что с увеличением содержания магния до 35%, механические свойства сплава резко ухудшаются, сплав становится хрупким и непригодным для практического использования. Несмотря на то, что сплавы АМг3 и АМг6 достаточно пластичны, наличие пор повышает их прочность на сжатие, по отношению к плотным образцам. Такой эффект дает возможность использовать их в промышленности на тех же условиях, что и плотные сплавы, но с меньшим удельным весом и экономией расходных материалов.

ЛИТЕРАТУРА

  • Shapovalov V I. Method of manufacture of porous articles: USA, 5181549 [P]. 1993-06-23.
  • Shapovalov V I, Boyko L. Gasar - A new class of porous materials [J]. Advanced Engineering Materials, 2004, 6(6). C. 407- 410.
  • Gabidullin R M, Kolachev BA, Shvecov I B, Andreev A D. Metallurgy of non-ferrous metals and alloys. M., Science, 1992. C. 94—99.
  • Gabidullin R M, Kolachev B A, Shvecov I B. The structure, properties and applications of metals. M., Science, 1994. С.188-190.

В последние годы в машиностроении и строительстве возрос интерес к изготовлению и применению инновационного материала — металлической пены. Основной причиной для этого стало развитие новых концепций легких и прочных конструкций в автомобилестроении и строительстве.

Первоначально потребность в пористых материалах с высокой жесткостью и низким удельным весом способствовала появлению искусственных материалов, изготовленных из ячеистых полимеров, керамики и стекла, имеющих хорошие демпфирующие и изоляционные свойства. Клеточный материал из металла может предложить более интересные перспективы в связи с сочетанием металлических свойств и особенностей пены.

В последние 40 лет было сделано много попыток для получения металлических пенных структур, однако они не были успешными из-за их относительно высокой стоимости и сложности технологии. Кроме того, несовершенная технология изготовления не позволяла достичь стабильно воспроизводимых свойств. Проблемы были связаны с низкой пенообразующей способностью расплавленного металла, получением различных размеров «клеточных» структур и усадкой при затвердевании. Однако в последнее время эти вопросы были решены при помощи обширных исследований, что привело к разработке новых технологий в производстве. Эти новые технологии вспенивания позволяют изготовить материал значительного более высокого качества. В частности, была успешно получена технология вспенивания алюминия.

Металлическая пена, особенно из алюминия, имеет большие перспективы для применения в промышленности. Вспененный металл имеет малый вес, хорошие теплоизоляционные и звукопоглощающие свойства, негорюч и нетоксичен. «Клеточная» структура материала поглощает вибрации, толчки и звуки исключительно хорошо, а низкий вес обеспечивает идеальную основу для облегченных конструкций. Вспененный алюминий может также обеспечить высокоэффективную защиту от электромагнитных волн. Низкая плотность — 0,3...0,8 г/куб.см — позволяет алюминиевой пене плавать в воде (в случае закрытой пористости). Хотя на данный момент алюминиевая пена не производится в промышленных масштабах, опять-таки, из-за своей дороговизны, однако ожидается, что дальнейшее развитие технологии позволит широко ее применять. Ведь всем известно, что кость, благодаря свой пористой структуре, — один из наиболее прочных биологических материалов. Костная ткань стойка к сопротивлению и сжатию. Похожими на нее ученые решили сделать и металлические материалы будущего.

В течение последних десяти лет было разработано несколько технологий для производства металлических пен, но только некоторые из этих процессов подойдут для производства алюминиевой пены в промышленных масштабах:

а) введение газов напрямую в жидкий металл (рис. 1). В качестве добавок, увеличивающих вязкость расплавленного металла, вводятся SiC или Al2O3 (10-15%). Газ (воздух, азот или аргон) вводят в расплав с помощью вращающейся крыльчатки. Таким способом могут быть получены плиты из металлической пены значительных размеров (0,1х1х10 м). При этом пористость материала достигается 80...97%. Алюминиевый пористый материал увеличивается примерно в 5 раз от первоначального объема.

б) технологический процесс Alporas Shinko Wire Co. Ltd. (Осака, Япония) с добавлением 1,5% кальция в алюминиевый расплав для регулирования вязкости (рис.2). Кальций вводится в расплавленный алюминий при 680 градусах и перемешивается в течение 6 минут. Полученный алюминиевый расплав заливают в литейные формы и перемешивают с добавкой сухого пенообразователя TiH2 с помощью вращающейся крыльчатки. Пенообразователь разлагается под влиянием тепла и водорода, увеличивая свой объем в течение 15 минут. Затем расплав охлаждается в форме с помощью вентиляторов и затвердевает в виде блока с пористостью 89...93%. Литые блоки имеют размеры 450x2050x650 мм и весят 160 кг. Блоки разрезают на листы требуемой толщины.
в) другие процессы:

— «Газар-процесс» основан на различной растворимости водорода в зависимости от создаваемого давления. Металл расплавляют в автоклаве под высоким давлением, что позволяет внедрить большое количество водорода. Этот насыщенный расплав переливается в форму в автоклаве. После этого следует направленное затвердевание расплава при пониженном давлении, что вызывает выделение водорода и вспенивание. Достигаемая пористость имеет низкие значения — 5...75%.

— Технологии Duocel и Cellmet работают на другом принципе. В качестве литейных форм используется полиуретановая пена, заполненная термостойким материалом. После нагревания полимер удаляется и расплавленный металл приобретает пористую структуру полиуретановой пены, заполняя прессформу. Пористость материала, как правило, в диапазоне 80...97%. Этот процесс отличается от предыдущих тем, что металлическая пена получается с открытыми ячейками.

Благодаря своей ячеистой структуре пены ведут себя по-другому при механических испытаниях, по сравнению с обычными металлическими материалами. Поэтому традиционные методы испытаний не могут быть применены к металлической пене (к примеру, испытания на растяжение). Испытания с наиболее значимыми результатами — на степень сжатия. Типичная диаграмма для пен (рис.3) с открытыми и закрытыми порами имеет три характерные части. Вначале происходит линейный рост напряжения (1) при увеличении деформации, затем горизонтальный участок при постоянной нагрузке (2), и резкое увеличение деформаций в конце (3) в результате разрушения пористой структуры. Металлические пены ведут себя так же, как полиуретановые — с той разницей, что их прочность примерно в 30 раз выше при том же уровне пористости.

Как и в случае со сплошными металлами, пены также могут подвергаться термической обработке, но этот процесс гораздо сложнее из-за низкой теплопроводности пористой структуры. Закалку произвести трудно, потому что невозможно достичь равномерной скорости нагрева и охлаждения по всему объему материала. Вода не может быть использована в качестве закалочной среды, потому что ячейки пористой структуры могут разрушиться. Для закалки используется сжатый воздух, что приводит к снижению скорости охлаждения.

Поверхность вспененного металла также влияет на его свойства. Если пена испытывается со сплошной коркой после литья, то такой материал выдерживает более высокие напряжения. Причина этого заключается в том, что литая сплошная поверхность создает сэндвич-структуру композита, обладающую большей жесткостью. Алюминиевые сэндвич-панели изготавливаются из двух металлических плотных лицевых листов и сердцевины в виде металлической пены. Листы соединяются с алюминиевой пеной методом склеивания, пайки или диффузионной сваркой. Интересная концепция была разработана компанией Karmann (Германия) — сэндвич панели-AFS. Вспенивание алюминиевого наполняющего между двумя листами толщиной 1 мм происходит в печи, готовый «сэндвич» имеет толщину 8...12 мм, при этом не требуется соединение пены и листов. Панели AFS на 50% легче и в 10 раз жестче, чем аналогичный стальной лист. По сравнению со сплошным алюминиевым листом, теплоизоляция «сэндвича» на 95% выше.

Идеальное сочетание всех этих свойств алюминиевых пен по схеме сэндвич-панелей делает материал AFS отличным вариантом для изготовления кузовов автомобилей. Из-за высокой прочности на кручение и жесткости можно уменьшить количество деталей, которые должны быть изготовлены для сборки для кузова автомобиля. Алюминиевая пена в случае аварии и лобового столкновения поглотит энергию удара и защитит пассажиров транспортного средства. Для этих целей из алюминиевой пены могут быть изготовлены крылья и лонжероны, стойки дверей автомобиля, багажник, капот и раздвижная крыша. Звукопоглощающие свойства пен можно использовать в моторном отсеке автомобиля для предотвращения передачи шума в пассажирский салон и окружающую среду.

Благодаря своему легкому весу алюминиевая пена может стать очень важным конструкционным материалом для аэрокосмической промышленности. Например, материалы из алюминиевой пены или сэндвич-панелей могут заменить дорогие сотовые конструкции. Это будет иметь ряд преимуществ, например, снижение затрат. Еще одним важным преимуществом является изотропность свойств таких панелей и отсутствие какого-либо клеевого соединения. Последнее могло бы помочь сохранить целостность конструкции в случае пожара. Однако, важным вопросом, который является предметом текущих исследований, является усталостная характеристика алюминиевой пены и сэндвич-панелей.

Легкость и «плавучесть» алюминиевой пены может применяться в судостроении. Морские суда не строятся большими сериями и не собираются из высоко стандартизованных частей. Поэтому алюминиевая пена или панели могут иметь большие преимущества. Условием их использования будет развитие
подходящих крепежных элементов и исследование коррозии алюминиевой пены в морской воде. Первые исследования пен с закрытым типом ячеек показали, что хлорид натрия влияет только на поверхностный слой алюминиевой пены, не вызывая структурных дефектов.

В строительстве зданий и сооружений есть хорошие возможности для применения алюминиевой пены, в основном из-за ее хорошего сопротивления проникновению огня и теплоизоляционным свойствам. Например, детали из пены или сэндвич-панелей могут быть использованы в качестве элементов наружных фасадов или настенных покрытий внутри зданий. В обоих случаях алюминиевая пена может служить энергосберегающим строительным материалом. Из алюминиевых панелей возможно изготовление облицовки в железнодорожные тоннелях под шоссе, мостами или внутри зданий в качестве звукопоглощающего материала.

Еще одна область применения алюминиевой пены — возведение легких конструктивных элементов, например, мобильных мостов. Алюминиевая пена может использоваться для уменьшения расхода энергии лифтов. Алюминиевые панели могут быть легко установлены без грузоподъемного оборудования.
Уникальные свойства алюминиевой пены имеют большой потенциал для дизайнеров бытовых предметов и мебели. Этот материал может быть использован для ламп, столов или предметов домашнего обихода и аксессуаров. Мебель, изготовленная из металлической пены, обладает легким весом, который может быть большим преимуществом в офисных помещениях или на ярмарках и выставках.
Алюминиевая пена может также служить в качестве материала для изготовления теплообменников, тепловых экранов, фильтров или носителей для катализаторов. Другой возможностью является использование в качестве материала для защиты от электромагнитных волн для потолков и стен помещений с электронным оборудованием.

СПОСОБЫ ПОЛУЧЕНИЯ ПОРИСТЫХ МАТЕРИАЛОВ НА ОСНОВЕ АЛЮМИНИЯ

© 2016 С.В. Воронин, П.С. Лобода

Самарский национальный исследовательский университет имени академика С.П. Королёва

Статья поступила в редакцию 30.09.2016

В статье приведен обзор основных способов получения пористого алюминия. Сформированы группы способов, имеющие схожие технологии получения. Рассмотрены сферы применения пористого алюминия в промышленности. Отражены характеристики полученных пористых изделий. Обнаружена зависимость механических свойств готовых изделий от способа получения пористого алюминия. Установлено, что по мере роста упорядоченности пористой структуры наблюдается улучшение механических свойств. Выявлены способы получения алюминия с наиболее оптимальной пористой структурой для получения изделий с высокими удельными механическими свойствами и высокой весовой эффективностью. В результате проведенного обзора подтверждена необходимость разработки способа создания материала на основе алюминия с упорядоченной пористой структурой. Ключевые слова: Пористая структура, пеноалюминий, механические свойства, весовая эффективность, оксидная пленка.

Развитие способов получения материалов с высокой прочностью и малым весом является крайне актуальной задачей. Традиционно, для достижения высокой прочности сплава в основной металл вводятся легирующие элементы, которые в структуре материала образуют упрочняющие фазы. Как известно, образующиеся фазы имеют определенную плотность, которая увеличивает массу материала. Одним из способов снижения плотности металла при сохранении высоких удельных механических характеристик является введение в его объем дефектов структуры, таких как поры.

Пористые металлы имеют сложную макро и микроструктуру. Микроструктура и механические свойства материалов определяются способом получения пор. Макроскопические морфологические характеристики, такие как размер пор или кривизна стенок ячеек имеют явно выраженное влияние на механические свойства. Пористый алюминий может быть с открытой или закрытой (пеноалюминий) пористостью. Материалы с отрытой пористостью образуют пространственную сетку, т.е. сеть соединенных друг с другом полостей. Материалы с закрытой пористостью в своей структуре имеют поры, которые представляют собой замкнутую ячейку, в которой заперт газ .

По данным автора С. Цукрова , пористость алюминия с открытыми порами, как правило, колеблется в диапазоне от 55 до 67%. Механическое поведение данного материала весьма близко к тому, какое имеют материалы с закрытой пористостью: он обладает высокой жесткостью.

Воронин Сергей Васильевич, кандидат технических наук, доцент кафедры технологии материалов и авиационного материаловедения. E-mail: [email protected] Лобода Павел Сергеевич, аспирант. E-mail: [email protected]

Прочность на сжатие соответствует почти тем же значениям, что и у пеноалюминия. Пористый алюминий имеет высокую развитую внутреннюю поверхность, составляющую при плотности 1,1 г/см3 от 1 до 2 м2/г. Это свойство может быть использовано в компактных теплообменниках. Акустические характеристики несколько хуже, чем у специальных шумогасящих материалов, однако пористый алюминий имеет много других полезных свойств (негорючесть, высокая стойкость к температурным изменениям и др.), которые делают выгодным его применение для шумоглушения.

Пеноалюминий является материалом с закрытыми порами, размер которых зависимости от параметров технологии может изменяться от долей миллиметра до 20-30 мм и более. Вспененный алюминий обладает высокой удельной прочностью, эффективно поглощает энергию удара, имеет высокий коэффициент звукопоглощения, пониженную теплопроводность.

В настоящее время известны такие отрасли применения пеноалюминия, как автомобилестроение, бронетехника, аэрокосмическое производство, строительство. В автомобилестроении из пеноалюминия делают ударопоглощающие вставки в двери и кузов, бампер и облицовку капотов автомобилей; возможно производство разных крышек, поддонов картеров двигателей автомобилей. В бронетехнике пеноалюминий находит применение в форме многослойных кусков для защиты днища бронемашины или других ее частей от подрыва .

Существует множество способов получения пористого материала на основе алюминия . Однако наличие пор в структуре металла, при существующих способах изготовления, негативно влияет на механические свойства.

ОБЗОР СУЩЕСТВУЮЩИХ СПОСОБОВ

ПОЛУЧЕНИЯ ПОРИСТОГО АЛЮМИНИЯ

В последние годы стало появляться все больше разработок в области вспененных металлов. Наибольший интерес для различных отраслей промышленности представляет вспененный алюминий. Этот материал обладает следующими свойствами:

1) Низкая плотность;

2) Высокий уровень энерго- и звуко- поглощения;

3) Негигроскопичность;

4) Хорошая теплоизоляция и устойчивость к огню;

5) Высокая удельная жесткость и возможность поглощения большого количества энергии.

6) Экологическая чистота

На сегодняшний день существует множество способов получения пористого алюминия. В процессе анализа нами были выделены группы способов, имеющие схожие технологии получения:

1. Вспенивание алюминиевого расплава. Сущность данной группы методов заключается в том, что расплав металла диспергируют в потоке разреженного газа с непрерывным сжатием получаемой газометаллической смеси до атмосферного давления с образованием пены .

Также может быть реализован способ непрерывного получения пеноалюминия: расплав алюминиевого сплава диспергируют в потоке газа, подают газометаллическую смесь под уровень расплава с давлением, превышающем сумму атмосферного и металлостатического давлений. Затем вытесняют область расплава, прилегающую к месту подачи диспергированной смеси, а часть этой смеси непрерывно отводят и охлаждают до затвердевания .

С целью повышения механических характеристик могут быть добавлены упрочняющие частицы как в расплав в виде порошка (керамические или интерметаллические частицы) , так и вместе с газом в виде аэрозоля SiO2 (двуокись кремния в виде аэросила) .

С помощью данных методов получают пено-алюминий с закрытыми порами, пористостью до 90% и дисперсией пор порядка 1-3мм.

2. Смешивание порошков алюминиевого сплава и порообразователя. Данная группа способов предполагает следующие основные этапы: смешивание порошков алюминиевого сплава с порофорами и добавление порошка меди от 1 до 10%, засыпку в разборную емкость многоразового использования, нагрев смеси алюминиевого порошкового сплава в герметизированной разборной емкости в токе инертного газа (азот или аргон) до температуры образования равновесной Cu-Al эвтектики с последующим охлаждением до затвердевания эвтектики. После чего проводят прессование до получения плотной заготовки,

горячую деформацию заготовки, экструзию, охлаждение и термообработку для осуществления процесса порообразования. Перед термообработкой заготовку помещают в теплоизолированную изнутри форму .

Также смесь порошков алюминия и порообразователя засыпают в емкость, подвергают холодному прессованию, затем нагревают заготовку до температуры на 10-20°С ниже температуры образования самой легкоплавкой эвтектики материала заготовки. Далее подвергают горячей деформации с последующим размещением заготовки в форму, проводят высокотемпературную термообработку с последующим охлаждением до температуры 300-450°С и обработку поверхности полученного пористого полуфабриката . С целью увеличения выхода годного осуществляют выдержку при данной температуре в течение 90-120 мин, придают заготовке форму готового изделия, а поверхность подвергают высокотемпературной термообработке . Плотная заготовка, полученная после горячей деформации, может быть переработана на частицы различной формы и размеров и перед высокотемпературной термообработкой частицами заполняют частично или полностью объем формы . При другом способе плотная заготовка, полученная после горячей деформации, может быть подвержена повторному нагреву и горячей деформации. Затем ее охлаждают и проводят последующую высокотемпературную обработку в форме, подвергая заготовку всестороннему равномерному нагреву до температуры на 40 - 70°С выше температуры фазового перехода твердое-жидкое, и повторно охлаждают .

Листы пеноалюминия могут быть получены из двух равномерно подаваемых рулонных полос из алюминиевого сплава. В этом случае из первой полосы осуществляют формирование нижней части оболочки, включающей основание и стенки с отбортовками. Затем производят засыпку смеси порошка алюминиевого сплава с порофором при обеспечении степени уплотнения 1,5-1,9 г/см3. Формирование верхней части оболочки происходит путем наложения на нижнюю часть оболочки второй рулонной полосы. Далее проводят завальцовку, нагревают заготовку в проходной печи до температуры не ниже 500°С, и подвергают горячему компактированию в закрытом калибре рабочих валков. Затем режут на листовые заготовки мерной длины и подвергают высокотемпературной термообработке .

Для получения слоистых плит пеноалюминия большой толщины смесь порошка алюминиевых сплавов с порообразователем подвергают горячей прокатке в листовые заготовки. Затем поверхности заготовок подвергаются зачистке и собираются в пакет. Между поверхностями листовых заготовок выполняется прослойка из смеси исходного для листовой заготовки порошка

с порофором. Собранный пакет с прослойкой помещается в высокотемпературную печь-форму, обеспечивающую требуемую задержку процесса вспенивания. На первом этапе - до толщины не более 50% от требуемой для готового изделия. На втором этапе подвижную верхнюю часть формы поднимают, обеспечивая вспенивание до толщины готового изделия .

Плотные заготовки, полученные из смеси порошков, размещают в форме для вспенивания из диэлектрического материала, сохраняющей геометрию и размеры при термообработке, нагревают, вспенивают в воздушной атмосфере с получением изделия и охлаждают форму со вспененным изделием. Нагрев заготовки при вспенивании производят индукционным способом с полезной удельной мощностью электрического нагрева 20-40 кВт на 1 кг веса заготовки. Охлаждение вспененного изделия до температуры солидуса проводят со скоростью 100-250°C в минуту .

С целью улучшения механических характеристик готовых изделий порошок алюминиевого сплава может быть окислен до образования в нем 4-10% окисных фаз и смешан с порошком поро-образователя, температура разложения которого превышает температуру солидуса-ликвидуса алюминиевого сплава. Готовую смесь уплотняют и компактируют до получения плотной заготовки. Заготовку прессуют со скоростью истечения 0,5-1,5 м/мин и коэффициентом вытяжки не менее 15 и прокатывают в направлении, перпендикулярном оси прессования заготовки, со степенью деформации 50-90% при температурах ниже температуры солидуса алюминиевого сплава. Затем проводят высокотемпературную обработку заготовки форме и охлаждение .

Полученный материал имеет закрытые поры, пористость порядка 70-80%, размер пор - от 200 мкм. В основном с помощью данной группы методов получают плиты пеноалюминия, полуфабрикаты, реже - изделия готовой формы.

3. Введение порообразователя в расплав алюминиевого сплава. Расплав алюминиевого сплава разливают в кристаллизатор скольжения с одновременным введением порообразователя, формируют слиток со скоростью, обеспечивающей затвердевание расплава до начала активного разложения порообразователя, охлаждают его, подвергают горячей деформации с получением формы готового изделия, помещают в форму и подвергают высокотемпературной обработке. Расплав готовят из алюминиевых сплавов с широким интервалом кристаллизации и из алюминиевых сплавов, армированных частицами тугоплавких соединений дисперсностью не более 20 мкм, с содержанием в объеме расплава 5-15% .

С целью улучшения качества слитка может быть использован специальный сплав, содержащий следующие компоненты: магний - 5-6%, цинк - 20-40%, медь - 4-6%, алюминий - осталь-

ное. В расплав алюминиевого сплава вводится магний в количестве 2-3% требуемого содержания в готовом сплаве, полученный расплав интенсивно перемешивается в течение 8-10 минут при температуре не выше температуры ликвидуса полученного сплава. Затем вводятся остальные компоненты, в том числе оставшееся количество магния. Далее проводят непрерывное литье расплава алюминиевого сплава с одновременным введением в него порообразователя, деформируют слиток и подвергают термообработке. Применение данного сплава позволяет предотвратить вспенивание до затвердевания, т.к. он обладает более низкой температурой плавления .

Полученный материал имеет закрытые поры, величиной 20-30 мкм. Используется для получения пенометаллов.

4. Введение порообразователя в расплав алюминиевого сплава с дальнейшим распылением смеси. В расплав алюминиевого сплава вводят тугоплавкие частицы керамического материала и сливают в распылитель с одновременным введением в расплав порообразователя. Полученную смесь распыляют с последующим охлаждением. Смешивание, распыление и охлаждение частиц ведётся в течение времени, исключающего термическое разложение порообразователя. Полученные частицы компактируют, обеспечивая требуемую плотность и форму изделия. После распыления частицы засыпают в форму послойно. Каждый последующий слой засыпается на предыдущий после его высокотемпературной обработки и охлаждения. В качестве порообразователя может быть использован порошок гидрида титана (ТШ2) или гидрида редкоземельного металла, имеющего дисперсность от 20 до 300 мкм и степень насыщения, соответствующую атомному отношению водорода к металлу 0,4-1,7 .

Полученный металл имеет закрытые поры, пористость - 60%, размер пор 20-300 мкм.

5. Литье алюминиевого сплава в форму с водорастворимыми веществами. Водорастворимый порообразователь помещают в форму, нагревают его выше температуры ликвидуса алюминиевого сплава. Расплав заливают в нагретую до той же температуры форму, заполненную гранулами из водорастворимых солей (хлорид кальция, бария, фторид калия), охлаждают, извлекают из формы и помещают в воду для удаления порообразователя . С целью улучшения пористой структуры изделий в качестве порообразователя могут быть использованы бромид или йодид кальция или бария . Также в качестве порообразователя можно применять водорастворимые гранулы из смеси соды и желатина в соотношении: сода 95-99,5%, желатин 0,5-5% . Пористое изделие с цельнометаллической частью получают путем загрузки в литейную форму нагретого порообразователя. Затем производят заливку расплавленного цветного металла в условиях градиента дав-

ления величиной от 0,2 атм. Количество металла обеспечивает пропитку слоя порообразователя и формирование цельнометаллической части изделия. В качестве порообразователя используют наполнитель из неорганической водорастворимой соли с размером частиц 0,01-5,0 мм. После затвердевания отливки порообразователь вымывается водой, а металлическая часть механически обрабатывается для формирования узла крепления .

Данная группа способов применяется для получения материалов, предназначенных для разделения сред фильтрованием, снижения шума и т.п.

Полученный материал имеет открытые поры, величиной 0,01-5мм (в качестве порообразователя - водорастворимая соль) и 0,5-5мм (в качестве порообразователя - смесь соды и желатина).

6. Смешивание порошков алюминиевого сплава и порообразователя в планетарной мельнице. Порошок отходов алюминиевых сплавов и порошок порообразователя смешиваются и подвергаются высокоэнергетической обработке в планетарной мельнице в инертной атмосфере (аргон, азот). Из полученных частиц получают плотную заготовку прессованием (при температуре ниже температуры солидуса алюминиевого сплава). Затем заготовку размещают в форме, которая позволит сохранить геометрию детали при термообработке. Материал формы выбирают таким образом, чтобы избежать химического взаимодействия с материалом заготовки. Далее форму с заготовкой нагревают до температуры интенсивного разложения порообразователя со скоростью 200-25000С/мин . С целью повышения механических характеристик высокоэнергетическая обработка может происходить в кислород-содержащей атмосфере при энергонапряженности 2-8 кВт на 1 дм3 объема измельчающего устройства до получения от 5 до 20% оксидных фаз .

Полученный материал обладает закрытыми порами и имеет плотность 0,6-1,0 г/см3. Представленными методами получают пористые изделия на основе пеноалюминия.

7. Анодное окисление. Для формирования пористых структурированных материалов на микро- или наноуровнях применяют как современные нанотехнологии (например, золь-гель-синтез), так и традиционные методы (электрохимическое травление). Эти технологии обладают рядом важных достоинств: низкой себестоимостью, низкой время- и энергозатратностью, совместимостью с кремниевой технологией интегральных микросхем .

Пористый оксид алюминия, представляющий собой массив гексагональных оксидных ячеек с вписанной в центр порой, характеризуется рядом свойств, которые делают его наиболее перспективным из других пористых материалов, используемых в микроэлектронике:

Регулярная, близкая к идеально упорядоченной структура;

Относительная простота управления размерами пор в широком диапазоне;

Высокая однородность пористой структуры, получаемой на больших площадях;

Хорошая воспроизводимость процесса изготовления;

Совместимость процесса получения пористого оксида алюминия со стандартными операциями микроэлектроники .

Пористый оксид алюминия является одним из наиболее изученных структурированных пористых материалов, полученных электрохимическим анодированием. Уникальность заключается в том, что в процессе электрохимического травления при определенных технологических условиях возможно получить слой А1203 с самоупорядоченной структурой пор типа «пчелиные соты». Интеграция наноэлементов в современные интегральные схемы возможна только при использовании ансамблей идентичных наноэлементов .

Пористый анодный оксид алюминия с высокой степенью упорядоченности получают методом двойного анодирования. Вначале предварительно выращивают слой «жертвенного» пористого оксида толщиной в несколько десятков микрометров. По мере увеличения толщины растущего оксида, случайное расположение пор преобразуется в упорядоченную структуру. После селективного удаления «жертвенного» слоя оксида, поверхность алюминия наследует упорядоченный рельеф оксида алюминия. Последующее длительное анодирование алюминия приводит к формированию оксида с высокой степенью упорядоченности. Формирование «жертвенного» и основного слоев проводят в потенциостати-ческом режиме, т.е. в режиме стабилизации напряжения. При этом непрерывно по линейному закону проводят изменение температуры зоны реакции. Это делается для учета изменения плотности электрического тока в ходе анодного окисления .

Также известен способ получения пористых мембран на основе алюминия, обеспечивающий равномерное вскрытие пор без разрушения основы обрабатываемых структур. Он включает полировку алюминиевых фольг, анодное окисление, вскрытие дна пор при температуре 40-50оС в смеси концентрированных кислот при следующем соотношении объемных процентов компонентов - фтористоводородная кислота: азотная кислота: уксусная кислота как (2,5-3,5):(1,5-2,5):(4,5-5,5) и очистку каналов пор . Внешний вид полученных мембран показан на рис. 1.

8. Метод плавающей зоны. Пористое металлическое тело (рис. 2) получают продвижением обрабатываемого материала через нагревательное устройство (рис. 3) с применением плавки

Рис. 1. Структура мембраны на основе алюминия

методом плавающей зоны. Плавку осуществляют в газовой атмосфере с целью растворения газа в получаемой зоне расплавленного металла и постепенным отверждением зоны расплавленного металла при контролируемых температуре и давлении. Следует отметить, что металлический материал должен обладать высокой степенью растворимости газа в жидкой фазе и низкой степенью растворимости газа в твердой фазе.

Данный способ используется для получения пористых изделий в виде стержней.

Полученный материал имеет равномерные микроскопические закрытые поры с диаметром

от 10 мм до 10 мкм и менее, расположенные только в продольном направлении. Пористость получаемого материала может достигать 80%. Материал обладает облегченным весом и высокой удельной прочностью, высокой механической обрабатываемостью, свариваемостью и т.д. .

9. Вытяжка алюминиевых трубок. Исходная трубка из чистого алюминия или деформируемых сплавов алюминия повышенной пластичности нагревается до температуры, близкой к температуре плавления. Затем трубка вытягивается в вытяжной машине с получением трубки меньшего диаметра. Полученная трубка разрезается на определенное количество отрезков, которые в свою очередь вкладываются в отрезок исходной трубки. Получившееся изделие также нагревается до температуры размягчения и подвергается вытяжке. Данная операция повторяется 3-5 раз до получения многоканальной структуры. Затем торцы поликаппилярных трубок закрываются инертным материалом. Внешние стенки трубок обрабатываются парами, либо раствором соляной кислоты. В дальнейшем происходит спекание поликаппилярных столбиков для получения готового изделия (рис. 4, 5).

Данный метод технологически сложен и имеет ряд особенностей: для нагрева используется трубчатая вертикальная печь. Вытяжка происходит в инертной атмосфере. На последнем переходе вытяжки поликапиллярные столбики продувают горячим воздухом, при температуре более 200 0С, содержащим кислород.

Рис. 2. Пористое металлическое тело: поперечный разрез - слева; продольный разрез - справа

Рис. 3. Устройство для получения пористого металлического тела: 1 - воздухонепроницаемый контейнер; 2,3 - уплотнители; 4 - вытяжная труба; 5 - труба для подачи газа; 6 - исходный материал; 7 - катушка высокочастотного нагрева; 8 - установка для дутья; 9А,9В - трубы для дутья; 10 - охлаждающий блок; 11,12 - трубы для циркуляции охлаждающей воды; 13 - охлаждающая рубашка в форме кольца; 14,15 - трубы для циркуляции охлаждающей воды

Рис. 4. Фрагмент объемной заготовки предлагаемого конструкционного материала в продольных и поперечном разрезах

Полученный материал имеет упорядоченную структуру прямолинейных непрерывающихся микроканалов с диаметром от 0,1 до 200 мкм, и прочность, соизмеримую с прочностью сплошных материалов .

Из рассмотренного способа остается непонятной возможность получения равномерной структуры непрерывающихся каналов, которые и определяют высокий уровень механических характеристик материала с широким диапазоном диаметра пор.

ЗАКЛЮЧЕНИЕ

Развитие способов получения пористых металлов, обладающих высокой весовой эффективностью, является крайне актуальной задачей. Из-за своих свойств особое место в промышленности занимает пористый алюминий. Как стало видно из проведенного обзора, механические свойства пористого алюминия зависят от способа его получения. Существующие на данный момент способы получения пористого алюминия неизбежно ведут к снижению уровня его механических свойств. Однако, по мере упорядочения пористой структуры, механические свойства готовых изделий улучшаются. Доводя упорядоченность структуры до идеальной, возможно получить пористый алюминий, механические свойства которого будут превосходить свойства компактного материала .

Одной из задач, предшествующей получению алюминия с упорядоченной пористой структурой, является проведение моделирования деформирования образцов с различным диаметром пор и типом пористой структуры. В статье также затронута проблема прогнозирования упругих свойств пористых материалов.

Выявление закономерностей зависимости механических свойств от размера и расположения пор позволит управлять механическими свойствами материалов из алюминиевых сплавов, что значительно расширит области возможного применения пористого алюминия в машино-, авиа-, и судостроении.

Рис. 5. Структура предлагаемого конструкционного материала в фильтрующих элементах

Материал с высокими удельными характеристиками будет обладать малой плотностью, что позволит создавать конструкции малого веса, увеличивая при этом их весовую эффективность. Также наличие упорядоченной пористой структуры, по сравнению с обычной неупорядоченной, позволит создавать более эффективные демпфирующие материалы.

СПИСОК ЛИТЕРАТУРЫ

1. Ершов М.Ю., Лепешкин И.А. Технологии получения автомобильных деталей из вспененного алюминия // Дизайн. Теория и практика. 2010. №4. С.77-88

2. Цукров С. Вспененный алюминий // Уральский Рынок Металлов. 2009. № 11. С.15-18

3. Бутарович Д.О., Смирнов А.А. Расчетное исследование механических свойств пеноалюминия. URL: www.niism-kb.narod.ru (дата обращения 12.04.2016).

4. Буньков В.Н., Решетников Е.Ю., Глызин В.В., Ливанцов С.В. Способ получения вспененного металла: патент РФ № 2016113; опубл. 15.07.1994; бюл. № 20.

5. Буньков В.Н., Решетников Е.Ю., Бугаков В.П. Способ получения вспененного алюминия: патент РФ № 2026394; опубл. 09.01.1995; бюл. № 1.

6. Вольфганг В.Р., Бьерн К. Способ получения пенометалла: патент РФ № 2046151; опубл. 20.10.1995; бюл. № 29.

7. Буньков В.Н.; Решетников Е.Ю.; Ливанцов С.В.; Глызин В.В. Способ получения пеноалюминия: патент РФ № 2068455; опубл. 27.10.1996; бюл. № 30.

8. Литвинцев А.И., Литвинцев С.А. Способ производства пористых полуфабрикатов из порошковых алюминиевых сплавов: патент РФ № 2121904; опубл. 20.11.1998; бюл. № 32.

9. Арбузова Л.А., Старовойтенко Е.И., Трубкина Е.М., Полькин И.С., Талалаев В.Д., Бондарев Б.И., Щелба-нин В.В. Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов: патент РФ № 2138367; опубл. 27.09.1999; бюл. № 27.

10. Арбузова Л.А., Старовойтенко Е.И., Полькин И.С., Андреев Д.А., Талалаев В.Д., Гинжул А.В. Способ получения пористых изделий из порошков алюминиевых сплавов: патент РФ № 2139774; опубл. 20.10.1999; бюл. № 29.

11. Арбузова Л.А., Талалаев В. Д., Трубкина Е.М., Полькин И.С., СтаровойтенкоЕ.И. Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов: патент РФ № 2153957; опубл. 10.08.2000; бюл. № 22.

12. Арбузова Л.А., Старовойтенко Е.И., Полькин И.С.,

Вачьянц С.Г. Способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов (варианты): патент РФ № 2154548; опубл. 20.08.2000; бюл. № 23.

13. Родинков С. В., Орлов В. К., Разваляева Г. Н., Клячко Л. А., Вакаренко В. В., Сарафанов М. А., Алёхин А. Г. Способ и линия получения листов пеноалюминия: патент РФ № 2430811; опубл. 10.10.2011; бюл. № 28.

14. Пасечник Н.В., Тонконогов В.Я., Родинков С.В., Павленко В.В., Орлов В.К., Сарафанов М.А. Способ получения слоистых плит из пеноалюминия: патент РФ № 2393061; опубл. 27.06.2010; бюл. № 18.

15. КолеровВ.С., МанцевичН.М. Способ получения изделий из композиционного материала на основе пеноалюминия: патент РФ № 2444417; опубл. 10.03.2012; бюл. № 7.

16. Пономарев А.В. Способ получения пористых полуфабрикатов из порошков алюминиевых сплавов: патент РФ № 2458762; опубл. 20.08.2012; бюл. № 23.

17. Романова В.С., Полькин И.С., Пономаренко А.М., Яковенко В.В., Новикова М.Б., Вачьянц С.Г., Король В.К. Способ получения изделий из пеноалюминия: патент РФ № 2180361; опубл. 10.03.2002; бюл. № 7.

18. Пономаренко А.М., Полькин И.С., Романова В.С., Новикова М.Б., Трубкина Е.М., Бисьев А.М. Алюминиевый сплав для получения пеноалюминия и способ получения пеноалюминия из него: патент РФ № 2233346; опубл. 27.07.2004; бюл. № 21.

19. Старовойтенко Е.И.; Арбузова Л.А.; Полькин И.С.; Вачьянц С.Г.; Комов В.И. Способ получения пористого металла и изделий из него: патент РФ № 2193948; опубл. 10.12.2002; бюл. № 34.

20. Стеньгач А.В., Голубева В.Н., Кузнецов А.А. Способ получения полуфабриката для изготовления изделий из пенометалла: патент РФ № 2360020; опубл. 27.06.2009; бюл. № 18.

21. Ковтунов А.И., Чермашенцева Т.В., Семистенов Д. А., Сидоров В. П. Способ получения пеноалюминия: патент РФ № 2400552; опубл. 27.09.2010; бюл. № 27.

22. Ковтунов А.И., Хохлов Ю.Ю. Способ формирования пеноалюминия: патент РФ № 2492257; опубл. 10.09.2013; бюл. № 25.

23. Хохлов Ю. Ю., Ковтунов А. И., Семистенов Д. А. Способ получения пеноалюминия: патент РФ № 2455378; опубл. 10.07.2012; бюл. № 19.

24. Черный Л.Е., Черный М.Л., Черный Н.Л. Пористое изделие с цельнометаллической частью и способ его получения: патент РФ № 2200074; опубл. 10.03.2003; бюл. № 7.

25. Иванов Д.О., Портной В.К., Солонин А.И., Аксенов

A.А. Способ получения пористых материалов из алюминиевых сплавов: патент РФ № 2335379; опубл. 10.10.2008; бюл. № 28.

26. Колеров В.С., Манцевич Н.М. Способ получения пористых материалов на основе пеноалюминия (изделий) из алюминиевых сплавов: патент РФ № 2450892; опубл. 20.05.2012; бюл. № 14.

27. Мошников В.А., Соколова Е.Н., Спивак Ю.М. Формирование и анализ структур на основе пористого оксида алюминия // Известия СПбГЭТУ «ЛЭТИ». 2011. №2. C.13-19.

28. Tipton K., Lu G. Method of porogen removal from porous low-k films using UV radiation [Способ удаления порообразователя из пористых низкокалиевых фольг с использованием УФ-излучения]. Patent US, no. 7208389 , 2007. (Publ. 24.04.2007).

29. Белов А.Н., Гаврилов С.А., Железнякова А.В., Тихомиров А.А., Тузовский В.К., Шевяков В.И. Способ получения пористого анодного оксида алюминия: патент РФ № 2324015; опубл. 10.05.2008; бюл. №13.

30. Клименко Г.Л., Старков В.В., Фирсов А.А. Способ получения пористых мембран на основе алюминия: патент РФ № 2350380; опубл. 27.03.2009; бюл. № 9.

31. Накадзима Хидео. Способ получения пористого металлического тела: патент РФ № 2281980; опубл. 20.08.2006; бюл. № 23.

32. Конов М.А., Хамизов Р.Х. Микроструктурный конструкционный материал на основе алюминия или его сплавов: патент РФ № 2371498; опубл. 27.10.2009; бюл. № 30.

33. Влияние расположения и размера пор на напряженно-деформированное состояние модели образца из сплава АД 1 при растяжении / С.В. Воронин,

B. Д. Юшин, Г.З. Бунова, Д.Ю. Лысевич, А.В. Михайлов // Материалы II Всероссийской молодежной научной конференции «Современные проблемы математики и механики». Томск: Изд-во Томского ун-та, 2011. С. 232-237.

34. FedotovA.F. Modeling of elastic properties of discretely reinforced composites with an implementation of R. Hill method and porous materials" deformation model // Life Science Journal. 2014. V. 11. P. 473-479.

METHODS OF OBTAINING POROUS MATERIALS BASED ON ALUMINUM

© 2016 S.V. Voronin, P.S. Loboda

Samara National Research University named after Academician S.P. Korolyov

The article presents an overview of the main methods for producing porous aluminum. Formed groups of methods with similar production technology. Considered the scope of application of porous aluminum in the industry. Reflects the characteristics of the obtained porous products. The dependence of mechanical properties of finished products from the method of obtaining porous aluminum. It is established that with the growth of the ordered porous structure is observed improvement of the mechanical properties. Identified methods for the production of aluminum with the most optimal porous structure for obtaining products with high specific mechanical properties and high weight efficiency. As a result of the review confirmed the need to develop ways to create material based on aluminium with an ordered porous structure. Keywords: Porous structure, aluminum foam, mechanical properties, weight effectiveness, oxide film. Sergey Voronin, Candidate of Technics, Associate Professor at the Technology of Metals and Aircraft Material Department. E-mail: [email protected]. Pavel Loboda, Graduate Student. E-mail: [email protected]

В последние годы большой интерес учёные и промышленники проявляют к пористым материалам, получаемым на основе алюминия. Алюминий с закрытыми порами (пеноалюминий) получают вспениванием расплавленного или размягчённого металла. Открытоячеистый (или пористый) алюминий изготавливают способом литья с удаляемым наполнителем или гальваническим покрытием на пенополиуретане.

Свойства и применение пеноалюминия

Размер порв пеноалюминии может колебаться от нескольких долей миллиметра до 30 мм и зависит от тонкостей технологического процесса. Плотность этого материала регулируется в интервале 0,3-1,5 г/см 3 . Пеноалюминий сохраняет все качества исходного металла - стойкость к коррозии, свариваемость, простоту обработки. Наряду с этим, материал приобретает новые положительные качества:

  • способность к окрашиванию и склеиванию;
  • эффективное звукопоглощение и поглощение энергии удара;
  • пониженную теплопроводность;
  • уникальный внешний вид.

Удельный вес пеноалюминия равен аналогичной характеристике пластмассовых и деревянных изделий. При этом материал не горюч, не токсичен, стоек к воздействию ГСМ, термо- и биостоек, устойчив к ультрафиолетовым лучам и радиации. При попадании в воду закрытопористый алюминий плавает без набухания.

Большой интерес вызывают многослойные материалы, в которых сердцевина изготовлена из пеноалюминия, а поверхности покрываются полимерными материалами, шпоном, плакируются алюминиевыми или титановыми сплавами.

Области применения открытопористого алюминия:

  • внутренняя облицовка судов, самолётов, ж/д вагонов;
  • бамперы, кожуха, заполнители глушителя автомобиля;
  • в строительстве - пожаро- и биостойкая облицовка, подвесные потолки и полы, способные выполнять функцию защиты от электромагнитного излучения;
  • в промышленности - шумозащитные кожухи для оборудования, фильтры, теплоизоляция

Характеристики и области применения алюминия с открытой пористостью

Механические характеристики алюминия с открытой пористостью были изучены не так хорошо, как свойства пеноалюминия. Однако о свойствах этого материала можно сказать следующее:

  • его жёсткость и прочность на сжатие аналогичны пеноалюминию;
  • высокоразвитая внутренняя поверхность позволяет использовать пористый алюминий в компактных теплообменниках;
  • акустические характеристики этого материала недостаточно высоки, но негорючесть и стойкость к термическим перепадам позволяют его использовать для шумопоглощения.

Области применения пористого алюминия:

  • В компрессорах и пневматических установках в конструкциях шумоглушителей. При этом пористый алюминий сочленяют со сплошной металлической деталью, оснащённой резьбой.
  • Фильтры, изготовленные из пористого алюминия. Могут служить для отделения некоторых твёрдых частиц от газов и жидкостей.
  • Высокая теплопроводность алюминия в сочетании с развитой внутренней поверхностью пористых материалов позволяет использовать открытоячеистый металл для изготовления теплообменников.

Пористые металлы, в том числе и алюминий, могут служить накопителями жидкостей с целью их дальнейшей дозированной подачи.



Поделиться