Валы и оси их назначение и классификация. Конструктивные элементы

Валы предназначены для закрепления на них деталей (зубчатых колес, червяков, звездочек, шкивов, полумуфт и т.д.) и передачи вращающих моментов. Оси служат только для поддержания вращающихся деталей механизмов и в отличие от валов не передают вращающих моментов. Оси могут быть вращающиеся и неподвижные.

По виду геометрической оси валы делятся на прямые, коленчатые и гибкие. Наибольшее применение имеют прямые валы (рис. 4.68, а в). Коленчатые валы (рис. 4.68, г) применяют только в поршневых машинах для преобразования вращательного движения в поступательное и наоборот (двигатели внутреннего сгорания, насосы, компрессоры). Гибкие валы с произвольной формой геометрической оси применяют для передачи вращения в механизмах, узлы которых меняют свое положение в процессе работы, например приборы дистанционного управления, зубоврачебные бормашины и др. Коленчатые и гибкие валы относятся к деталям специального назначения и в курсе "Детали машин" не рассматриваются.

Прямые валы по форме внешней поверхности делятся на гладкие (см. рис. 4.68, а) и ступенчатые или фасонные (см. рис. 4.68, б, о). Гладкие валы по всей длине имеют один поминальный размер, а соответствующие посадки различных деталей обеспечиваются предельными отклонениями. В силовых механизмах гладкие валы имеют ограниченное применение. В основном они используются в трансмиссиях для передачи только вращающего момента. Большее примене-

Рис. 4.68

мне оми получили в ненагруженных малоразмерных кинематических механизмах.

Ступенчатые валы менее технологичны в изготовлении, но более удобны при сборке, особенно сложных многоступенчатых механизмов. Каждая деталь свободно проходит на свое место, и с одной стороны обеспечивается ее осевая фиксация. Кроме того, ступенчатый вал имеет меньшую массу, так как по форме приближается к балке равного сопротивления изгибу. Полые валы (см. рис. 4.68, в) дороже в изготовлении, чем сплошные, и их применяют при жестких требованиях к массе конструкции (например, механизмы авиационной и космической техники). При отношении внутреннего диаметра вала к наружному d/D = 0,6÷0,7 масса его снижается на 40–50%, а момент сопротивления сечения изгибу W – всего на 15–25%, что не вызывает резкого снижения прочности. Обычно принимают d/D < 0,75, что связано с необходимостью выполнения шпоночных пазов, шлицев, резьбы. Применяют полые валы также тогда, когда через вал пропускают другую деталь, подводят смазочный материал и пр.

Конструкция ступенчатого вала определяется количеством и конструкцией деталей, которые на нем размещаются, расположением опор, условиями сборки. На валу можно выделить отдельные элементы: концевые участки; переходные участки между соседними ступенями разных диаметров; места посадки подшипников, уплотнений и деталей, передающих вращающий момент.

Входной и выходной валы передаточных механизмов должны иметь консольные участки для установки шкивов, звездочек, зубчатых колес, полумуфт. Концевые участки выполняют цилиндрическими, реже коническими, форма и размеры которых определяются стандартами. Цилиндрические проще в изготовлении, а конические (с конусностью 1:10) обеспечивают высокую точность базирования и центрирования сопряженных деталей, легкость сборки и разборки.

В местах изменения диаметра вала выполняют плавный переход – галтель постоянного радиуса (рис. 4.69, а). Для уменьшения концентрации напряжений разность между диаметрами ступеней вала должна быть минимальной, а радиус галтели – максимальным. Отношение r/d принимают не менее 0,1. Для того чтобы обеспечить упор сопряженной с валом детали по плоскости заплечика, радиус галтели должен быть меньше катета фаски детали /, а высота заплечика t > 2/. При передаче больших осевых усилий высота уступа выбирается из условия прочности торцевой поверхности на смятие, а толщина буртика – из условия обеспечения прочности на срез. Высота буртика (или уступа) для упора внутреннего кольца подшипника должна позволять съем подшипника при демонтаже. Если на концевом участке вала шпонка имеет с валом плотное соединение, высота заплечика t должна быть больше выступающей из вала высоты шпонки, чтобы подшипник можно было установить на свое место без съема шпонки. Допуски на биение упорных буртиков валов назначаются в пределах 0,01–0,06 мм.

Один из способов повышения усталостной прочности вала – перекрытие галтели (рис. 4.69, б), которое применяют при установке деталей, имеющих небольшой радиус закругления или фаску на входе. Осевая фиксация детали осуществляется с помощью промежуточного кольца 1, что позволяет увеличить радиус галтели r. Иногда для увеличения радиуса применяют галтель с поднутрением (рис. 4.69, в), при этом уменьшается длина цилиндрической части вала.

При необходимости шлифования посадочных мест на валу, примыкающих к уступу, предусматривают канавки для выхода шлифовального круга (рис. 4.69, г). Для валов малого диаметра такие канавки снижают сопротивление изгибу и кручению, поэтому шлифование посадочных поверхностей таких валов возможно только при высоких значениях запасов прочности п > 2,0÷2,5.

Рис. 4.69

Посадочные поверхности осей и валов выполняют в основном цилиндрическими. Конструкция этих участков палов зависит от вида насаживаемой детали и способа передачи вращающего момента. Длину участковпринимают на мм меньше, чем длину ступицы, для обеспечения осевой фиксации детали. Шероховатость поверхностей () назначается в зависимости от характера сопряжения, квалитета, типа насаживаемой детали и др.

На концах валов или промежуточных участков выполняются заходные фаски для облегчения сборки, предотвращения скола кромок и пореза рук сборщика. Размеры фаски с назначают в зависимости от диаметра вала мм при мм; мм при мм и мм при мм.

Опорные поверхности вала под подшипники при восприятии радиальной нагрузки называются цапфами или шейками для промежуточных опор. Эти участки имеют цилиндрическую форму для подшипников качения, но могут быть конические или сферические цапфы для подшипников скольжения. Посадочные диаметры под подшипники качения выбирают из стандартного ряда диаметров отверстий подшипников качения. При восприятии осевых нагрузок эти участки валов называются пятами . Шероховатость опорных поверхностей под подшипники назначают в зависимости от характера сопряжения подшипника с валом, диаметра цапфы и класса точности подшипника. Для подшипников нулевого класса точности шероховатость посадочных мест мкм, торцов заплечиковмкм; для подшипников повышенных классов точности Ra равно 0,63 и 1,25 мкм соответственно. Отклонения от круглости и цилиндричности мест посадки не должны превышать 0,5 допуска на диаметр, а для подшипников классов точности 5,4 и 2 – не более 0,003–0,018 мм.

Материалом валов и осей являются углеродистые и легированные стали, обладающие высокой прочностью, способностью к поверхностному и объемному упрочнению (для повышения усталостной прочности и износостойкости) и хорошей обрабатываемостью. Материал валов выбирают с учетом условий работы механизма. В малонагруженных механизмах валы, не подвергающиеся термообработке, изготавливают из углеродистых сталей 20, 45А, 50 и др. Для средне- и тяжелонагруженных валов применяют легированные стали 40Х, 40X11,40X112MА, 30ХГСА и др. Валы из легированных сталей подвергаются улучшению, закалке с высоким отпуском; для повышения износостойкости отдельные участки валов подвергаются поверхностной закалке ТВЧ. Цапфы налов и осей под подшипники скольжения механизмов с большим ресурсом для повышения износостойкости цементируют. Выбор вида термообработки осуществляется в соответствии с маркой стали (цементируемой или позволяющей азотирование). Для повышения износостойкости применяют хромоникелевые стали или хромируют шейки валов, при этом ресурс увеличивается в 3–5 раз.

Посадочные места высоконагруженных валов и осей после токарной обработки шлифуют. При знакопеременном нагружении неровности поверхности являются микроконцентраторами напряжений. Шлифование и полирование снижают величину неровностей и увеличивают долговечность вала. Высоконапряженные валы шлифуют по всей поверхности.

Расчет валов проводится в три этапа.

При отсутствии данных о линейных размерах вала и соответственно об изгибающих моментах на первом этапе определяют приближенное значение диаметра вала в наиболее нагруженном сечении. Из условия прочности вала на кручение имеем

где Т – вращающий момент, передаваемый валом, Н мм; [τ] – допускаемое напряжение на кручение, МПа (для стальных валов принимают [τ] = 12÷20 МПа).

На втором этапе в соответствии с полученным диаметром валу придается конструктивная форма, отвечающая кинематической схеме и отражающая требования технологичности и сборки. В результате устанавливаются все размеры вала.

На третьем этапе выполняется проверочный расчет вала. Основным критерием вращающихся валов и осей является циклическая прочность, так как постоянные по значению и направлению силы вызывают в них переменные напряжения. На статическую прочность рассчитывают неподвижные оси и некоторые валы при действии больших пусковых моментов. Недостаточная жесткость валов отрицательно влияет на работу связанных с ним соединений, подшипников, зубчатых колес и других деталей; увеличивает износ; снижает сопротивление усталости деталей и соединений; уменьшает точность механизмов и т.п. Расчет вала на жесткость выполняется в тех случаях, когда эти влияния оказываются существенными и требуют обязательного учета.

Расчет на сопротивление усталости. В расчете вала можно выделить следующие этапы: составление расчетной схемы; определение расчетных нагрузок и построение эпюр нормальных сил, изгибающих и крутящих моментов; расчет напряжений и запасов прочности в опасных сечениях вала.

Для расчета вращающиеся валы и оси представляют в виде балки на шарнирных опорах. Место расположения опор зависит от вида подшипника. При установке вала в радиальных шариковых или роликовых подшипниках качения точками опор считают середину ширины каждого подшипника (рис. 4.70, а, б). При установке вала в радиально-упорных подшипниках опоры располагаются со смещением от торца на величину а в зависимости от угла контакта. Для шариковых подшипников (рис. 4.70, в), а для конических роликовых (рис. 4.70, г), где– коэффициент осевого нагружения, зависящий от угла контакта (табл. 4.16). При установке в опоре двух подшипников условную опору располагают на расстоянии одной трети от середины внутреннего подшипника (рис. 4.70, ∂). У валов, вращающихся в подшипниках скольжения, условную

Рис. 4.70

шарнирную опору располагают на расстоянии (0,254-0,3)/ от торца подшипника (рис. 4.70, е).

Нагрузки, действующие на вал, передаются от сопряженных с ним деталей, таких, как зубчатые и червячные колеса,

Таблица 4.16

подшипника

контакта, α°

Однорядные

подшипники

Двухрядные

подшипники

Шариковые радиальные

Шариковые радиально-упорные

Роликовые

конические

шкивы, звездочки и др. Они определяются по соответствующим зависимостям расчета передач или экспериментально. В расчетах валов эти нагрузки, распределенные по поверхности контакта, заменяются сосредоточенными эквивалентными силами и прикладываются в середине ступицы детали. Найденные нагрузки переносятся на ось вала, строятся соответствующие эпюры.

При расчете на усталость расчетными являются сечения с концентраторами напряжений: галтельные переходы, шлицы, шпоночные канавки, поперечные отверстия, резьба, в которых действуют высокие изгибающий и крутящий моменты. В сложных по конструкции валах иногда трудно выделить одно опасное сечение и тогда расчет ведется для нескольких сечений. Для каждого из расчетных сечений определяют коэффициенты запасов прочности и сравнивают их с допускаемым значением. Для обеспечения надежной работы должно быть. Прочность оценивают по формуле

гдеи– запасы прочности по нормальным и касательным напряжениям:

гдеи– пределы выносливости стандартного образца при симметричном цикле изменений напряжений;и амплитудные напряжения циклов нормальных и касательных напряжений;и– средние напряжения циклов; коэффициенты снижения пределов выносливости детали; и– коэффициенты чувствительности материала к асимметрии цикла напряжений.

Для углеродистых статейдля легированных сталей. Коэффициент снижения предела выносливости детали:

При расчете на изгиб

При расчете на кручение

где и – эффективные коэффициенты концентрации напряжений (зависят от вида концентратора напряжений); и – коэффициенты влияния размеров детали; – коэффициент, учитывающий повышение предела выносливости при поверхностном упрочнении; и – коэффициенты влияния шероховатости.

Эффективные коэффициенты и концентрации напряжений для стали при изгибе и кручении валов в месте кольцевой канавки находят по табл. 4.17; в ступенчатом переходе с галтелью – по табл. 4.18; при изгибе и кручении валов со шлицами, шпоночной канавкой, с резьбой и поперечным отверстием – но табл. 4.19.

Коэффициенты – и приведены в табл. 4.20; коэффициент –в табл. 4.21.

Значения в зависимости от параметров шероховатости Ra и Rz приведены на рис.4.71. Величина определяется из соотношения

Таблица 4.17

Эффск- тивные коффи- циенты концентрации

Рис. 4.71

Таблица 4.18

Эффек- тивные коффи – циенты концентрации

Оси служат для поддержания вращающихся вместе с ними или на них различных деталей машин и механизмов. Вращение оси вместе с установленными на ней деталями осуществляется относительно ее опор, называемых подшипниками. Примером невращающейся оси может служить ось блока грузоподъемной машины (рис. 1, а), а вращающейся оси - вагонная ось (рис. 1, б). Оси воспринимают нагрузку от расположенных на них деталей и работают на изгиб.

Рис. 1

Конструкции осей и валов.

Валы в отличие от осей предназначены для передачи крутящих моментов и в большинстве случаев для поддержания вращающихся вместе с ними относительно подшипников различных деталей машин. Валы, несущие на себе детали, через которые передается крутящий момент, воспринимают от этих деталей нагрузки и, следовательно, работают одновременно на изгиб и кручение. При действии на установленные на валах детали (конические зубчатые колеса, червячные колеса и т. д.) осевых нагрузок.валы дополнительно работают на растяжение или сжатие. Некоторые валы не поддерживают вращающиеся детали (карданные валы автомобилей, соединительные валки прокатных станов и т. п.), поэтому эти валы работают только на кручение. По назначению различают валы передач, на которых устанавливают зубчатые колеса, звездочки, муфты и прочие детали передач, и коренные валы, на которых устанавливают не только детали передач, но и другие детали, например маховики, кривошипы и т. д.

Оси представляют собой прямые стержни (рис 1, а, б), а валы различают прямые (рис. 1, в, г), коленчатые (рис. 1, д) и гибкие (рис. 1, е). Широко распространены прямые валы. Коленчатые валы в кривошипно-шатунных передачах служат для преобразования возвратно-поступательного движения во вращательное или наоборот и применяются в поршневых машинах (двигатели, насосы). Гибкие валы, представляющие собой многозаходные витые из проволок пружины кручения, применяют для передачи момента между узлами машин, меняющими свое относительное положение в работе (механизированный инструмент, приборы дистанционного управления и контроля, зубоврачебные бормашины и т. п.). Коленчатые и гибкие валы относятся к специальным деталям, их изучают в соответствующих специальных курсах. Оси и валы в большинстве случаев бывают круглого сплошного, а иногда кольцевого поперечного сечения. Отдельные участки валов имеют круглое сплошное или кольцевое сечение со шпоночной канавкой (рис. 1, в, г) или со шлицами, а иногда профильное сечение. Стоимость осей и валов кольцевого сечения обычно больше, чем сплошного сечения; их применяют в случаях, когда требуется уменьшить массу конструкции, например в самолетах (см. также оси сателлитов планетарного редуктора на рис. 4), или разместить внутри другую деталь. Полые сварные оси и валы, изготовляемые из ленты, расположенной по винтовой линии, позволяют снижать массу до 60%.

Оси небольшой длины изготовляют одинакового диаметра по всей длине (рис. 1, а), а длинные и сильно нагруженные – фасонными (рис. 1, б). Прямые валы в зависимости от назначения делают либо постоянного диаметра по всей длине (трансмиссионные валы, рис. 1, в), либо ступенчатыми (рис. 1, г), т.е. различного диаметра на отдельных участках. Наиболее распространены ступенчатые валы, так как их форма удобна для установки на них деталей, каждая из которых должна к своему месту проходить свободно (валы редукторов см. в статье "Зубчатые редукторы" рис. 2; 3; и "Червячная передача" рис. 2; 3). Иногда валы изготовляют заодно с шестернями (см. рис. 2) или червяками (см. рис. 2; 3).


Рис. 2

Участки осей и валов, которыми они опираются на подшипники , называют при восприятии радиальных нагрузок цапфами, при восприятии осевых нагрузок - пятами. Концевые цапфы, работающие в подшипниках скольжения , называют шипами (рис. 2, а), а цапфы, расположенные на некотором расстоянии от концов осей и валов, - шейками (рис. 2, б). Цапфы осей и валов, работающие в подшипниках скольжения, бывают цилиндрическими (рис. 2, а), коническими (рис. 2, в) и сферическими (рис. 2, г). Самые распространенные - цилиндрические щшфы, так как они наиболее просты, удобны и дешевы в изготовлении, установке и работе. Конические и сферические цапфы применяют сравнительно редко, например для регулирования зазора в подшипниках точных машин путем перемещения вала или вкладыша подшипника, а иногда для осевого фиксирования оси или вала. Сферические цапфы применяют тогда, когда вал помимо вращательного движения должен совершать угловое перемещение в осевой плоскости. Цилиндрические цапфы, работающие в подшипниках скольжения, обычно делают несколько меньшего диаметра по сравнению с соседним участком оси или вала, чтобы благодаря заплечикам и буртикам (рис. 2, б) оси и валы можно было фиксировать от осевых смещений. Цапфы осей и валов для подшипников качения почти всегда выполняют цилиндрическими (рис. 3, а, б). Сравнительно редко применяют конические цапфы с небольшим углом конусности для регулирования зазоров в подшипниках качения упругим деформированием колец. На некоторых осях и валах для фиксирования подшипников качения рядом с цапфами предусматривают резьбу для гаек (рис. 3, б;) или кольцевые выточки для фиксирующих пружинных колец.


Рис. 3

Пяты, работающие в подшипниках скольжения, называемых подпятниками, делают обычно кольцевыми (рис. 4, а), а в некоторых случаях - гребенчатыми (рис. 4, б). Гребенчатые пяты применяют при действии на валы больших осевых нагрузок; в современном машиностроении они встречаются редко.


Рис. 4

Посадочные поверхности осей и валов, на которых устанавливают вращающиеся детали машин и механизмов, выполняют цилиндрическими и гораздо реже коническими. Последние применяют, например, для облегчения постановки на вал и снятия с него тяжелых деталей при повышенной точности центрирования деталей.

Поверхность плавного перехода от одной ступени оси или вала к другой называется галтелью (см. рис. 2, а, б). Переход от ступеней меньшего диаметра к ступени большего диаметра выполняют со скругленной канавкой для выхода шлифовального круга (см. рис 3). Для снижения концентрации напряжений радиусы закруглений галтелей и канавок принимают возможно большими, а глубину канавок - меньшей (ГОСТ 10948-64 и 8820-69).

Разность между диаметрами соседних ступеней осей и валов для снижения концентрации напряжений должна быть минимальной. Торцы осей и валов для облегчения установки на них вращающихся деталей машин и предубеждения травмирования рук делают с фасками, т. е. слегка обтачивают на конус (см. рис. 1...3). Радиусы закруглений галтелей и размеры фасок нормализованы ГОСТ 10948-64.

Длина осей обычно не превышает 2...3 м, валы могут быть длиннее. По условиям изготовления, транспортировки и монтажа длина цельных валов не должна превышать 6...7 м. Более длинные валы делают составными и отдельные части их соединяют муфтами или с помощью фланцев. Диаметры посадочных участков осей и валов, на которых устанавливаются вращающиеся детали машин и механизмов, должны быть согласованы с ГОСТ 6636-69 (СТ СЭВ 514-77).

Материалы осей и валов.

Оси и валы изготовляют из углеродистых и легированных конструкционных сталей, так как они обладают высокой прочностью, способностью к поверхностному и объемному упрочнению, легкостью получения прокаткой цилиндрических заготовок и хорошей обрабатываемостью на станках. Для осей и валов без термообработки используют углеродистые стали Ст3, Ст4, Ст5, 25, 30, 35, 40 и 45. Оси и валы, к которым предъявляют повышенные требования к несущей способности и долговечности шлицев и цапф, выполняют из среднеуглеродистых или легированных сталей с улучшением 35, 40, 40Х, 40НХ и др. Для повышения износостойкости цапф валов, вращающихся в подшипниках скольжения, валы делают из сталей 20, 20Х, 12ХНЗА и других с последующей цементацией и закалкой цапф. Ответственные тяжелонагруженные валы изготовляют из легированных сталей 40ХН, 40ХНМА, 30ХГТ и др. Тяжелонагруженные валы сложной формы, например, коленчатые валы двигателей, делают также из модифицированного или высокопрочного чугуна.

19.11.2015

Валы и оси используются в машиностроении для фиксации различных тел вращения (это могут быть шестерни, шкивы, роторы и другие элементы, устанавливаемые в механизмах).

Есть принципиальное отличие валов от осей: первые осуществляют передачу момента силы, создаваемого вращением деталей, а вторые испытывают напряжение изгиба под действием внешних сил. При этом валы всегда являются крутящимся элементом механизма, а оси могут быть как крутящимися, так и неподвижными.

С точки зрения металлообработки валы и оси – это металлические детали, чаще всего имеющие круглое поперечное сечение.

Виды валов

Валы различаются между собой по конструкции оси. Выделяют следующие виды валов:

  • прямые. Конструктивно не отличаются от осей. В свою очередь, различают гладкие, ступенчатые и фасонные прямые валы и оси. Наиболее часто в машиностроении используются ступенчатые валы, которые отличает простота установки на механизмы
  • коленчатые, состоящие из нескольких колен и коренных шеек, которые опираются на подшипники. Составляют элемент кривошипно-шатунного механизма. Принцип действия заключается в преобразовании возвратно-поступательного движения во вращательное, либо наоборот.
  • гибкие (эксцентриковые). Применяются для передачи момента вращения между валами со смещенными осями вращения.

Производство валов и осей – одно из наиболее динамичных направлений в металлургической промышленности. На основе этих элементов получают следующие изделия:

  1. элементы передачи вращательного момента (детали шпоночного соединения, шлицы, соединений с натягом и т.д.);
  2. опорные подшипники (качения или скольжения);
  3. уплотнения концов валов;
  4. элементы, регулирующие узлы передачи и опоры;
  5. элементы осевой фиксации лопаток роторов;
  6. галтели перехода между элементами разного диаметра в конструкции.

Выходные концы валов имеют форму цилиндра или конуса, соединяемыми при помощи муфт, шкивов, звездочек.

Валы и оси также могут быть полыми и сплошными. Внутри полых валов могут быть вмонтированы другие детали, кроме того, они могут применяться для облегчения общего веса конструкции.

Функцию осевых фиксаторов, устанавливаемых на вал деталей, выполняют ступени (бурты), распорные втулки со съемной осью, кольца, пружинные упорные кольца подшипников.

Предприятие "Электромаш" осуществляет изготовление данной продукции на производственной площадке, оснащенной самым современным оборудованием. У нас вы можете купить валы и оси любого типа под заказ . Рейтинг: 3.02

Вал - деталь машин, предназначенная для передачи вращающего момента вдоль своей осевой линии. В большинстве случаев валы поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др.). Некоторые валы (например, гибкие, карданные, торсионные) не поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем. Вал, распределяющий механическую энергию по отдельным рабочим машинам, называется трансмиссионным. В отдельных случаях валы изготавливают как одно целое с цилиндрической или конической шестерней (вал- шестерня) или с червяком (вал-червяк).

По форме геометрической оси валы бывают прямые, коленчатые и гибкие (с изменяемой формой оси). Простейшие прямые валы имеют форму тел вращения. На рисунке 12.1 показаны гладкий (а) и ступенчатый (б) прямые валы. Ступенчатые валы являются наиболее распространенными. Для уменьшения массы или для размещения внутри других деталей валы иногда делают с каналом по оси; в отличие от сплошных такие валы называют полыми. Коленчатый вал изображен на рис. (12.1, в).

Рис. 12.1.

Ось - деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный вращающий момент. Оси бывают вращающиеся (рис. 12.2, а) и неподвижные (б). Вращающаяся ось устанавливается в подшипниках. Примером вращающихся осей могут служить оси железнодорожного подвижного состава.


Рис. 12.2.

Из определений видно, что валы при работе всегда вращаются и испытывают деформации кручения или изгиба и кручения, а оси - только деформацию изгиба.

Конструктивные элементы валов и осей (рис. 12.3). Опорная часть вала или оси называется цапфой. Концевая цапфа называется шипом, а промежуточная - шейкой. Концевая цапфа, предназначенная нести преимущественную осевую нагрузку, называется пятой. Шипы и шейки вала опираются на подшипники, опорной частью для пяты является подпятник. По форме цапфы могут быть цилиндрическими, коническими, шаровыми и плоскими. Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком.

Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком (см. рис. 12.1, б). Для уменьшения концентрации напряжений и повышения прочности переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью (см. рис. 12.1, б). Галтели бывают постоянной и переменной кривизны. Галтель вала, углубленную за плоскую часть заплечика, называют поднутрением.

Рис. 12.3.

Форма вала по длине определяется распределением нагрузок, т.е. эпюрами изгибающих и крутящих моментов, условиями сборки и технологией изготовления. Переходные участки валов между соседними ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга.

Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах и приборах, стандартизированы.

Материалы валов и осей. Требованиям работоспособности валов и осей наиболее полно удовлетворяют углеродистые и легированные стали, а в ряде случаев - высокопрочные чугуны. Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, техническими условиями на изделие и условиями его эксплуатации.

Для большинства валов применяют термически обработанные стали 45 и 40Х, а для ответственных конструкций - стали 40ХН, ЗОХГТ и др. Валы из этих сталей подвергают улучшению или поверхностной закалке токами высокой частоты.

Быстроходные валы, вращающиеся в подшипниках скольжения, требуют высокой твердости цапф, поэтому их изготавливают из цементируемых сталей 20Х, 12Х2Н4А, 18ХГТ или азотируемых сталей типа 38Х2МЮА и др. Наибольшую износостойкость имеют хромированные валы.

Обычно валы подвергают токарной обработке с последующим шлифованием посадочных поверхностей и цапф. Иногда посадочные поверхности и галтели полируют или упрочняют поверхностным наклепом (обработка шариками или роликами).

Валы и оси служат для поддержания вращающихся деталей (зубчатых колес, муфт, шкивов, звездочек, роторов и т. п.) и передачи нагрузок от этих деталей через опоры на корпус. Оси бывают как вращающимися, так и неподвижными, они воспринимают действия изгибающих моментов и продольных сил. Валы, в отличие от осей, могут быть только вращающимися. Они подвергаются действию продольных сил, изгибающих и крутящих моментов.

Конструктивная форма валов и осей зависит от многих факторов - назначения механизма, назначения и формы деталей, сопрягающихся с валом или осью, характера нагрузок, технологии изготовления и сборки.

Валы бывают прямые , коленчатые и гибкие. В настоящем учебнике рассматриваются только наиболее распространенные прямые валы. Оси бывают только с прямой геометрической осью.

Валы и оси могут быть сплошными и полыми. При использовании полых валов и осей можно существенно уменьшить массу конструкции. Например, полый вал с отношением диаметра отверстия к наружному диаметру вала 0,75 при практически равной прочности со сплошным валом имеет массу на 50% меньше. В связи с этим в механизмах ЛА валы и оси большого диаметра (больше 10...12 мм) выполняются, как правило, полыми. Входные и выходные валы проектируются с несквозными отверстиями для герметизации внутренней полости механизма или с отверстиями, закрываемыми заглушками.

Валы и оси различаются по форме: гладкие и ступенчатые . Выбирая более сложную в изготовлении ступенчатую форму, можно обеспечить равномерное распределение напряжений по длине вала и необходимые прочность и жесткость при действии внутренних силовых факторов. Кроме того, при ступенчатой форме создаются лучшие условия для сборки деталей с валом и для их фиксирования относительно вала в осевом и радиальном направлениях. Оси, ввиду их большей простоты, часто выполняют гладкими, а валы, как правило, ступенчатыми, причем каждой детали соответствует своя ступень на валу, обработанная с требуемой точностью и шероховатостью.

Валы выполняются в виде отдельной детали (рис. 13.1, а) или за одно целое с цилиндрическими зубчатыми колесами (рис. 13.1, б, г) у коническим зубчатым колесом (рис. 13.1, в).

В механизмах ЛА валы часто изготавливаются за одно целое с деталями передач, что ввиду отсутствия соединяющих элементов уменьшает общую массу конструкции и увеличивает ее надежность. Однако монолитная конструкция вала не всегда целесообразна, поскольку не всегда требуется выполнять вал и деталь из одного материала. Кроме того, при таком варианте исключается возможность замены вала или детали при эксплуатации. При изготовлении монолитной конструкции из заготовки большого диаметра следует учитывать тот факт, что прочностные свойства материала снижаются с увеличением диаметра заготовки. Монолитная конструкция экономически выгодна в том случае, если диаметр детали ненамного превышает диаметр собственного вала, а также в условиях единичного производства или получении заготовки ковкой (например, формировании элементов детали, расположенных на конце вала, операцией высадки).

Валы могут быть выполнены с зубьями (рис. 13.1,6), со шпоночными пазами (рис. 13.1, а), с кольцевыми канавками под опорные кольца (рис. 13.1, а), с резьбовыми участками (рис. 13.1, 6, в) и пазами для стопорения резьбовых деталей (рис. 13.1, в). Валы могут иметь осевые (рис. 13.1, б) и радиальные (рис. 13.1, в) отверстия, а также канавки для выхода

шлифовального круга (рис. 13.1, а, в), участки выхода фрезы при нарезании зубьев (рис. 13.1, б ), а также проточки для выхода инструмента при нарезании резьбы (рис. 13.1, в).

Оси бывают неподвижные (рис. 13.2, а) и вращающиеся (рис. 13.2, б) у гладкие (рис. 13.2, а) и ступенчатые (рис. 13.2, б). Оси, как и валы, могут иметь зубья (шлицы), пазы, проточки, канавки, резьбу и отверстия. Гладкие оси стандартизированы. Фиксирование этих осей в осевом направлении чаще всего


осуществляется шплинтом (рис. 13.3, а). Для осей (главным образом неподвижных) применяется фиксирование цилиндрическим или коническим штифтом (рис. 13.3, б ), установочным винтом (рис. 13.3, в) или оседержателем с болтом (рис. 13.3, г). Неподвижные оси устанавливаются по переходной посадке (например, К7/И6) или по посадке с натягом (например, R7/h6).

Подвижные оси и валы как в радиальном, так и в осевом направлениях фиксируются в подшипниках, которые в свою очередь устанавливаются в корпусе. Точное фиксирование валов и осей в радиальном направлении осуществляется с помощью посадок их в подшипники и посадок подшипников в корпус. В осевом направлении валы и оси с насаженными на них деталями соединяются с подшипниками одним из способов, показанных на рис. 13.4. Наибольшее применение находит простое и дешевое фиксирование пружинными кольцами (рис. 13.4, а): эксцентрическими 1 или концентрическими 2 . Наличие зазора 5 между кольцом и подшипником приводит к неточности установки деталей и к скольжению поверхностей деталей и вала, т. е. к их изнашиванию. Использование промежуточного кольца 3 (рис. 13.4, б) с подгонкой его по толщине прошлифовкой торца или комплекта регулировочных прокладок 4 из фольги (рис. 13.4, в) позволяет свести величину зазора 5 к минимуму. Регулировочные прокладки рядом с пружинным кольцом не ставят во избежание попадания прокладок в канавку для кольца. При фиксировании на конце вала удобным является применение стандартной торцовой шайбы 5 (рис. 13.4, г)> закрепляемой винтом 6 и фиксируемой от проворачивания штифтом 7. Винт стопорится от отвинчивания шайбой 8. При значительной осевой нагрузке применяется шайба, закрепляемая двумя винтами (рис. 13.4, д).



Поделиться