Устроен цифровой фотоаппарат. Как устроен и работает зеркальный фотоаппарат

Дата публикации: 27.11.2014

В этом уроке мы постараемся доступно рассказать о том, как устроен фотоаппарат и какие типы фотоаппаратов сегодня существуют. Попробуем подойти к этому вопросу с практической точки зрения, объяснив самые важные для фотографов вопросы простым языком. Эта статья поможет вам выбрать фотоаппарат под ваши задачи, а в дальнейшем получать удовольствие от съемки.

Как работает фотоаппарат?

Все знают, для чего нужен фотоаппарат. Но как он работает? Знание принципов работы фотокамеры поможет всегда получать качественные снимки. Тут то же самое, что с автомобилем: чтобы хорошо водить машину, нужно хоть немного представлять, как она устроена.

Разобраться с процессом фотосъемки поможет простая схема.

  • Свет - самое главное в фотографии. Всё начинается с него. Само слово “фотография” можно перевести как “рисование светом”, “светопись”. Свет начинает свое путешествие от источника, например, от солнца.
  • Свет падает на все окружающие нас предметы. Это очень важно запомнить: фотоаппарат снимает не сами предметы, а свет, отраженный от них. Именно свет и умение с ним работать - ключ к хорошим кадрам.
  • Отраженный от предмета свет проходит через объектив фотоаппарата.
  • Он проецируется на светочувствительный сенсор - матрицу. Раньше, когда не было цифровых фотокамер, вместо матрицы использовалась фотопленка.

  • Матрица состоит из миллионов светочувствительных элементов. Они улавливают свет и передают информацию о нем уже в электронном виде в процессор фотокамеры. Процессор обрабатывает полученные данные и сохраняет их в виде файла.

  • Файл записывается на карте памяти.

Все современные цифровые фотокамеры работают по такому принципу, отличаясь лишь в некоторых деталях.

Матрица фотокамеры

Матрица - это сердце современного фотоаппарата. Именно от ее качества будет во многом зависеть качество фотографий. Матрица имеет две основные характеристики, информация о которых доступна потребителю: это разрешение и физический размер.

Сначала давайте разберемся с разрешением. Разрешение матрицы - это число ее светочувствительных элементов, пикселей. Чем их больше, тем больше точек будут составлять итоговое фото. Сегодня среднее разрешение матриц от 16 до 36 миллионов пикселей.

Однако, может быть так, что мегапикселей на матрице много, а качество снимка всё равно невысоко: он не резок, не контрастен, утопает в цифровом шуме - помехах. Качество изображения зависит не только от разрешения в мегапикселях, но и от физического размера самой матрицы.

Оба снимка сделаны в одном разрешении. Как видно, кадр, снятый на мобильный телефон, сильно проигрывает в качестве: он не так контрастен, на снимке не сохранились мелкие детали, например, прожилки на листочке. А ведь именно за мелкие детали должно отвечать высокое разрешение матрицы.

В различные типы камер устанавливаются матрицы различного размера. Самая большая на этой схеме - полнокадровая матрица. Ее размер соответствует кадру со знакомой всем фотопленки формата “135” или просто “35 мм” - 36х24 мм. Матрицы такого размера позволяют получать изображения очень высокого качества. Но чем больше физический размер матрицы, тем она дороже. Поэтому большие матрицы встречаются лишь в достаточно дорогих устройствах. Для любительских зеркалок характерен формат APS-C. Чем дешевле устройство, тем меньше в нем установлена матрица.

Большие матрицы дают выигрыш не только в детализации, но и в качестве изображения при съемке на высоких значениях чувствительности, при плохом освещении. Дело в том, что на сенсоре большой площади можно реализовать больший размер самих светочувствительных элементов - пикселей. Для сравнения: один светочувствительный элемент матрицы современного полнокадрового аппарата имеет в среднем размер в 4,9-8,3 микрон. Размер одного пикселя компактного фотоаппарата или смартфона около 1-3 микрон.

Особенности больших и маленьких матриц

Плюсы больших матриц - полнокадровых и APS-C - очевидны: они дают лучшее качество изображения. При этом работа с ними имеет несколько нюансов. Законы оптики таковы, что при работе с большой матрицей мы получаем малую глубину резкости на фото. С одной стороны, мы можем красиво размывать фон на своих снимках. Но в то же время возникнут сложности, если мы захотим сделать на снимке резким всё - и передний план, и фон. При съемке на зеркальную камеру, добиться большой глубины резкости получится не всегда.

В то же время, маленькие матрицы позволяют снимать с практически бесконечной глубиной резкости . Чем меньше матрица, тем проще получить кадр с большой глубиной резкости. Именно поэтому, снимая на смартфон или компактный аппарат, сложно размыть фон на снимке: получается слишком большая глубина резкости, всё на снимке становится четким. Сравним два кадра, сделанных при одинаковых параметрах съемки, но на фотоаппараты с матрицами разных размеров.

Кадр, сделанный компактным аппаратом с небольшой матрицей размером 2/3". В глубину резкости попали почти все фигурки.

Если вам нравится размытый фон на фотографиях, если вы занимаетесь портретной съемкой, то скорее всего вам понадобится камера с большой матрицей - формата APS-C или даже 24х36 мм.

Помимо этого, от размера матрицы напрямую зависит размер самого фотоаппарата и объективов к нему. Причем если размер корпуса аппарата еще можно сделать более-менее компактным даже при использовании полнокадровой матрицы, то уменьшить в размерах объектив не получится: законы оптики не позволят. Поэтому, покупая полнокадровый аппарат со сменной оптикой, будьте готовы к тому, что хороший объектив будет иметь солидные размеры и вес. Если же хочется использовать полнокадровую камеру и при этом иметь компактный объектив, придется довольствоваться не самыми универсальными и не самыми светосильными объективами. А вот в камерах, использующих матрицы меньшего размера, вполне получается использовать объективы более легкие, более компактные. Сравните сами.

Типы фотокамер. Их плюсы и минусы.

С сердцем цифрового фотоаппарата, матрицей, мы разобрались. Теперь разберемся, на какие типы делятся современные фотоаппараты.

Мобильная камера. Камера в телефоне

Сегодня встроенную фотокамеру можно встретить во многих устройствах. В смартфонах фотокамера (и иногда даже не одна, а две - основная и фронтальная) стали обязательным элементом. Наверное, у каждого читателя есть опыт фотосъемки на телефон. В погоне за компактностью, такие камеры оснащаются крохотными матрицами и простыми объективами. Все мы знаем, что снимки с телефона не претендуют на высокое качество, зато такая съемка не требует специальных навыков, а телефон всегда находится под рукой. Впрочем, если вы планируете более-менее серьезно заниматься фотографией, стоит задуматься о более продвинутом творческом инструменте, обеспечивающем более высокое качество снимков и ручную установку параметров съемки.

Компактные фотокамеры

Пожалуй, этот тип камер тоже знаком всем. Компактная камера есть почти в каждом доме. Основное достоинство их достоинство - это малый размер, низкая цена, простота в использовании и иногда большой зум.

В камеры этого типа обычно ставятся маленькие и средние матрицы с диагональю 1/2,3”,1/1,7”, 1”. Это обеспечивает данным аппаратам компактность и очень доступную цену. Конечно, бывают редкие модели компактов с крупными матрицами, даже с полнокадровыми. Но это довольно специфические и дорогостоящие аппараты.

Компактные камеры имеют несменный объектив. Как правило, такие фотоаппараты комплектуются универсальным объективом, позволяющим снимать как с широким углом обзора, так и фотографировать крупным планом удаленные от нас предметы. Опять таки, благодаря использованию небольших по размеру матриц, получается сделать объектив небольшим по размеру.

Большинство компактных камер ориентированы на съемку в автоматических режимах, чтобы фотографирование ими было максимально простым. По-английски они так и называются - “Point-and-shoot”, что на русский язык можно перевести как “навёл-снял”. Действительно, для съемки на такой аппарат достаточно нажать только одну кнопку, остальное сделает автоматика. А вот на съемку с ручными настройками данные аппараты рассчитаны не всегда. Порой не все настройки можно настроить вручную, а если и можно, то их приходится искать где-то в меню аппарата, что замедляет процесс.

Особняком в классе компактов стоят так называемые “гиперзумы” (“суперзумы”, “ультразумы”). Гиперзум - это компактная камера, оснащенная объективом с очень большой кратностью зума. Он может снимать как с широким углом обзора, так и брать крупным планом очень далекие объекты. Объективы с таким большим зумом имеют относительно крупный размер, из-за чего камера теряет свою компактность и сопоставима по габаритам, а часто и по цене, с более продвинутыми классами камер.

Кому подойдут компактные камеры и гиперзумы?

Прежде всего тем, для кого фотография - не хобби и не профессия. Для тех, кто просто снимает на память и не хочет загружать себе голову какими-то сложными настройками. Такие камеры идеальны для путешествий налегке. В них всегда есть автоматические режимы, что позволит справиться с ними даже новичку. Профессиональные фотографы иногда выбирают компакт в качестве второй, вспомогательной фотокамеры.

Зеркальные фотокамеры

Следующий тип камер - зеркальные фотокамеры или зеркалки. Как класс оборудования они имеют богатую историю. Первые зеркалки появились еще в первой половине прошлого века. Тогда в них использовалась пленка. За более чем полвека их конструкция была доведена практически до совершенства, и лишь в XXI веке на смену пленке пришла цифровая матрица.

Зеркальные аппараты названы так потому, что в их конструкции есть система из зеркала и специальной отражающей призмы (пентапризмы), позволяющая видеть именно ту картинку, которую “видит” объектив. Причем, без всякой электроники.

Зеркало имеет подвижную конструкцию: когда оно опущено, свет попадает в видоискатель. Когда производится съемка, зеркало поднимается, и свет попадает на матрицу. С зеркальными камерами применяются сменные объективы . Вы можете выбрать для своего аппарата любой объектив из широкого модельного ряда, ориентируясь на тот вид съемок, которым хотите заниматься. Таким образом в любой ситуации можно получить идеальный инструмент для идеального качества снимков.

Зеркальные камеры не зря называют системными. Выбирая зеркалку того или иного производителя, мы выбираем систему из фотоаппарата, объективов и аксессуаров (например, вспышек). Этим активно пользуются все профессиональные фотографы и продвинутые любители.

В зеркальных камерах всегда используются матрицы большого размера. Формата APS-C или даже полнокадровые. А как говорилось выше, большая матрица - одно из слагаемых качественного снимка.

Скорость работы - следующее достоинство зеркальных камер. Фотограф, который перешел с компакта на зеркалку, может быть просто шокирован скоростью ее работы. Быстрый автофокус и мгновенная реакция на все манипуляции фотографа - свойство любой зеркалки.

Зеркальная камера очень оперативна в управлении. Производители уделяют большое внимание их проектированию, ведь это - профессиональный инструмент. Аппарат удобно держать в руках, а практически любую настройку можно отрегулировать одной-двумя кнопками, не залезая в меню.

Еще одно достоинство, которое стоит отметить - это долгая работа от аккумулятора. Заряжать аккумулятор такой камеры приходится относительно редко. Поскольку в зеркалке матрица (вместе с дисплеем аппарата - основной потребитель энергии) находится под нагрузкой не всегда, а только непосредственно во время съемки кадра, аккумулятор позволяет сделать на одном заряде около 500-1000 снимков в зависимости от модели камеры. Это почти недостижимая цифра для остальных типов камер. Продолжительная автономная работа фотоаппарата - очень важная вещь в путешествиях, поездках, длительных прогулках.

Из минусов зеркальных камер, пожалуй, стоит отметить их большой вес и размер. Впрочем, многим фотографам наоборот нравится ходить с большим фотоаппаратом и выглядеть как профессионал. Современные зеркалки бывают как весьма дорогими, рассчитанными на профессиональное использование, так и очень доступными. Сегодня зеркальную камеру может позволить себе практически каждый.

Кому подойдет зеркальная камера?

Всем, кто более-менее серьезно занимается фотографией и не боится относительно крупных размеров фотоаппарата. Для тех, кто хочет научиться профессионально фотографировать, сделать фотографию своей профессией, зеркальная камера - оптимальный выбор.

Компактные камеры со сменной оптикой или беззеркальные камеры

Это относительно недавно появившийся вид фотоаппаратов и самый активно развивающийся. Производители резонно решили, что если оснастить обычную компактную камеру сменными объективами и качественной матрицей, получится очень интересная вещь. Беззеркальные камеры сочетают в себе большинство плюсов зеркалок и компактов. Как уже сказано, “беззеркалки” имеют сменные объективы и компактные размеры. При этом позволяют делать кадры очень высокого качества. Ведь они оснащаются матрицами сравнительно крупных размеров.

Беззеркалки в целом довольно быстры в работе. Однако из-за миниатюрных размеров немного пострадала их эргономика. Камера уже не лежит в руке столь удобно и основательно, как зеркалка. Да и отсутствие оптического видоискателя многим фотографам не нравится. Из прочих минусов беззеркальных камер стоит отметить довольно непродолжительное время работы от батареи.

Производители в данном классе камер обращают особое внимание на стиль. В противовес строгим черным зеркалкам, ориентированным на продвинутых фотографов, среди беззеркалок очень много красивых, стильных, “имиджевых” моделей.

Кому подойдет беззеркальная камера?

Тем, кто хочет получать качественные фотографии, но при этом не хочет таскать за собой громоздкую зеркальную камеру. Такую камеру удобно брать в путешествия. Однако, если планируется путешествие без возможности зарядить камеру, лучше взять с собой набор запасных аккумуляторов.

Среднеформатные фотокамеры и цифровые задники

Бывают камеры, у которых матрица по размеру еще больше, чем у полнокадровых зеркалок. Например, ее размер может быть 44 x 33 мм, 53,9 х 40,4. Разрешение у таких больших матриц тоже немаленькое: несколько десятков мегапикселей.

Камеры данного типа называются “среднеформатными”. Это название осталось со времен пленочной фототехники. В пленочную эпоху в подобных камерах использовалась широкая пленка, значительно шире обычной. Такие камеры и тогда, и сейчас используются некоторыми профессиональными фотографами для получения фотографий очень высокого качества. Отпечатки с диагональю около одного метра - не предел для этих фотоаппаратов. Некоторые такие камеры оборудованы сменными модулями, в которых установлена непосредственно матрица и электронная начинка Такие модули называются цифровыми задниками. Среднеформатные камеры применяются в основном при съемке в условиях фотостудии из-за большого размера и не слишком высокой оперативности в работе. Еще один минус среднеформатных камер - цена, сопоставимая с ценой новой иномарки.

Константин Воронов

Занимаюсь профессиональной фотографией более 8 лет. Сфера деятельности - свадебная, портретная, пейзажная фотография. По образованию журналист. Разработал несколько курсов для сервиса онлайн-обучения фотографии Fotoshkola.net . Преподаватель, ведущий мастер-классов.

93439 Фотография с нуля 0

В этом уроке вы узнаете: Принцип действия фотоаппарата. Из каких основных элементов состоит фотокамера.

Принцип действия цифровой фотокамеры

Фотография прежде всего связана со светом. Рассмотрим рисунок.

Свет от солнца или искусственного источника (1) сначала отражается от сцены, находящейся перед объективом фотокамеры, а затем проходит через объектив (2) и, если он есть, затвор (7) (о затворе вы узнаете чуть позже в этом уроке) к задней стенке корпуса камеры - на матрицу (сенсор) (8). В зеркальной фотокамере (DSLR) до нажатия на кнопку спуска затвора свет, отраженный зеркалом (3), пройдя через призму (4) - попадает в видоискатель (5). При съемке зеркало поднимается, и свет попадает на матрицу, как в компактной камере. В некоторых зеркальных камерах Sony зеркало неподвижное, полупрозрачное (SLT камеры).

Этот процесс аналогичен прохождению света через хрусталик человеческого глаза к колбочкам и палочкам, расположенным на задней стенке глаза, а также к зрительным нервам. Когда же свет достигает задней стенки корпуса, он попадает на чувствительный элемент (датчик изображения), который преобразует свет в электрическое напряжение. Затем полученная таким образом информация обрабатывается процессором для исключения помех, расчета значений цвета, формирования файла данных изображения и записи этого файла на носитель информации (карту для хранения цифровых изображений). После этого фотокамера подготавливается к экспонированию следующего изображения.

Весь этот процесс, в течение которого огромное количество информации обрабатывается и записывается на носитель, происходит довольно быстро.

Ниже представлены рисунки, дающие представление об основных элементах, из которых состоит компактная (беззеркальная) и зеркальная фотокамера.

Компактная фотокамера

Зеркальная фотокамера

Рассмотрим подробнее эти основные элементы, из которых состоит цифровая фотокамера и которые позволяют свету, отраженному от объекта съемки, стать фотографией.

Объектив

Объектив фотокамеры представляет собой весьма сложную конструкцию. Как правило, он состоит из целого ряда стеклянных линз, преломляющих и фокусирующих свет, поступающий в объектив. Благодаря этому увеличивается изображение снимаемой сцены и осуществляется фокусировка на конкретной точке. Подробнее об объективах вы узнаете из последующих уроков.

Видоискатель и экран ЖКИ

Видоискатель позволяет видеть изображение в момент его съемки и некоторые из параметров съемки, и представляет собой небольшое окно, в которое наблюдается снимаемая сцена. С его помощью уточняется композиция непосредственно перед съемкой.

Экран ЖКИ обеспечивает предварительный просмотр снимков перед их получением, а также последующий просмотр и анализ только что сделанных снимков относительно правильности установленной экспозиции и композиции либо для показа их окружающим. Кроме того, на экране ЖКИ могут быть просмотрены любые сделанные ранее снимки.

В цифровых фотокамерах экран ЖКИ также может выполнять функцию видоискателя. Вместо того, чтобы подносить фотокамеру к глазу для составления композиции снимаемой сцены, подготовить ее к съемке можно в любом положении, наблюдая на экране ЖКИ изображение еще до того, как оно будет зафиксировано. Один из недостатков экранов ЖКИ заключается в высоком потреблении энергии от батареи питания фотокамеры. Кроме того, просматривать изображения на экране ЖКИ в солнечный день на улице практически невозможно.

Несмотря на все перечисленные выше преимущества экрана ЖКИ, в цифровой фотокамере иногда полезным оказывается и видоискатель. В частности, когда заряд батареи питания на исходе и поэтому нецелесообразно расходовать драгоценную энергию на питание экрана ЖКИ. Как бы там ни было, но видоискатель по-прежнему служит удобной альтернативой экрану ЖКИ при составлении композиции фотографии.
Что же касается зеркальных цифровых фотокамер, то видоискатель и экран ЖКИ показывают одно и то же изображение, поскольку в этом случае для проецирования изображения из объектива в видоискатель используются зеркала. В компактных цифровых фотокамерах видоискатель служит в качестве простого окна, в которое видно снимаемую сцену, а не изображение, проецируемое через объектив для предварительного просмотра. Но поскольку видоискатель находится не в том месте, где и объектив, наблюдаемая в него перспектива оказывается несколько иной.

Затвор

Затвор представляет собой сложный механизм, точно управляющий продолжительностью прохождения света через объектив к пленке или цифровому чувствительному элементу, расположенному на задней стенке корпуса фотокамеры.

В цифровой фотокамере затвор в традиционном смысле может и не понадобиться, что зависит от типа используемого датчика изображения. Так как датчик изображения цифровой фотокамеры является электронным прибором, а не светочувствительным химическим веществом, он может включаться или выключаться электронным путем. Следовательно, необходимость в наличии механического затвора, управляющего поступлением света в фотокамеру, отпадает. Тем не менее для некоторых типов фотокамер затвор все же требуется, хотя во многих моделях цифровых фотокамер механический затвор не применяется.

Независимо от наличия или отсутствия механического затвора в цифровой фотокамере по-прежнему необходим механизм для управления экспонированием изображения, а также кнопка спуска затвора. При нажатии кнопки спуска затвора активизируется целый ряд действий, приводящих в итоге к получению окончательного изображения. Прежде всего необходимо зарядить датчик изображения, чтобы подготовить его к восприятию света из объектива.

Кнопки для настройки фотокамеры

На корпусе камеры имеется множество кнопок, рычажков, дисков, назначение которых лучше всего описано в инструкции к вашей фотокамере. Большинство из них служат для подготовки фотокамеры к съемке, ее настройки и непосредственно съемки.

К ним относятся: установка режима автоматической фокусировки, выбор подходящего баланса белого для обеспечения правильной передачи цветов снимаемой сцены в зависимости от вида используемого освещения, выбор режима экспозиции и т.д. Подробнее об этих и других параметрах вы узнаете из последующих уроков.

Датчик изображения

Датчик изображения состоит из миллионов отдельных светочувствительных пикселей. В этих пикселях, по сути, выполняется преобразование света в электрическое напряжение.

Несмотря на то что цифровые фотокамеры позволяют делать многоцветные снимки, их датчики изображения не воспринимают цвет. Они способны реагировать только на относительную яркость сцены. Для ограничения спектра света, на который реагирует каждый пиксель датчика изображения, применяются специальные цветные светофильтры. Таким образом, в каждом пикселе может быть зарегистрирован только один из трех основных цветов (красный, зеленый или синий), которые необходимы для определения окончательного цвета пикселя. А для определения значений двух остальных основных цветов каждого пикселя применяется интерполяция цвета.

Подробнее о датчиках изображения вы узнаете из нашего следующего урока.

Встроенная вспышка

Встроенная вспышка есть в большинстве моделей цифровых фотокамер. Безусловно, это очень удобно, поскольку света в окружающих условиях зачастую не хватает. С другой стороны, вспышки, встроенные во многие фотокамеры, далеко не всегда оказываются практичными. Отчасти это связано с отсутствием контроля встроенной вспышки. Ведь в большинстве моделей цифровых фотокамер нельзя регулировать мощность встроенной вспышки, и поэтому при оценке уровня освещения приходится полностью полагаться на фотокамеру.

Невозможность регулировать мощность и положение встроенной вспышки превращается в серьезное препятствие при съемке объектов, расположенных близко к фотокамере. В этом случае вспышка слишком сильно освещает сцену, а изображение получается чрезмерно контрастным. Из-за того, что встроенная вспышка находится очень близко к объективу, на снимках зачастую возникает эффект «красных глаз».

Для установки на фотокамеру внешней вспышки и другого необходимого оборудования (видоискателя при его отсутствии в камере, микрофона и т.д.) служит разъем "горячий башмак".

Носители цифровой информации

В цифровой фотокамере каждое зафиксированное изображение записывается на карту-носитель цифровой информации. В какой-то степени эта карта заменяет пленку (и поэтому иногда называется цифровой пленкой), однако у нее есть свои особенности.

Носители цифровой информации бывают самых разных форм и размеров: от формата книги до величины пластинки жевательной резинки и даже меньше. А в некоторых даже имеется возможность использования нескольких типов носителей, что дает дополнительные удобства.

Питание цифрового фотоаппарата

В качестве источника питания в цифровых фотоаппаратах наиболее часто применяются перезаряжаемые элементы - аккумуляторы. По размерам корпуса элементы подразделяются на несколько типов. В цифровой съемочной технике применяются элементы формата ААА и АА (говоря проще "самые тонкие" и "тонкие батарейки") или имеется фирменный, не совместимый с камерами других производителей, конструктив. Размещаются элементы питания в специальном отсеке камеры, где иногда некоторые ищут кнопку "шедевр" :))).

В зеркальных и некоторых беззеркальных фотокамерах со сменной оптикой применяются батарейные блоки, где размещены несколько аккумуляторов, что значительно увеличивает время автономной работы фотоаппарата.

Итоги занятия:

Итак, мы рассмотрели основные элементы конструкции цифровой фотокамеры. Очень важным предметом, который часто забывают изучить, а иногда просто теряют, является руководство по фотокамере.

Анализируя поисковые запросы, которые приводят посетителей на наш сайт, констатирую, что вопросов "как включить" какую либо функцию камеры очень много. Для того чтобы максимально использовать возможности вашей фотокамеры, необходимо внимательно прочитать прилагаемое к ней руководство, что пользователи довольно часто ленятся делать, полагаясь на свои способности разбираться в новой аппаратуре по ходу дела. Как показывает практика - не разберетесь или станете разбираться в самый неподходящий момент.

Это и есть ваше первое практическое задание - внимательно изучить руководство (или инструкцию) по эксплуатации вашей фотокамеры.

На вопросы по теме первого урока, по изложенному материалу и по практическому заданию вы можете задать на сайта.

И в завершении - небольшой видеоролик "Как работает зеркальный цифровой фотоаппарат".

В следующем уроке №2: Типы фотокамер. Основные характеристики современных фотоаппаратов. Узнаем подробнее о сенсорах. Поговорим о мегапикселях. Расскажем, как выбрать фотокамеру.

Свет попадает на матрицу цифрового фотоаппарата через оптическую систему, основными составляющими которой являются объектив, видоискатель и устройство автоматической фокусировки. Оптическая система собирает лучи света и проецирует изображение на плоскость. Объектив, безусловно, занимает центральное место в оптической системе цифровой камеры, поскольку именно от его характеристик и качества изготовления зависят детальность и резкость получаемого на светочувствительном носителе изображения.

Широкий выбор объективов для цифровой фототехники определяет разнообразие возможностей для реализации творческих идей и задумок фотографа. Несмотря на то, что объектив является одним из важнейших узлов фотоаппарата, его основные принципы работы и устройство мало изменились за десятилетия с момента появления первой пленочной камеры.

Принцип работы объектива фотоаппарата основан на одном из главных оптических свойств света – преломлении световых лучей при прохождении границы сред с разными плотностями. Это свойство прекрасно заметно, например, при размешивании сахара в чашке с чаем. Глядя в чашку, мы можем заметить, как ложка, который мы помешиваем сахар, оказывается точно надломленной на границе воды и воздуха. Это оптическое свойство обуславливается тем простым фактом, что скорость распространения света в воде меньше, чем скорость распространения световых лучей в воздухе.

Еще более впечатляющий эффект преломления наблюдается при прохождении света сквозь границу воздуха и стекла, особенно при определенном радиусе искривления стекла. В объективе цифровой камеры свет преломляется при прохождении через прозрачную полированную поверхность стекла линзы, то есть на границе «воздух — оптическое тело». В результате преломления светового потока объектив проецирует на светочувствительном элементе фотоаппарата (матрице) геометрически правильное, резкое изображение снимаемых объектов по всему полю кадра.

Получаемое таким способом световое изображение не должно содержать каких-либо искажений формы, яркости или цвета фотографируемых объектов. Однако явления преломления света в объективе фотоаппарата нередко сопровождаются возникновением так называемых аберраций (искажений изображения). Для того, чтобы снизить эти проявления, сказывающиеся негативно на качестве изображения, в современных оптических системах применяются разнообразные приемы, связанные, в частности, с увеличением числа линз в объективе.

Конструкция объектива

Объектив является сложным оптическим устройством, которое конструктивно состоит из следующих основных элементов: системы линз и сферических зеркал, изготовленных из специального оптического стекла, металлической оправы и диафрагмы. В лицевой части объектива располагается оптическая линза, основное предназначение которой состоит в сборе световых лучей. Внутри объектива размешаются уже другие оптические линзы и сферические зеркала, которые отвечают за последующее преломление света и дальнейшее формирование изображения.

Количество линз или оптических элементов в конструкции современных объективов может быть разным. При этом они могут быть соединены друг с другом или, наоборот, разделены воздушным пространством. В простейших объективах используется система, состоящая из одной — трех линз. А в высококачественных и дорогих объективах количество оптических элементов, выполненных из различных сортов стекла, может достигать десяти и более.


Оптическое стекло, используемое при изготовлении объективов, отличается идеальной прозрачностью и гладкостью, для него недопустимо наличие каких-либо пузырьков и короблений, ведь онимогут привести к искажению изображения. В конструкции современных объективов применяются особые асферические линзы, которые способны лучше справляться с разнообразными оптическими аберрациями. Такие асферические линзы довольно часто используются, в частности, в устройстве широкоугольной оптики.

Положение линз в объективе должно быть выдержано с точностью до тысячных долей миллиметра, чтобы создаваемое оптическое изображение было максимально резким и четким. В объективе, состоящем из нескольких линз, крайне важно, чтобы оптическая ось каждой отдельной линзы идеально совпадала с оптическими осями всех других линз. Только таким образом может быть достигнуто получение качественного изображения.

Высокая точность взаимного расположения линз в объективе достигается за счет крепления линз в металлической оправе. То есть оправа – это не просто корпус объектива, а компонент, обеспечивающий необходимое расстояние между линзами, а также защиту оптических элементов от механических и климатических воздействий. Оправа выполняется под конкретный тип камеры и ее соединения с объективом.

Большая часть объективов состоит из двух частей: основной металлической оправы, в которой размещаются все оптические детали и диафрагма, и переходной оправы, служащей для осевого перемещения основной оправы и ее соединения с камерой. Переходная оправа обычно имеет несколько кольцеобразных деталей. В результате поворота одного из таких колец обеспечивается осевое перемещение той части металлической оправы, в которой укреплен основной блок объектива. Конструкция оправ объектива предполагает возможность ручного или автоматического изменения диафрагмы, то есть регулируемого по величине отверстия, способного изменять количество световых лучей, проходящих через объектив на матрицу цифрового фотоаппарата.


Шестилепестковая диафрагма

Диафрагма в объективе представляет собой светонепроницаемую заслонку с небольшим отверстием в центре, которая просто отсекает световые лучи, проходящие сквозь края линзы. Такая заслонка в подавляющем большинстве объективов состоит из тонких металлических лепестков серповидной формы, установленных по окружности между линзами объектива. Эти лепестки диафрагмы могут поворачиваться одновременно друг с другом, двигаясь в пространство между линзами или выходя из него. Диафрагма служит для изменения глубины резко изображаемого пространства. Уменьшая размер диафрагменного отверстия, мы можем повысить резкость кадра.


Элементы объектива (источник electrogor.ru)

В устройство объектива входит и фокусировочное кольцо. Оно используется для ручной наводки объектива на резкость. Вращая кольцо объектива, фотограф может сделать резким либо передний, либо задний план. Если же объектив снабжен функцией автофокуса, то фокусировочное кольцо вращается автоматически благодаря специальному мотору. При нажатии на затвор камеры объектив автоматически фокусируется на резкость по центральному участку кадра. Фиксирование фокусировки обычно происходит при нажатии кнопки спуска до половины.

В современных объективах ведущих производителей применяется ультразвуковой привод фокусировки (USM), встроенный непосредственно в объектив. Благодаря ему обеспечивается очень быстрая скорость работы фокусировки. Существуют объективы и с так называемым отверточным приводом, который механически связывает объектив и фотоаппарат. Такая система работает более медленно и шумно.


Помимо автофокуса, в конструкции объектива часто встраивается и механизм стабилизации, который компенсирует дрожание камеры при увеличенных выдержках, тем самым, давая фотографу возможность получать резкие кадры в условиях недостаточной освещенности без использования штатива. Объектив с переменным фокусным расстоянием имеет специальное кольцо трансфокатора, используемое для изменения фокусного расстояния. С помощью такого кольца можно приблизить или отдалить снимаемый объект в кадре.

Оправа объектива может составлять одно целое с камерой только в том случае, если объектив жестко встроен в фотоаппарат. В цифровых же камерах, рассчитанных на использование сменных объективов, применяется система крепления объектива — байонет. Такие системы крепления объектива к камере у каждого производителя свои собственные, хотя существуют и некоторые открытые стандарты байонета. Размеры и форма байонета зависят от типа камеры, к которой крепится объектив. Сам объектив может, в свою очередь, предоставлять возможность для установки разнообразных фильтров. Для этого он оснащается специальной резьбой, расположенной вокруг внешней линзы. Именно на эту резьбу и прикручиваются различные фильтры и другие аксессуары для объективов.

Характеристики объектива

Объективы характеризуются двумя основными параметрами – светосилой и фокусным расстоянием. Как правило, значения этих параметров указываются на передней части оправы любого объектива. Светосила определяет яркость создаваемого объективом оптического изображения, то есть иными словами служит показателем способности объектива пропускать свет. Чем больше света проходит через объектив, тем, соответственно, выше его светосила.

Преимущество объективов, обладающих высокой светосилой, заключается в том, что они позволяют вести съемку в условиях недостаточной освещенности и предоставляют фотографу больше свободы в выборе экспозиционных параметров съемки. Но если снимаемый объект освещен достаточно хорошо, то светосильный объектив будет уже не помощником, а скорее помехой. Высокая яркость создаваемого им изображения обеспечит переэкспонирование матрицы фотоаппарата.

Фокусное расстояние, в свою очередь, характеризует масштаб изображения, проецируемого объективом на матрицу цифровой камеры. Чем больше фокусное расстояние объектива, тем более «приближенное» и крупное изображение получится при съемке одного и того же объекта. Меньшее фокусное расстояние позволяет охватить большее поле обзора и уместить, таким образом, на одной фотографии широкую панораму.


От фокусного расстояния объектива напрямую зависит не только охват кадра и угол обзора, но и перспектива снимка. В частности, увеличение фокусного расстояния позволяет сделать задний план более крупным, приблизить его к переднему и сгладить разницу в расстоянии. Наоборот, уменьшение фокусного расстояния дает возможность сделать задний план визуально дальше и мельче, усиливая ощущения перспективы на снимке.


В зависимости от фокусного расстояния принято классифицировать объективы на следующие виды:

— Стандартные (фокусное расстояние от 40 до 50 мм)

Стандартным принято называть объектив с фокусным расстоянием, примерно равным диагонали кадра. С помощью стандартного объектива получается изображение, приближенное к тому, каким картинку видит человеческий глаз. То есть стандартные объективы нейтральны по своему действию и не обеспечивают никаких эффектов. Такие объективы широко применяются для съемки портретов, поскольку они не допускают искажения лиц.

— Широкоугольные (фокусное расстояние от 12 до 35 мм)

Широкоугольные объективы имеют короткое фокусное расстояния и широкий угол обзора, что позволяет использовать их в тех случаях, когда требуется увеличенный угол зрения. Например, при съемке пейзажей или архитектуры, где широкоугольный объектив дает возможность подчеркнуть перспективу пространства в кадре. Они также оказываются очень удобными при съемке в ограниченном пространстве благодаря своему широкому полю зрения.

— Телеобъективы (фокусное расстояние от 200 мм и более)

Для съемки удаленных объектов применяются телеобъективы. Благодаря небольшому углу обзора телеобъектив позволяет акцентировать внимание на основном объекте съемки, отсекая из кадра или размывая до неузнаваемости все лишнее. Телеобъективы способны сокращать расстояние между передним и задним планами, буквально «сплющивая» перспективу. Такие объективы гораздо более восприимчивы к дрожанию или малейшим вибрациям камеры, поэтому их использование практически немыслимо без надежного штатива.

Помимо этих типов, выделяют и другие объективы специального назначения. В частности, макрообъективы или объективы «фиш-ай».

Напоследок стоит сказать о некоторой специфике объективов, предназначенных именно для цифровых фотоаппаратов. Дело в том, что фотопленка может практически одинаково воспринимать как свет, падающий на ее поверхность под нормальным углом, так и косые световые лучи. Поэтому для определения качества объектива для пленочного аппарата нужно было лишь провести тестовую съемку и отпечатать фотографии большого формата, чтобы увидеть готовый результат.

Цифровая же фототехника характеризуется тем, что светочувствительный элемент (матрица) гораздо критичнее относится к углу падения световых лучей. И если лучи падают на поверхность матрицы под острым углом, то некоторая часть света просто не попадает на светочувствительную поверхность. В результате, при использовании некоторых объективов изображение по краям кадра теряет четкость, в других же случаях начинают проявляться заметные цветовые артефакты.

Чтобы решить эту проблему, производители объективов для цифровых фотоаппаратов стараются сегодня применять системы из нескольких линз и оптических элементов в конструкции оптики. Однако в этом случае приходится добиваться того, чтобы центр симметрии каждого оптического элемента идеально совпадал с оптическими осями других линз. Если этого не удается достичь, то неминуемо возникают различные геометрические аберрации и искажения, также портящие снимок.

Поэтому производство фотографических объективов в современных условиях отличается высокой степенью сложности и требует очень высокой точности изготовления. Такую точность при изготовлении линз и сборке объективов удается достигнуть только за счет использования на производственных предприятиях роботизированных сборочных аппаратов.

© 2015 сайт

Объектив следует считать ключевым узлом оптического прибора под названием фотоаппарат. Всё верно: не матрицу, а именно объектив. Фотография – это изображение, и не что иное, как фотографический объектив формирует это изображение на светочувствительном материале. Матрица лишь преобразует созданное объективом изображение в цифровую форму.

Фотограф не обязан быть экспертом в области прикладной оптики, но наличие некоторого представления о том, как работает объектив вашей фотокамеры, не только не помешает вашему творческому росту, но и поможет сделать фотосъёмку более осознанной и управляемой.

Конструкция объектива

С основной задачей фотографического объектива – собрать свет, идущий от снимаемой сцены, и сфокусировать его на матрице или плёнке фотоаппарата – может справиться обычная двояковыпуклая линза. Однако качество изображения при этом будет весьма посредственным из-за обилия оптических аберраций . Чтобы обеспечить оптимальное качество картинки, в оптическую схему объектива вводятся дополнительные линзы, корректирующие световой поток, исправляющие аберрации и придающие объективу требуемые свойства. Число оптических элементов в современных объективах может в отдельных случаях достигать двух десятков и более. Элементы могут быть объединены в группы и все вместе они должны действовать как единая собирающая оптическая система.

Помимо оптического блока, т.е. системы линз, расположенных в определённой последовательности, конструкция объектива включает в себя также ряд вспомогательных механизмов, обеспечивающих наводку на резкость, управление диафрагмой, изменение фокусного расстояния (в зум-объективах), оптическую стабилизацию и пр.

Оправа, т.е. корпус объектива, соединяет все его компоненты воедино, а также служит для крепления объектива к фотоаппарату.

Хочется подчеркнуть, что фокусное расстояние не является в буквальном смысле «длиной» объектива и лишь косвенно указывает на его линейные размеры. Физически объектив может быть как длиннее, так и короче своего фокусного расстояния. Следует понимать, что из-за особенностей конструкции многих современных объективов их задняя главная плоскость может располагаться как в пределах системы линз, так и за её пределами.

В случае если задняя главная плоскость вынесена вперёд, фокусное расстояние объектива будет превышать его физические размеры. Такой объектив называется телеобъективом . Практически все современные длиннофокусные объективы являются телеобъективами, что позволяет уменьшить их габариты.

Если задняя главная плоскость расположена в середине объектива, то фокусное расстояние оказывается меньше расстояния от переднего элемента объектива до заднего фокуса. Таковы нормальные и умеренно короткофокусные объективы.

И, наконец, задняя главная плоскость может лежать позади объектива. В этом случае фокусное расстояние будет короче заднего фокального отрезка , т.е. расстояния от заднего оптического элемента до заднего фокуса. Такие объективы называются ретрофокусными объективами или объективами с удлинённым задним отрезком . Зачем нужна столь сложная схема? Ведь габариты она явно не экономит. Дело в том, что наличие поворотного зеркала в зеркальных фотоаппаратах налагает жёсткие ограничения на минимальную допустимую величину заднего фокального отрезка. Иными словами, зеркало не позволяет приблизить объектив вплотную к матрице или плёнке, а это значит, что короткофокусные объективы для зеркальных фотокамер должны проектироваться по ретрофокусной схеме.

Мерой светопропускающей способности объектива является диафрагменное число или число диафрагмы , представляющее собой отношение между фокусным расстоянием объектива и диаметром отверстия диафрагмы. Например, при фокусном расстоянии объектива 200 мм и диаметре отверстия диафрагмы 50 мм их отношение будет равно: 200 ÷ 50 = 4. Последнее обычно записывается как f/4 и означает, что диаметр отверстия диафрагмы в четыре раза меньше фокусного расстояния объектива.

Что будет, если мы уменьшим диаметр отверстия, скажем, до 25 мм? Число диафрагмы окажется равным: 200 ÷ 25 = 8. Таким образом, чем меньше относительное отверстие, тем больше диафрагменное число.

Почему говорят именно об относительном отверстии, а не просто о диаметре отверстия диафрагмы? Потому, что нас в данном случае не интересуют конкретные значения фокусного расстояния и диаметра отверстия, а лишь отношение между ними. Число диафрагмы – величина безразмерная. Независимо от своего фокусного расстояния все объективы, диафрагма которых установлена на f/8, будут пропускать одинаковое количество света. При этом очевидно, что фактический диаметр отверстия будет тем больше, чем больше фокусное расстояние объектива – главное, чтобы их отношение оставалось неизменным.

Для того чтобы уменьшить количество света, проходящего через объектив, в два раза, т.е. на одну ступень экспозиции (), необходимо в два раза уменьшить площадь отверстия диафрагмы. Его диаметр при этом уменьшится в √2 раза. В связи с этим диафрагменные числа, отстоящие друг от друга на одну ступень, различаются в √2, т.е. примерно в 1,414 раза, и образуют следующий стандартный ряд: f/1; f/1,4; f/2; f/2,8; f/4, f/5,6; f/8; f/11; f/16; f/22; f/32; f/45; f/64.

Минимальное доступное значение диафрагмы, т.е. максимальный размер относительного отверстия конкретного объектива, принято называть его светосилой .

В большинстве современных объективов используется механизм т.н. «прыгающей» или «моргающей» диафрагмы. Суть его в том, что вне зависимости от того, какое число диафрагмы выбрано для съёмки, диафрагма остаётся полностью открытой до самого момента спуска затвора и только тогда закрывается до заранее выбранного значения. После каждого снимка диафрагма автоматически возвращается в открытое состояние. Это позволяет осуществлять кадрирование, экспозамер и наводку на резкость при максимальной величине относительного отверстия (минимальном числе диафрагмы) и соответствующей ему максимально яркой картинке в видоискателе. В случае же если у фотографа возникает желание визуально оценить глубину резкости будущего кадра, диафрагму можно принудительно закрыть до рабочего значения, используя кнопку репетира диафрагмы.

Байонет

Объектив крепится к фотоаппарату посредством байонетного соединения. На хвостовике оправы объектива имеются лепестки (обычно их три), которым соответствуют пазы во фланце камеры. При установке объектива хвостовик вставляется во фланец и запирается поворотом на небольшой угол. Несимметричность лепестков исключает затрудняет неправильную ориентацию байонета. Чтобы отсоединить объектив необходимо нажать на кнопку и повернуть его в обратную сторону. См. «Смена объектива ».

По сравнению с резьбовым соединением байонет обладает двумя основными преимуществами: во-первых, смена объективов происходит быстрее, а во-вторых, обеспечивается более точная ориентация объектива относительно камеры, что необходимо для оптимального совмещения электрических контактов и механических приводов.

Помимо своей основной функции – крепления объектива к камере, – байонет должен также обеспечивать и функциональную связь между ними, согласовывая работу диафрагмы, автофокуса, стабилизатора и прочих устройств. Байонеты большинства современных фотографических систем (Canon EF, Sony E, Fujifilm X) не предполагают какой-либо механической связи между камерой и объективом – обмен информацией осуществляется исключительно через электронный интерфейс. В более традиционных байонетах (например, Nikon F) управление диафрагмой (а для старых моделей объективов ещё и автофокусом) реализовано посредством механических приводов.

Важнейшей характеристикой байонетного крепления является его рабочий отрезок . Рабочий отрезок – это расстояние от опорной поверхности объектива (или опорной поверхности фланца камеры) до фокальной плоскости, т.е. до плоскости матрицы или плёнки. Длина рабочего отрезка зависит от особенностей конструкции фотоаппарата. Так, у зеркальных камер рабочий отрезок значительно больше, чем у беззеркальных, поскольку поворотное зеркало не позволяет сделать корпус камеры слишком плоским.

Не следует путать рабочий отрезок с задним фокальным отрезком. Рабочий отрезок – это фиксированный параметр байонета, и его величина неизменна для всех камер и объективов в рамках данной фотографической системы. Задний фокальный отрезок – параметр конкретного объектива, и его величина может отличаться от величины рабочего отрезка, как в большую, так и в меньшую сторону, в зависимости от модели.

Фокусировка

В исходном положении объектив сфокусирован на бесконечность, т.е. в фокальной плоскости оказывается изображение бесконечно удалённого объекта. Чтобы сфокусировать объектив на более близких объектах, необходимо увеличить дистанцию между задней главной плоскостью объектива и плоскостью матрицы или плёнки. Иными словами, объектив должен быть как бы выдвинут навстречу объекту съёмки.

В простейших объективах с небольшим количеством элементов наводка на резкость осуществляется перемещением всего оптического блока внутри оправы объектива. Иногда движется только передняя линза. Хуже всего, когда она ещё и вращается при фокусировке, поскольку это весьма затрудняет использование поляризационных и градиентных фильтров.

В более сложных объективах применяется внутренняя фокусировка. Внешние размеры объектива в таком случае остаются неизменными, а смещение оптического центра достигается перемещением независимой группы линз внутри объектива. Частным случаем внутренней фокусировки является задняя фокусировка, при которой за наводку на резкость отвечает задняя группа элементов.

Большинство современных объективов предполагают использование автоматической фокусировки . Обычно в оправу автофокусных объективов встроен кольцевой электродвигатель (ультразвуковой или шаговый), который и приводит в движение фокусировочную группу линз. Исключение составляют лишь некоторые классические автофокусные объективы Nikon и Pentax, не имеющие собственного фокусировочного мотора. Мотор в данном случае встроен в камеру, а передача крутящего момента происходит посредством механической муфты.

Зум-объективы

Зум-объективами принято называть объективы с переменным фокусным расстоянием. Конструкция зум-объективов значительно сложнее конструкции дискретных объективов и включает ряд дополнительных оптических элементов, взаимное перемещение которых не только изменяет фокусное расстояние объектива, но и компенсирует возникающие при этом дополнительные оптические аберрации.

Отношение между максимальным и минимальным фокусным расстоянием зум-объектива называется его кратностью. Например, кратность зум-объектива с диапазоном фокусных расстояний 24-70 мм приблизительно равна: 70 ÷ 24 ≈ 3, что позволяет говорить о нём как о 3-х кратном зуме.

Оптический стабилизатор

В объективах, снабжённых оптическим стабилизатором изображения, одна из линз может при помощи электромагнитного привода перемещаться в плоскости, перпендикулярной оптической оси объектива, компенсируя тем самым вибрацию фотоаппарата и предотвращая смазывание изображения.

Об особенностях устройства и практическом применении стабилизированной оптики можно прочесть в статье: «Оптический стабилизатор. Нюансы использования IS и VR ».

Светофильтры

Практически все объективы могут использоваться вместе со светофильтрами . Чаще всего фильтры накручиваются на объектив спереди, для чего в оправе объектива предусмотрена специальная резьба. Однако в тех случаях, когда передняя линза объектива отличается необычайно большим диаметром или излишне выпуклой формой, традиционное использование фильтров физически затруднено, в связи с чем и резьба для фильтров может попросту отсутствовать. Существуют два основных подхода к решению этой проблемы. Супертелеобъективы обычно снабжаются выдвижной обоймой, в которую можно вложить стандартный светофильтр небольшого диаметра, после чего обойма вставляется внутрь объектива через специальную прорезь. Многие же сверхширокоугольные объективы в принципе не совместимы со стеклянными фильтрами и вместо этого имеют на хвостовике зажимы для тонких фильтров из пластиковой плёнки. Очевидно, что как внутреннее, так и заднее расположение светофильтров исключает возможность использования прозрачных фильтров для защиты передней линзы от грязи и царапин, предъявляя к вашей аккуратности повышенные требования.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

© 2014 сайт

Для полного контроля над процессом получения цифрового изображения необходимо хотя бы в общих чертах представлять себе устройство и принцип работы цифрового фотоаппарата.

Единственное принципиальное отличие цифровой камеры от плёночной заключается в природе используемого в них светочувствительного материала. Если в плёночной камере это плёнка, то в цифровой – светочувствительная матрица. И как традиционный фотографический процесс неотделим от свойств плёнки, так и цифровой фотопроцесс во многом зависит от того, как матрица преобразует свет, сфокусированный на неё объективом, в цифровой код.

Принцип работы фотоматрицы

Светочувствительная матрица или фотосенсор представляет собой интегральную микросхему (проще говоря, кремниевую пластину), состоящую из мельчайших светочувствительных элементов – фотодиодов.

Существует два основных типа сенсоров: ПЗС (Прибор с Зарядовой Связью, он же CCD – Charge-Coupled Device) и КМОП (Комплементарный Металл-Оксид-Полупроводник, он же CMOS – Complementary Metal-Oxide-Semiconductor). Матрицы обоих типов преобразовывают энергию фотонов в электрический сигнал, который затем подлежит оцифровке, однако если в случае с ПЗС матрицей сигнал, сгенерированный фотодиодами, поступает в процессор камеры в аналоговой форме и лишь затем централизованно оцифровывается, то у КМОП матрицы каждый фотодиод снабжён индивидуальным аналого-цифровым преобразователем (АЦП), и данные поступают в процессор уже в дискретном виде. В целом, различия между КМОП и ПЗС матрицами хоть и принципиальны для инженера, но абсолютно несущественны для фотографа. Для производителей же фотооборудования имеет значение ещё и тот факт, что КМОП матрицы, будучи сложнее и дороже ПЗС матриц в разработке, оказываются при этом выгоднее последних при массовом производстве. Так что будущее, скорее всего, за технологией КМОП в силу чисто экономических причин.

Фотодиоды, из которых состоит любая матрица, обладают способностью преобразовывать энергию светового потока в электрический заряд. Чем больше фотонов улавливает фотодиод, тем больше электронов получается на выходе. Очевидно, что чем больше совокупная площадь всех фотодиодов, тем больше света они могут воспринять и тем выше светочувствительность матрицы.

К сожалению, фотодиоды не могут быть расположены вплотную друг к другу, поскольку тогда на матрице не осталось бы места для сопутствующей фотодиодам электроники (что особенно актуально для КМОП матриц). Восприимчивая к свету поверхность сенсора составляет в среднем 25-50 % от его общей площади. Для уменьшения потерь света каждый фотодиод накрыт микролинзой, превосходящей его по площади и фактически соприкасающейся с микролинзами соседних фотодиодов. Микролинзы собирают падающий на них свет и направляют его внутрь фотодиодов, повышая таким образом светочувствительность сенсора.

По завершении экспонирования электрический заряд, сгенерированный каждым фотодиодом, считывается, усиливается и с помощью аналого-цифрового преобразователя превращается в двоичный код заданной разрядности, который затем поступает в процессор фотоаппарата для последующей обработки . Каждому фотодиоду матрицы соответствует (хоть и не всегда) один пиксель будущего изображения.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.



Поделиться