Биотехнологическое производство, объекты. Типологии биотехнологий, применяемые в россии

Стадии биотехнологического производства

Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса. В общем виде система биотехнологического производства продуктов микробного синтеза представлена на рис. 1.

Рис. 1. Система биотехнологического производства

Существует 5 стадий биотехнологического производства.

Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента - главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.

Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

Заключительная стадия биотехнологического производства - приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными. Далее приводится характеристики каждой из стадий промышленного микробиологического синтеза.

Компании двух центров биотехнологий - США и Европы - в 2015 году заработали более $133 млрд, а к 2017 году эта число превысит уже $220 млрд. Инвесторы называют биотехнологии самой интересной индустрией для вложений. Обозреватель сайт рассказал об известных биотехнологических компаниях, которые находятся в России, и об инвесторах и фондах, которые вкладывают средства в направление.

Современные биотехнологические проекты выглядят так, словно только что вышли из научно-фантастической книги. Например, американская компания Bioquark планирует оживить 20 клинически мертвых людей (результаты эксперимента будут доступны в апреле 2017 года), южнокорейский стартап Sooam Biotech готов клонировать домашнего питомца за $100 тысяч, а ученый Массачусетского технологического института создал компанию Elysium, которая разрабатывает таблетку, возвращающую молодость.

Цели и достижения этих компаний растиражированы СМИ, и на самом деле их успехи вполне могут оказаться более скромными. Однако инвесторы с особым интересом наблюдают за сферой биотехнологий. «Если бы в мире осталась одна ценная индустрия, я бы хотел, чтобы это были биотехнологии», - партнёр инвестиционного банка Stifel Nicolaus Чад Морганлэндер.

Центрами развития биотехнологий считаются США и Европа. К концу 2015 года в этих регионах было зарегистрировано пять тысяч публичных компаний, в которых работают более 200 тысяч человек, а объём индустрии составляет $350 млрд.

Биотехнологии повсюду - в США, например, более 90% кукурузы и сои являются генномодифицированной. В Европе ГМО запрещены в большинстве стран, но пища для скота также генетически модифицирована. Один из самых известных препаратов инсулина «Актрапид» также делается с помощью генной инженерии. Самым продаваемым биотехнологическим препаратом является «Хумира» (продано на $12 млн в 2014 году), которую используют при артрите.

Обозреватель сайт узнал, какие биотехнологические стартапы существуют в России и чем они занимаются.

Ohmygut

В феврале 2015 года в компанию инвестировал фонд Maxfield Capital. Инвестиции будут использованы для развития продукта, создания сети продаж и защиты интеллектуальной собственности.

Diagnostic Reagents & Devices, DRD


Компания DRD занимается разработкой диагностических устройств гемотестов, которые позволяют определить различные повреждения мозга: ишемический инсульт и черепно-мозговые травмы. Такие тесты можно применять в критических ситуациях, чтобы выяснить степень травмы больного.

В июне компания заняла второе место на международном конкурсе Asian Entrepreneurship Award в Токио и получила 500 тысяч йен ($5 тысяч) и три года бесплатной работы в токийском коворкинге. DRD является резидентом фонда «Сколково».

Экспресс-тесты работают на основе биомаркеров повреждения мозга - это пептиды и антитела к NMDA и AMPA рецепторам. Согласно многочисленным клиническим исследованиям, биомаркеры высоко специфичны и чувствительны к повреждениям мозга ишемического и травматического характера

- основатель DRD Анжей Жимбиев

«Моторика »


У компании по разработке протезов «Моторика» два продукта: тяговый активный протез кисти и миоэлектрический модуль искусственной кисти Stradivary. Первый протез подходит людям с частичными травмами кисти, при которых сохраняется подвижность лучезапястного сустава. Протез одевается сверху на поврежденную кисть.

Модуль Stradivary полностью заменяет поврежденную кисть и выполняет движения, считывая электрический ток, вырабатываемый мышцами культи в момент их сокращения. Stradivary даёт возможность пользоваться ложкой, вилкой шариковой ручкой и прочими предметами мелкой моторики. Модуль находится на стадии прототипа и будет готов к испытаниям к ноябрю 2016 года.

Как и в случае с компанией MaxBionic, протез «Моторики» можно получить бесплатно, обратившись к производителю.

Какие фонды поддерживают биотехнологические стартапы

В России немало конференций и инвестиционных фондов, поддерживающих молодые компании и стартапы в сфере биотехнологий. В инновационном центре «Сколково» есть кластер « Биомед », который помогает «проектам инициированные врачами, химиками, биологами, генетиками конвертироваться в успешные бизнесы».

Исполнительным директором кластера биотехнологий «Сколково» является Кирилл Каем. До этого Каем был владельцем собственного бизнеса по дистрибуции медицинского оборудования и фармацевтики. Он также возглавлял холдинг Hygiene Kinetics, который производит целлюлозно-бумажные товары и федеральную сеть клиник «Альфа Групп».

Консалтинговая компания Frost & Sullivan отмечает

  • Фонд посевных инвестиций РВК (объём 2 млрд рублей, в портфеле 54 компании, из них 21 относятся к биотехнологиям).
  • Inbio Ventures (в портфеле 7 компаний из США, Канады и Австралии).
  • Gurus BioVenture - первый фонд, который инвестирует совместно с частными инвесторами.
  • Биотехнологии и биоиндустрия – при значительной степени общности научной, и в значительной степени, научно-технологической основы – направление, которое неправомерно рассматривать как принципиально однородное. Спектр отраслей здесь чрезвычайно широк – от биотехнологических препаратов для сельского хозяйства до системной биологии в медицине и других отраслях.

    На сегодня рынок биотехнологии Российской Федерации представлен следующими основными сегментами.

    Рынок биотехнологических фармацевтических продуктов, включающий: антибиотики; иммунобиологические препараты; гормоны (препараты, содержащие гормоны), витамины; препараты, содержащие культуры микроорганизмов; аминокислоты; БАДы; медицинские материалы; диагностическое оборудование.

    Рынок ферментов и ферментных препаратов, включая: средства защиты растений и стимуляторы роста растений; пробиотики; вакцины ветеринарные; антибиотики кормовые; кормовой белок; аминокислоты; витамины; кормовые добавки (белково-витаминные комплексы).

    Рынок живых культур микроорганизмов.

    Рынок дрожжей.

    Рынок биотехнологических препаратов добывающих отраслей промышленности

    Рынок биотехнологических препаратов для сельского хозяйства включая: препараты для животноводства и растениеводства.

    Рынок биотехнологических препаратов для защиты окружающей среды

    Рынок биотехнологических фармацевтических продуктов в Российской Федерации ориентирован прежде всего на импортную продукцию. По состоянию на конец 2007 г. годовой объем импорта биотехнологической фармацевтической продукции оценивается в 11,3 млрд. рублей.

    В долевом соотношении наиболее объемным рынком в стоимостном исчислении является импорт инсулинов (28,6%) и вакцин (27,97%). Также значительны по объемы доли импорта вакцин (13,44%) и сывороток (11,08%). Доли остальных сегментов импорта биотехнологической фармацевтической продукции существенно уступают названным.

    Объемы отечественного производства рынка биотехнологической фармацевтической продукции в совокупном объеме составляют чуть более 1,5 млрд. рублей. Таким образом, общая текущая емкость биотехнологического фармацевтического рынка Российской Федерации составляет не менее 12,8 млрд. рублей, при этом отечественной биоиндустрией он насыщается менее чем на 12%

    В стоимостных показателях рынок производства ферментов и ферментных препаратов в Российской Федерации немногим более 300 млн рублей. Рынок же импорта ферментов и ферментных препаратов в РФ оценивается в более чем 490 млн рублей. Общий объем рассматриваемого рынка, соответственно, составляет от 990 млн до 1 млрд рублей.

    При этом, отечественное производство ферментов и ферментных препаратов, в основном, сконцентрировано в двух областях потребления:

    1. продукция для спиртовой промышленности.

    2. продукция для животноводства.

    Значительная доля ферментов и ферментных препаратов для спиртовой промышленности выпускается предприятиями производителями алкогольной продукции непосредственно для нужд собственного производства, а не для реализации на рынке.

    Таким образом, в области спиртовой промышленности наблюдается определенный паритет в конкуренции. В то время, как в области животноводства превалируют отечественные ферменты и ферментные препараты.

    В остальных областях потребления ферментов и ферментных препаратов преобладает с существенным отрывом импортная продукция.

    Сегменты: биотехнологического рынка: ферменты и ферментные препараты, живые культуры микроорганизмов и рынок дрожжей, в отличие от ранее относительно рассмотренных ранее сегментов биотехнологических фармацевтических продуктов и биотехнологических препаратов для сельского хозяйства – моногамны по свой отраслевой структуре, но при этом они широко представлены на рынке биотехнологии Российской Федерации.

    Отечественный объем рынка живых культур микроорганизмов оценивается в 12-13 млн. рублей В это же время импорт продукции составляет 130 млн рублей. Таким образом, общая емкость рынка живых культур микроорганизмов оценивается в 143 млн. рублей, а доля российской индустрии на национальном рынке – менее 9%.

    Объем отечественного производства рынка дрожжей составил чуть менее 1,5 млрд рублей. Импорт данного вида продуктов – 400 млн. рублей. Общая емкость данного рынка оценивается в 1,9 млрд рублей, рублей, а доля российской индустрии на национальном рынке – несколько менее 90%. Это практически исключительный пример относительной достаточности сегмента биоиндустрии для нужд российского рынка.

    Рынок биотехнологических препаратов для добывающих отраслей промышленности РФ характеризуется следующими параметрами. Объем рынка биотехнологических препаратов для добывающих отраслей промышленности (а, это в первую очередь, нефтедобывающая и горнорудная промышленность) составляет 120-130 млн рублей.

    Объем отечественного производства биотехнологической продукции для животноводства составляет 2,6 млрд рублей. При этом, в основном это: 63% – производство белка кормового микробиологического, 20% – производство аминокислот; 13% – кормовые добавки. Доли других сегментов рынка биотехнологических препаратов для сельского хозяйства существенно ниже.

    Суммарный импорт биотехнологической продукции для сельского хозяйства (в части животноводства) составляет 1,5 млрд рублей, общий объем рынка биотехнологической продукции для животноводства РФ составляет более 4,1 млрд рублей, а доля российской индустрии на национальном рынке – менее 65%, что позволяет характеризовать отрасль животноводства как принципиально зависимую от импорта биологической продукции.

    Объем отечественного производства биотехнологических препаратов для растениеводства составляет 130 млн рублей. На данном сегменте рынка биотехнологии указанная сумма, практически в полном объеме, приходится на производство биотехнологических средств защиты растений при отсутствии импорта данной продукции.

    На рынке биотехнологических препаратов для защиты окружающей среды доминирует отечественное производство продукции в размере 200 млн рублей. Импорт продукции, входящей в данный сегмент (бактериальных препаратов для ликвидации нефтяных загрязнений, биосорбентов для очистки воды и донных отложений от нефтепродуктов) составляет около 20 млн рублей, общая емкость рынка биотехнологических препаратов для защиты окружающей среды составляет 220 млн рублей.

    Вместе с тем, перспективы развития биотехнологий и биоиндустрии в целом в Российской Федерации, как и в целом в мире, связаны с биотехнологиями, основанными на технологиях системной биологии и связанных с этим дисциплин, принципиально междисциплинарном характере развития (нано- био- и информационные технологии).

    Речь скорее идет не о перенесении имеющихся на сегодня биотехнологий в соответствующие российские индустрии (что возможно на основе догоняющего сценария), а об обеспечении прорывного развития биотехнологической индустрии на основе достижений передовых направлений, таких, как системная биология. При этом, стартовые позиции Российской Федерации, обусловленные уровнем ее научных достижений и уровнем науки в этой области в целом, возможно оценить как высокие.


    Крупно- и маломасштабное производство

    Необходимо отметить, что в зависимости от цели производства и конечного продукта различают крупно- и маломасштабное производство. Их основные различия заключаются в следующем:

    Объем используемых установок и реакторов – маломасштабное производство 100-1000 л, крупномасштабное- 10 000 л.;

    Стоимость продукции – маломасштабного производства- высокая, крупномасштабного- невысокая;

    Тип продукции – маломасштабного производства- высокоспециализированный для медицины, фармацевтики и.т.п., крупномасштабного - малоспециализированные предметы потребления;

    Основные приемы получения – маломасштабного- гентические манипуляции, крупномасштабного технология ферментации, инженерия процессов; стоимость НИР – маломасштабное высокая, крупномасштабное умеренная.

    Мы уже поняли, что в основе всех биотехнологических процессов лежит использование способности живых организмов трансформировать дешевый субстрат в более дорогие и ценные продукты или эненргию. Чистую культуру микроорганизма одного вида, происходящую из одной колниеобразующей единицы с характерным геномом и стабильными свойствами называют штаммом.

    Производственные штаммы представляют большую ценность в виду того, что их селекция требовала значительных затрат, а кроме того с их помощью получают значительные объемы коммерческого продукта.

    Существуют целые коллекции культур микроорганизмов. Например, одна из самых больших коллекций – АТСС – американская коллекция культур микроорганизмов. Существует с начала 20 века. В Республике Беларусь есть коллекции полезных микроорганизмов в Институте микробиологии НАН Беларуси, в мясо-молочном институте НАНБ. Коллекции патогенных микроорганизиов есть при Институте микробиологии и эпидемиологии МЗ РБ и в Институте экспериментальной ветеринарии им.С.Н.Вышелесского.

    Производственные штаммы микроорганизмов должны обладать способностью к росту на дешевых питательных средах, высокой скоростью роста и образованию целевого продукта, стабильностью производственных свойств, безвредностью штамма и целевого продукта для человека и окружающей среды.

    Микроорганизмы, используемые в промышленности, проходят длительные испытания на безвредность для людей, животных и окружающей среды.

    Основные принципы промышленной организации биотехнологических процессов

    Получение засевной дозы

    В технологическом процессе используются полезные свойства штамма, следовательно, необходимо сохранять и, если возможно, улучшать его производственные качества. Поэтому в биотехнологическом производстве имеется отделение чистой культуры, задачей которого является постоянное и надежное воспроизведение полезных свойств продуцента. Такое отделение проводит контроль и сохранение чистой культуры, а также маломасштабное культивирование для постоянной передачи штамма на стадию ферментации. Фактически это микробиологическая лаборатория, с музеем штаммов-продуцентов. В ходе контрольных высевов и маломасштабных ферментаций (в пробирках, колбах и т. д.) контролируется устойчивость всех имевшихся или приобретенных признаков, послуживших основанием для рекомендации к промышленному применению этих культур. По мере необходимости из отделения чистой культуры получается масса инокулята, идущая в производство.

    При периодическом процессе культивирования (при производстве метаболитов) в отделении чистой культуры готовят засевную дозу клеток для каждой из операций основного производства. При непрерывном производстве кормового белка этого не требуется, однако для повышения качества продукта предпочитают время от времени вводить клетки штамма-продуцента из отделения чистой культуры.

    Посевные дозы выращиваются последовательно в колбах и бутылях на 10-20 литров, находящихся на качалках или просто в термостатируемом помещении, и далее в последовательности ферментеров объемом (по необходимости) 10, 100, 500 и 1000 литров, в которых осуществляется перемешивание, аэрация и термостатирование культуральной жидкости с клетками.

    Отделение чистой культуры должно иметь достаточно большую коллекцию штаммов продуцентов, так как возможны временные переходы с одного штамма на другой, вызванные различными причинами. Например, сезонные изменения температуры частично компенсируются подбором достаточно продуктивных термотолерантных штаммов. Кроме того, микробиологическая промышленность зачастую вынуждена использовать в качестве компонентов питательных сред отходы сельского хозяйства и пищевой промышленности (меласса, кукурузный экстракт), что ведет к сезонным изменениям сырья и предполагает адаптацию продуцента к особенностям среды. Все это делает роль микробиологической службы производства достаточно высокой.

    При производстве вакцин и биологических препаратов используют систему посевных серий. В начале создают первичную посевную серию штамма с известными свойствами. Для получения каждой производственной серии рассевают 1 единицу хранения первичной посевной серии. Это важное требование закреплено в правилах ВОЗ для обеспечения стабильности свойств вакцин и диагностических препаратов.

    Если вернуться к основным этапам биотехнологического процесса и рассмотреть их с точки зрения принятых методов, то можно отметить, что на стадии сырья и его подготовки используют общепринятые методы.

    Чаще всего – сырье это питательная среда для продуцентов. Поэтому, часто проводят его подготовку путем стерилизации, используя автоклавирование или гамма-облучение.

    Методы на стадии ферментации и биотрансформации более разнообразны.

    1) селекция продуктов;

    3) технология рекомбинантных ДНК

    4) реакторное культивирование

    На стадии конечной обработки и получения целевого продукта используются, в основном, методы фракционирования

    1) центрифугирование;

    2) фильтрация;

    3) дезинтеграция;

    4) ультрафильтрация;

    5) сушка: сублимационная и в падающем потоке.

    Использование грибов, плесеней, дрожжей, актиномицетов

    Их используют для получения:

    → антибиотиков (пенициллы, цефалоспорины);

    → каротиноидов (астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок, его вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);

    → белка (Candida, Saccharomyces lipolitica);

    → сыров типа рокфор и камамбер (пенициллы);

    → соевого соуса (Aspergillus oryzae).

    Из 500 известных видов дрожжей первыми стали использовать Saccharomyces cerevisiae, этот вид используется и наиболее интенсивно.

    Saccharomyces cerevisiae

    Дрожжи Saccharomyces cerevisiae – это непатогенные одноклеточные микроорганизмы с диметром клетки примерно 5 мкм, которые во многих отношениях представляют собой эукариотический аналог E . coli . Их генетика, молекулярная биология и метаболизм детально изучены. S . cerevisiae размножаются почкованием и хорошо растут на такой же простой среде, как и E . coli . Их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления алкогольных напитков и хлеба. В настоящее время ежегодно во всем мире расходуется более 1 млн. тонн S . cerevisiae . Дрожжи S . cerevisiae представляют также большой научный интерес. В частности, они являются наиболее удобной моделью для исследования других эукариот, в том числе человека, поскольку многие гены, ответственные за регуляцию клеточного деления S . cerevisiae , сходны с таковыми у человека. Это открытие способствовало идентификации и – характеристике генов человека, отвечающих за развитие новообразований. Широко используемая генетическая система дрожжей (искусственная хромосома) является непременным участником всех исследований по изучению ДНК человека. В 1996 г. была определена полная нуклеотидная последовательность всего набора хромосом S . cerevisiae , что еще более повысило ценность этого микроорганизма для научных исследований. Такая работа на эукариотах была выполнена впервые.

    Синтезированный бактериальной клеткой эукариотический белок часто приходится повергать ферментативной модификации, присоединяя к белковой молекуле низкомолекулярные соединения во многих случаях это необходимо для правильного функционирования белка. К сожалению, E . coli и другие прокариоты не способны осуществлять эти модификации, поэтому для получения полноценных эукариотических белков используют S . cerevisiae , а также другие виды дрожжей: Kluyveromyces lactis , Saccharomyces diastaticus , Schizisaccharomyces pombe , Yarrowia lipolytica , Hansenula polymoгрha . Наиболее эффективными продуцентами полноценных рекомбинантных белков являются P . pastoris и H . polymoгрha .

    Дрожжи Kluyveromyces fragilis сбраживают лактозу. Их используют для получения спирта из сыворотки молока.

    Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы. Все три вида принадлежат к классу аскомицетов.

    Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков.

    Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).

    Плесени вызывают многочисленные превращения в твердых средах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5-7 раз больше рибофлавина и никотиновой кислоты, чем исходный субстрат. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.

    Искусственное выращивание макромицетов или грибов способно внести важный вклад в обеспечения продовольствием населения земного шара.

    Наиболее легко поддаются искусственному выращиванию древоразрушающие грибы.

    Простейшие в биотехнологии

    Простейшие относятся к числу нетрадиционных объектов биотехнологии. До недавнего времени они использовались лишь как компонент активного ила при биологической очистке сточных вод. В настоящее время они привлекли внимание исследователей как продуценты биологически активных веществ.

    В этом качестве рациональнее использовать свободноживущих простейших, обладающих разнообразными биосинтетическими возможностями и потому широко распространенными в природе.

    Особую экологическую нишу занимают простейшие, обитающие в рубце жвачных животных. Они обладают ферментом целлюлазой, способствующей разложению клетчатки в желудке жвачных. Простейшие рубца могут быть источником этого ценного фермента

    Возбудитель южноамериканского трипаносомоза - Trypanosoma (Schizotrypanum cruzi) стала первым продуцентом противоопухолевого препарата круцина (СССР) и его аналога-трипанозы (Франция). Изучая механизм действия этих препаратов, советские ученые (Г. И. Роскин, Н. Г. Клюева и их сотрудники), а также их французские коллеги (Ж. Кудер, Ж. Мишель-Брэн и др.) пришли к выводу, что эти препараты оказывают цитотоксический эффект при прямом контакте с опухолью и ингибируют ее опосредованно, путем стимуляции ретикулоэндотелиальной системы. Выяснилось, что ингибирующее действие связано с жирнокислотными фракциями.

    Водоросли

    Водоросли используются, в основном, для получения белка. Весьма перспективны в этом отношении и культуры одноклеточных водорослей, в частности высокопродуктивных штаммов рода Chlorella и Scenedesmus. Их биомасса после соответствующей обработки используется в качестве добавки в рационы скота, а также в пищевых целях.

    Одноклеточные водоросли выращивают в условиях мягкого теплого климата (Средняя Азия, Крым) в открытых бассейнах со специальной питательной средой. К примеру, за теплый период года (6-8 месяцев) можно получить 50-60 т биомассы хлореллы с 1 га, тогда как одна из самых высокопродуктивных трав - люцерна дает с той же площади только 15- 20 т урожая.

    Хлорелла содержит около 50 % белка, а люцерна - лишь 18 %. В целом в пересчете на 1 га хлорелла образует 20-30 т чистого белка, а люцерна - 2-3,5 т. Кроме того, хлорелла содержит 40 % углеводов, 7-10 % жиров, витамины А (в 20 раз больше), B2, К, РР и многие микроэлементы. Варьируя состав питательной среды, можно процессы биосинтеза в клетках хлореллы сдвинуть в сторону накопления либо белков, либо углеводов, а также активировать образование тех или иных витаминов.

    При завоевании племен майя миссионерами описывался случай, когда испанцы около полутора лет осаждали крепость на вершине горы. Естественно, что все продукты давно должны были кончиться, однако крепость не сдавалась. Когда же она была наконец взята, то испанцы с удивлением увидели в ней небольшие пруды, где культивировались одноклеточные водоросли, из которых индейцы готовили особый сыр. Испанцы попробовали его и нашли весьма приятным на вкус. Однако это было уже после того, как испанцы уничтожили абсолютно всех защитников и секрет племени был утерян. В наше время делались попытки определить этот вид водорослей, из которых готовился сыр, но они не увенчались успехом.

    В пищу употребляют около 100 видов макрофитных водорослей

    В целом ряде стран водоросли используют как весьма полезную витаминную добавку к кормам для сельскохозяйственных животных.

    Наряду с кормами водоросли давно применяют в сельском хозяйстве в качестве удобрений. Биомасса обогащает почву фосфором, калием, йодом и значительным количеством микроэлементов, пополняет также ее бактериальную, в том числе азотфиксирующую, микрофлору. При этом в почве водоросли разлагаются быстрее, чем навозные удобрения, и не засоряют ее семенами сорняков, личинками вредных насекомых, спорами фитопатогенных грибов.

    Одним из самых ценных продуктов, получаемых из красных водорослей, является агар - полисахарид, присутствующий в их оболочках и состоящий из агарозы и агаропектина. Количество его доходит до 30-40 % от веса водорослей (водоросли лауренция и грацилярия, гелидиум). Водоросли - единственный источник получения агара, агароидов, каррагинина, альгинатов. В мире ежегодно получается более 16 тыс. т агара.

    Бурые водоросли являются единственным источником получения одних из самых ценных веществ водорослей - солей альгиновой кислоты, альгинатов. Альгиновая кислота - линейный гетерополисахарид, построенный из связанных остатков (3 - Д-маннуроновой и α - L-гиулуроновой кислот.

    Альгинаты исключительно широко применяются в народном хозяйстве. Это изготовление высококачественных смазок для трущихся деталей машин, медицинские и парфюмерные мази и кремы, синтетические волокна и пластики, стойкие к любой погоде лакокрасочные покрытия, не выцветающие со временем ткани, производство шелка, клеящих веществ исключительно сильного действия, строительных материалов, пищевые продукты отличного качества - фруктовые соки, консервы, мороженое, стабилизаторы растворов, брикетирование топлива, литейное производство и многое другое. Альгинат натрия - наиболее используемое соединение - способен поглощать до 300 весовых единиц воды, образуя при этом вязкие растворы.

    Бурые водоросли богаты также весьма полезным соединением - шестиатомным спиртом маннитом, который с успехом применяют в пищевой промышленности, фармацевтике, при производстве бумаги, красок, взрывчатки и др.

    Растения в биотехнологии

    Водный папоротник азолла ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Азолла быстро размножается простым делением: часть листьев отделяется от материнского растения и начинает самостоятельную жизнь. При благоприятных условиях способна удваивать свою биомассу каждые трое суток.

    Представители семейства рясковых (Lemnaceae) - самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Цветут крайне редко. Рясковые - свободноживущие водные плавающие растения.

    Рясковые ( Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza ) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры.

    

    Традиционная биотехнология зародилась десять-двенадцать тысяч лет назад, когда закончилось последнее оледенение. Веками человек использовал микроорганизмы для выпечки хлеба, приготовления пива, сыра, выращивания сои, производства вина, витаминов. Интерес к производству пищевых продуктов не ослабевает и в наше время, но эти производства перешли на новый уровень с использованием всех новейших достижений современной биологии.

    Разрабатываются биотехнологии получения экологически чистой пищи для обеспечения сбалансированного питания как на основе высших растений, так и с помощью микробиологического синтеза.

    Продукты биотехнологического производства

    Продукты биотехнологии являются результатом функционирования биологических систем для технических и промышленных процессов. Сюда относятся как традиционные организмы, так и организмы, явившиеся результатом генной инженерии.

    Растения являются наиболее дешевым продуцентом белков и других продуктов питания. Стоимость белка, полученного путем сельскохозяйственного культивирования сои или кукурузы, составляет менее 1 дол./кг. В то время как использование в настоящее время микробных клеток в закрытых системах (ферментерах) и особенно культивируемых клеток животных в качестве продуцентов фармацевтических белков обходится в сотни и тысячи раз дороже. Поэтому исследования последних лет имели целью, с одной стороны, показать возможность получения биологически эквивалентных форм того или иного белка в трансгенных растениях, а с другой, - повысить содержание белка и облегчить и удешевить его последующую очистку.

    К настоящему времени уже показано, что растения могут производить белки животного происхождения, такие как энкефалин, моноклональные антитела, специфичные для бактерий, вызывающих зубной кариес. Предполагается, что на основе таких моноклональных антител, продуцируемых трансгенными растениями, удастся создать действительно антикариесную зубную пасту.

    Из других белков животного происхождения, которые представляют интерес для медицины, показана продукция в растениях человеческого в-интерферона. Получен картофель, экспрессирующий олигомеры нетоксичной субъединицы В-токсина холеры. Эти трансгенные растения могут быть использованы для получения дешевой вакцины против такого заболевания, как холера. Причем в случае холеры иммунизация вполне эффективно происходит при пероральном приеме вакцины.

    Генетическая инженерия метаболизма растительных жиров уже привела к новым коммерческим продуктам. Важнейшим сырьем для получения разного рода химических веществ являются жирные кислоты - основной компонент растительного масла. В 1995 г. была закончена экспериментальная проверка и получено разрешение от федеральных властей США на выращивание и коммерческое использование трансгенных растений рапса с измененным составом растительного масла, включающего вместе с обычными 16- и 18-членными жирными кислотами также и до 45 % 12-членной жирной кислоты - лауриновой. Это вещество широко используется для производства стиральных порошков, шампуней, косметики.

    Дальнейшее изучение специфики биохимического синтеза жирных кислот, по-видимому, приведет к возможности управлять этим синтезом с целью получения жирных кислот различной длины и различной степени насыщения, что позволит значительно изменить производство детергентов, косметики, кондитерских изделий, затвердителей, смазочных материалов, лекарств, полимеров, дизельного топлива и многого другого, что связано с использованием углеводородного сырья.

    Однако одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства, с одной стороны, и микробного синтеза, с другой, в формировании продовольственной базы человечества.

    Львиную долю продуктов, созданных на основе современных биотехнологий (генетической инженерии), составили фармацевтические белки, прежде всего инсулин, альфа-интерферон, антиген вируса гепатита В, эритропоэтин, фактор стимулирования гранулоцитов и многие другие вещества. В этих молекулах заключена такая мощь, что у множества разнообразных заболеваний, еще пять лет назад бывших неизлечимыми, появляется совершенно иной прогноз.

    Например, достигнут существенный прогресс в борьбе с раком и возрастной слепотой - заболеваниями прежде неизлечимыми. Несколько лет назад в стадии клинических испытаний находилось менее 10 противораковых препаратов, большинство из которых представляли собой высокотоксичные средства химиотерапии. Сегодня испытания с участием людей проходят более 400 противораковых лекарств, и почти все они - целевого действия, на основе биотехнологий и с минимальными побочными эффектами.

    На основе биотехнологий создано 230 лекарственных препаратов и сопутствующих продуктов, включая лекарства от бессонницы, множественного склероза, острой боли, хронической болезни почек, недержания, язв полости рта и рака.

    Ни для одного раздела медицины биотехнология не сделала так много, как для онкологии. С появлением новых лекарств, которые уничтожают только клетки опухоли, почти не повреждая здоровые ткани, изменилась вся парадигма лечения рака.

    Теперь медицина рассматривает рак как хроническое, поддающееся лечению заболевание. Только в 2004 г. FDA одобрила четыре целевых препарата против рака - Avastin, Tarceva, Iressa и Erbitux. Применение Avastin от компании Genentech позволяет продлить жизнь пациентов с раком легких, груди и кишечника - первейшая задача для всякого препарата от рака.

    Создано и выпущено на рынок множество новых биотехнологических продуктов, повышающих урожайность сельскохозяйственных культур и продуктивность сельскохозяйственных животных.

    Продуктами биотехнологии являются возобновляемые источники энергии - различные виды биотоплива. Налажено производство этанола из сырья, содержащего сахарозу, глюкозу, фруктозу, другие моно- или олигосахариды, крахмал или целлюлозу, с помощью дрожжей или бактерий. В настоящее время этанол все в большей мере применяется в качестве экологически чистого моторного топлива. Поставлено производство бутанола и ацетона с использованием бактерий-бродильщиков рода Clostridia. Технология производство водорода испытана пока только в масштабе лаборатории.

    Получение метана, или биогаза, осуществляемое смешанной микробной культурой, устраняет отходы, угрожающие планете, и производит ценное газообразное топливо, заменитель природного газа. Перспективно производство длинноцепочечных углеводородов (бионефти) из биомассы углеводородсинтезирующих одноклеточных водорослей. Эти водоросли могут быть выращены в биореакторе в виде чистой культуры. Их можно также культивировать в составе природных экосистем в озерах, прудах или лагунах.

    Продолжают развиваться процессы получения традиционных биотехнологических продуктов, к которым можно отнести антибиотики, алкалоиды, гормоны роста растений, ферменты, аминокислоты, витамины и т.д. Молекулы антибиотиков очень разнообразны по составу и механизму действия на микробную клетку. При этом в связи с возникновением устойчивости патогенных микроорганизмов к старым антибиотикам постоянно существует потребность в новых. В некоторых случаях природные микробные антибиотические продукты химическим или энзиматическим путем могут быть превращены в так называемые полусинтетические антибиотики, обладающие более высокими терапевтическими свойствами.

    Микроорганизмы способны осуществлять реакции трансформации, в которых те или другие соединения превращаются в новые продукты. Условия протекания этих реакций мягкие, и во многих случаях микробиологические трансформации предпочтительнее химических. Пример существующих крупномасштабных промышленных биоконверсий - производство уксуса из этанола, глюконовой кислоты из глюкозы. Широко используется микробная модификация стероидов, которые являются сложными полициклическими липидами. Теперь с использованием биоконверсии получают кортизон, гидрокортизон, преднизолон и целый ряд других стероидов, что в сотни раз снижает себестоимость производства стероидов.

    Пока получение ферментов с помощью микроорганизмов более выгодно, чем из растительных и животных источников. Микробные клетки продуцируют более 2 тысяч ферментов, катализирующих биохимические реакции, связанные с ростом, дыханием и образованием продуктов. Многие из этих ферментов могут быть выделены и проявляют свою активность независимо от клетки. В мире производится около 20 ферментов в объеме 65 тыс. т (а существует, как предполагают 25 000 ферментов).

    Например, промышленным способом производят такие ферменты, как амилаза, глюкоамилаза, протеаза, инвертаза, пектиназа, каталаза, стрептокиназа, целлюлаза, липаза, целлюлаза, оксидаза и др. Использование иммобилизованной глюкозоизомеразы для непрерывного получения глюкозы является наиболее крупным процессом такого рода в мире.

    Микробные ферменты активно используют в клинической диагностике при определении уровня холестерина в крови и мочевой кислоты. Ферменты предлагают использовать для очистки канализационных и водопроводных труб и во многих других сферах человеческой деятельности. Ферменты для медицинских или аналитических целей должны быть высокоочищенными.

    Производство аминокислот относится к одной из наиболее передовых областей биотехнологии. Аминокислоты получают путем химического синтеза или экстракцией из белковых гидролизатов. Незаменимые аминокислоты могут получаться микробиологическим путем более эффективно, чем путем химического синтеза. За рубежом 60 % мощностей по производству аминокислот занимает глутаминовая кислота, далее идут метионин, лизин и глицин. С помощью микроорганизмов можно получить до 60 органических кислот. Многие из них получают в промышленном масштабе - итаконовая, молочная, уксусная, лимонная.

    Витамины синтезируют в основном химическим путем или получают из естественных источников. Однако рибофлавин (В2), витамин В12 и аскорбиновую кислоту получают микробиологическим путем. Существует производство рибофлавина на основе использования дрожжеподобных грибов Eremothecium ashbyii и Ashbia gossypii. Рибофлавин продуцируется также видами Clostridium и Ascomycetes. Микроорганизмы являются также ценным источником получения никотиновой кислоты (витамин РР).

    Микроорганизмы являются источником получения липидов специального назначения с заранее определенными свойствами. Микробные жиры заменяют растительные (а в ряде случаев и превосходят) и могут использоваться в разных отраслях промышленности, сельского хозяйства, медицине.

    Микроорганизмы являются важным источником получения полимерных материалов на основе полисахаридов. Ценным микробным полисахаридом является декстран, образуемый бактериями рода Leucomonstoc. Декстран служит основой получения медицинских препаратов (кровезаменителей) и препаратов для биохимических исследований - сефадексов и других молекулярных сит. Одним из перспективных биодеградируемых полимеров, синтезируемых бактериями, являются полигидроксиалканоаты. Область использования этого класса полимеров широка - от сельского хозяйства до медицины.

    С молекулярной биотехнологией человечество связывают самые большие надежды и по возможности точной диагностики, профилактики и лечения множества инфекционных и генетических заболеваний, и по значительному повышению урожайности сельскохозяйственных культур, и по многим другим до сих пор нерешенным проблемам.

    К сожалению, львиную долю стоимости производства зачастую составляет не наращивание биомассы, а последующие процессы выделения и очистки продукта. Стоимость очистки тем выше, чем ниже концентрация вещества в клетках. Это особенно важно в случае фармацевтических препаратов, требующих высокой степени чистоты.

    В данной главе будет рассматриваться последняя стадия получения целевого продукта - его выделение. Эта стадия существенно различается в зависимости от локализации продукта и его химической природы. Если продукт находится в культуральной жидкости, то он, как правило, образует очень разбавленные растворы и суспензии, содержащие, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, поэтому необходимо использовать методы, позволяющие провести разделение, например, тот или иной вид хроматографии.

    Если целевой продукт локализуется в клетке, то необходимо использовать более сложный подход к его извлечению из клетки.

    Н.А. Воинов, Т.Г. Волова



    Поделиться