Космическая платформа. Международная космическая станция (МКС)



План:

    Введение
  • 1 Компоненты космической платформы
    • 1.1 Отношение ПН к общей массе КА
  • 2 Типы космических платформ
  • 3 Список космический платформ
  • Примечания

Введение

Спутниковая платформа и модуль полезной нагрузки

Космическая Платформа (или Спутниковая Платформа или Модуль Служебных Систем ) - это унифицированная платформа для построения современных спутников связи, которая включает в себя все основные системы спутника кроме модуля полезной нагрузки.

Использование космических платформ имеет ряд преимуществ по сравнению с индивидуальным изготовлением космический аппаратов:

  • уменьшение расходов на проектирование в связи с серийностью производства и возможностью распределения стоимости проектирования платформы между всеми спутниками серии;
  • увеличение надежности спутников из-за многократной проверки и отработки их систем;
  • уменьшение времени производства спутников до 18-36 месяцев. Кроме того производители могут гарантировать сроки изготовления.

Космическая платформа обычно применяется для изготовления геостационарных спутников связи, но может служить и для других проектов.


1. Компоненты космической платформы

Отношение массы полезного груза коммерческих телекоммуникационных спутников к общей массе КА

В космическую платформу входят все служебные системы спутника кроме модуля полезной нагрузки:

  • Система энергоснабжения (включая солнечные батареи и аккумуляторы);
  • Система управления движением, ориентации и стабилизации, состоящая из оптических датчиков, измерителей угловых скоростей и маховиков;
  • Апогейный двигатель для довывода с геопереходной на геостационарную орбиты;
  • Двигатели коррекции по широте и долготе (обычно с помощью ЭРД);
  • Система терморегулирования, предназначенная для отвода тепла от служебных систем и систем модуля полезной нагрузки;
  • Бортовой комплекс управления с системой передачи служебной телеметрической информации;

Также, на космической платформе предусматривается место для установки отсека полезной нагрузки и антенн. Обычно платформы оптимизируются под массу выводимой полезной нагрузки, что в свою очередь определяет массу всего спутника и мощность системы энергоснабжения.


1.1. Отношение ПН к общей массе КА

Одним из важнейших параметров является отношение массы ПН к общей массе КА. Очевидно, что чем лучше это соотношение, тем эффективнее могут быть выполнены задачи миссии. Обычно грузоподъемность ракеты-носителя определяет максимальную массу КА на орбите. Таким образом, чем меньше весит платформа, тем больше полезного груза может быть доставлено на заданную орбиту.

В настоящее время это отношение составляет примерно 18-19% для современных тяжелых телекоммуникационных платформ, таких как Спейсбас или Экспресс 2000. Основной технологической проблемой является энергетическая стоимость повышения орбиты с геопереходной до геостационарной. КА должны нести большое количество горючего для повышения орбиты (до 3 тонн и больше). Кроме того, ещё 400 - 600 кг используется для удержания спутника на заданной орбите за все время активной эксплуатации.

Экономия, которая может быть достигнута при использовании ионных электрических двигателей

В недалеком будущем, широкое использование электрических ионных двигателей, а также уменьшение массы солнечных батарей и аккумуляторов должно привести к улучшению отношения массы ПН к общей массе КА до 25% и более.

Одним из самых перспективных направлений является развитие электрических ионных и плазменных двигателей. Эти двигатели обладают гораздо более высоким удельным импульсом по сравнению с традиционными двух-компонентными гидразиновыми системами (1500-4000 сек. против 300 сек) и поэтому их использование может привести серьёзному уменьшению массы спутников и соответствующему уменьшению стоимости их запуска. Например, электрический ионный двигатель фирмы Boeing XIPS25, использует всего лишь 75 кг. горючего для удержания спутника на орбите в течении 15 лет. При возможном использовании этого двигателя для повышения и последующего удержания орбиты, можно сэкономить до 50 млн Евро (хотя в данный момент эта функция полностью не используется) .

С другой стороны, использование новых технологий применительно к солнечным батареям (переход с кремниевых на многослойные GaInP/GaAs/Ge) и аккумуляторам (внедрение литий-ионных технологий) также приведет к снижению веса КА.


2. Типы космических платформ

По массе (вместе с горючим), в настоящее время спутниковые платформы можно разделить на три категории:

  • Легкие, массой до 2000 кг, с мощностью полезной нагрузки до 6 кВт;
  • Средние, массой до 5000 кг, с мощностью до 14 кВт;
  • Тяжелые, массой более пяти тонн мощностью более 15-20 кВт и более.

Также при разработке платформы учитываются тип вывода на опорную орбиту: прямой вывод или с довыводом с геопереходной на геостационарную орбиты с помощью апогейной ДУ спутника. В общем случае, КА построенные на легких платформах могут быть напрямую выведены на геостационарную орбиту, что позволяет избавиться от апогейного двигателя и сопровождающего его топлива.


3. Список космический платформ

В настоящее время основные производители геостационарных спутников используют следующие спутниковые платформы:

Название Масса, кг Мощность ПН, кВт К-во построенных (заказанных) аппаратов Производитель Страна
Средние и тяжелые платформы
Spacebus 3000-5900 до 11,6 63 (7) Thales Alenia Space
Eurostar до 6400 6 - 14 более 60 EADS Astrium
Alphabus 6000 - 8800 12 - 18 0 (1) EADS Astrium / Thales Alenia Space
Boeing 702 до 6000 до 18 22 (17) Boeing США
Loral 1300 до 8000 до 20 73 Space Systems/Loral США
A2100AX 2800 - 6600 до 15 36 США
КАУР-4 2300 - 2600 1,7 - 6,8 31 ОАО ИСС
Экспресс 2000 до 6000 до 14 0 (4) ОАО ИСС
Dong Fang Hong IV (DFH-4) до 5200 до 8 12 China Aerospace Science and Technology Corporation КНР
Легкие платформы
STAR bus 1450 (сухая) 1,5 - 7,5 21 (10) Orbital Sciences Corporation США
Экспресс 1000 до 2200 до 6 0 (10) ОАО ИСС
A2100A 1-4 Lockheed Martin Space Systems США
LUXOR (SmallGEO) 1600 - 3000 до 4 0 (1) OHB

Изобретение относится к космической технике, а именно к космическим платформам. Космическая платформа содержит несущий корпус, снабженный откидными модулями, связанными с несущим корпусом разъемными шарнирными узлами, поворотными солнечными батареями, установленными на несущем корпусе с помощью электроприводов, приборами служебных систем, размещенными внутри несущего корпуса, элементы крепления полезной нагрузки и узлы соединения несущего корпуса с системой отделения. Откидные модули снабжены механизмами поворота и узлами фиксации откидных модулей к несущему корпусу. Внутри откидных модулей размещены элементы крепления полезной нагрузки. На откидных модулях установлены дополнительные солнечные батареи. Достигается расширение функциональных возможностей и улучшение эксплуатационных характеристик космической платформы. 1 з.п. ф-лы, 6 ил.

Рисунки к патенту РФ 2410294

Изобретение относится к изделиям космической техники, а более конкретно к космическим платформам, и может быть использовано при создании космических аппаратов различного назначения.

Развитие космической техники на современном этапе характеризуется созданием космических аппаратов различного назначения на базе унифицированных космических платформ, что позволяет снизить стоимость разработки и изготовления космических аппаратов и уменьшить сроки их создания.

Космическая платформа представляет собой несущую конструкцию, снабженную служебными системами и оборудованную устройствами для размещения на ней полезной нагрузки различного целевого назначения. Служебными системами являются системы, общие для космических аппаратов различного назначения, а именно: система электроснабжения, система ориентации и стабилизации, бортовой комплекс управления, двигательная установка и т.д. Полезной нагрузкой являются приборы и устройства, обеспечивающие решение целевых задач конкретного космического аппарата, а именно: оптическое, радиолокационное, телекоммуникационное оборудование и т.д. Под несущей способностью космической платформы понимаются масса и объем полезной нагрузки, которая может быть установлена на космическую платформу. На практике несущая способность современных космических платформ достигает сто и более процентов, т.е. масса и объем космической платформы примерно равны массе и объему размещаемой на космической платформе полезной нагрузки.

Известна космическая платформа бескорпусной конструкции, содержащая плоскую (несущую) панель, с одной стороны которой установлены отдельные модули служебных систем, в том числе приборный модуль, модуль системы электроснабжения и модуль двигательной установки, а с другой стороны размещены элементы крепления модуля целевой полезной нагрузки и отдельных приборов целевого назначения (см., например, «Новости космонавтики» № 4, апрель 2007 г., стр.38).

Недостатками данной космической платформы являются:

Сложность закрепления и демпфирования космической платформы и космического аппарата, создаваемого на ее базе, при наземной эксплуатации (перевозка в транспортировочном контейнере, установка на технологические подставки, кантователи, такелажные операции) и в полете в составе ракеты-носителя (увеличенная масса конструкции адаптера - переходного устройства между космической платформой и ракетой-носителем), связанная с необходимостью размещения опорных и такелажных элементов исключительно на плоской (несущей) панели, с обеих сторон которой установлены отдельные модули;

Затрудненный доступ обслуживающего персонала к модулям служебных систем при наземной подготовке, обусловленный установкой космической платформы плоской (несущей) панелью на опорные стойки агрегатов наземного оборудования.

Известна также космическая платформа, содержащая несущий корпус, выполненный в форме параллелепипеда, с установленными на нем солнечными батареями, приборами служебных систем, размещенными внутри несущего корпуса, штангой гравитационного устройства, размещенной вне несущего корпуса, элементы крепления полезной нагрузки, узлы соединения несущего корпуса с системой отделения (см., например, «Новости космонавтики» № 7, июль 2005 г., стр.48). Размещение полезной нагрузки предусмотрено снаружи несущего корпуса на его гранях.

При этом недостатками данной космической платформы являются:

Затрудненный доступ к приборам служебных систем, установленных внутри несущего корпуса космической платформы, при необходимости проведения их обслуживания, ремонта или замены, что объясняется установкой снаружи несущего корпуса на его гранях приборов и устройств полезной нагрузки и высокой трудоемкостью их демонтажа и повторной установки;

Возможность механических повреждений полезной нагрузки при наземной подготовке космической платформы на космодроме, что также объясняется установкой снаружи несущего корпуса на его гранях отдельных (незащищенных) приборов и устройств полезной нагрузки;

Взаимовлияние электромагнитных полей, создаваемых приборами служебных систем и приборами полезной нагрузки из-за их плотной компоновки на несущем корпусе, приводящее к нештатному функционированию бортовых систем, искажению полученных результатов функционирования полезной нагрузки, сокращению срока службы отдельных приборов.

Кроме того, однозначный приборный состав служебных систем космической платформы, определяющий технические характеристики служебных систем (мощность системы электроснабжения, точностные параметры системы ориентации и стабилизации, наличие двигательной установки, быстродействие бортового комплекса управления, объем передаваемой информации), а также предельные массогабаритные характеристики космической платформы существенно ограничивают ее возможности в плане модернизации или новой разработки космических аппаратов, создаваемых на базе данной космической платформы.

На практике это означает, например, что силовая конструкция космической платформы позволяет установить внутри несущего корпуса требуемую совокупность приборов служебных систем большей массы, в то время как внутренний объем несущего корпуса не позволяет разместить в нем данные приборы. В результате чего приходится вновь разрабатывать космическую платформу с увеличенными массогабаритными характеристиками.

Задачей (целью) предлагаемого изобретения является расширение функциональных возможностей (создание на базе космической платформы космических аппаратов широкого диапазона массогабаритных характеристик, увеличение срока функционирования космической платформы на орбите) и улучшение эксплуатационных характеристик (повышение ремонтоспособности, снижение вероятности механических повреждений, уменьшение взаимовлияния электромагнитных полей приборов) космической платформы.

Поставленная цель в предлагаемом устройстве достигается тем, что несущий корпус снабжается откидными модулями, шарнирно связанными с ним и имеющими механизмы их поворота, при этом откидные модули выполняются в виде рам, а шарниры крепления откидных модулей к несущему корпусу выполняются разъемными. Элементы крепления полезной нагрузки устанавливаются внутри рам на их ребрах. На рамах откидных модулей устанавливаются дополнительные панели солнечных батарей и элементы крепления резервных приборов служебных систем. Механизмы поворота откидных модулей снабжаются электрическими приводами. Несущий корпус связывается с откидными модулями посредством гибких теплопроводов.

Предлагаемое устройство поясняется на фиг.1-6.

На фиг.1 показан общий вид космической платформы в нерабочем (транспортном) положении.

На фиг.2 представлен общий вид космической платформы в рабочем (орбитальном) положении.

На фиг.3 изображен вид А согласно фиг.1.

На фиг.4 показан вид Б согласно фиг.2.

На фиг.5 представлена объемная модель космической платформы в рабочем (орбитальном) положении.

На фиг.6 изображен выносной элемент I согласно фиг.4.

Предлагаемое устройство (космическая платформа) содержит несущий корпус 1 (фиг.2), выполненный в форме параллелепипеда, с установленными на нем солнечными батареями 2, приборами служебных систем 3 (фиг.3), размещенными внутри несущего корпуса 1, элементы крепления 4 (фиг.2) полезной нагрузки 5, узлы соединения 6 (фиг.1) несущего корпуса 1 с системой отделения (условно не показана). На несущем корпусе 1 посредством шарниров 7 (фиг.3, 6) установлены откидные модули 8. Шарниры 7 выполнены разъемными. Откидные модули 8 снабжены механизмами поворота 9 (фиг.4, 6) и выполнены в виде рам 10 (фиг.5). Элементы крепления 4 полезной нагрузки 5 установлены внутри рам 10 на их ребрах 11 (фиг.5). На рамах 10 откидных модулей 8 установлены дополнительные солнечные батареи 12 (фиг.2, 3) и элементы крепления 13 (фиг.2) резервных приборов служебных систем 14. Механизмы поворота 9 откидных модулей 8 имеют электрический привод. Несущий корпус 1 и откидные модули 8 связаны между собой посредством гибких теплопроводов 15 (фиг.4, 6).

Сборка космической платформы на заводе-изготовителе проводится при вертикальном положении несущего корпуса 1.

Внутри несущего корпуса 1 устанавливаются приборы служебных систем 3. С внешней стороны несущего корпуса 1 монтируются солнечные батареи 2 и узлы соединения 6 несущего корпуса 1 с системой отделения (условно не показана).

Установка на несущий корпус 1 откидных модулей 8 проводится (в зависимости от габаритных размеров космической платформы и транспортных ограничений) на заводе-изготовителе либо на техническом комплексе.

Откидные модули 8 крепятся на несущем корпусе 1 с помощью разъемных шарниров 7 и фиксируются к несущему корпусу 1 в нерабочем (транспортном) положении посредством, например, пирозамков 16 (фиг.1).

Элементы крепления 4 полезной нагрузки 5 устанавливаются внутри рам 10 на их ребрах 11. На рамах 10 откидных модулей 8 устанавливаются дополнительные солнечные батареи 12 и элементы крепления 13 резервных приборов служебных систем 14. Механизмы поворота 9 откидных модулей 8 снабжаются электрическим приводом. Несущий корпус 1 связывается с откидными модулями 8 посредством гибких теплопроводов 15.

После выведения на орбиту функционирования космического аппарата, созданного на базе предлагаемой космической платформы, производится ориентация космической платформы в пространстве и перевод откидных модулей 8 в рабочее (орбитальное) положение (фиг.4).

Ориентация обеспечивается, например, путем выдвижения штанги гравитационного устройства 17 (фиг.2, 5).

Перевод откидных модулей 8 в рабочее (орбитальное) положение проводится в следующей последовательности:

При срабатывании пирозамков 16 нарушается удерживающая связь между откидными модулями 8 и несущим корпусом 1;

С помощью механизмов поворота 9, имеющих электропривод, откидные модули 8 на шарнирах 7 поворачиваются в требуемое положение.

Следует отметить, что электрическая связь между несущим корпусом 1 и откидными модулями 8 обеспечивается за счет применения гибких электрических кабелей (условно не показаны), длина которых позволяет исключить натяжение и возможный обрыв данных кабелей при переводе откидных модулей 8 из нерабочего (транспортного) положения в рабочее (орбитальное) положение.

Затем проводится подготовка полезной нагрузки 5, установленной внутри откидных модулей 8 на рамах 10, к штатному функционированию.

Для компенсации возможных дополнительных возмущений от сил аэродинамического и светового воздействия используется установленный на несущем корпусе 1 маховик (условно не показан), кинетический момент которого перпендикулярен к продольной оси штанги гравитационного устройства 17. Данный маховик совместно со штангой гравитационного устройства 17 обеспечивает требуемую орбитальную ориентацию космической платформы.

При наличии вспышек на Солнце, либо недопустимом тепловом воздействии все или отдельные откидные модули 8 при помощи электроприводов механизмов поворота 9 переводятся в нерабочее положение (фиг.3). При прекращении действия данных факторов откидные модули 8 вновь переводятся в рабочее положение.

Тепловой режим откидных модулей 8 регулируется посредством гибких теплопроводов 15, связывающих их с несущим корпусом 1 и обеспечивающих сброс избытка тепловой энергии с откидных модулей 8 на несущий корпус 1 либо перекачку тепловой энергии с несущего корпуса 1 на откидные модули 8 при «замерзании» последних. Таким образом, система «откидные модули 8 - несущий корпус 1», имеющая связующие элементы в виде гибких теплопроводов 15, является, фактически, тепловым регулятором, работающим при любых (угловых) положениях откидных модулей 8 относительно несущего корпуса 1 и способствующим стабилизации действующих температур в заданном рабочем диапазоне.

Следует отметить, что перевод откидных модулей 8 в рабочее положение путем их разворота относительно несущего корпуса 1 увеличивает габаритные размеры космической платформы в поперечном направлении, что приводит к возрастанию собственного момента инерции космической платформы относительно ее продольной оси. Это повышает устойчивость космической платформы при ее нахождении на орбите в условиях воздействия на космическую платформу гравитационного поля Земли.

При необходимости проведения коррекции орбиты с целью уменьшения потребного управляющего воздействия возможен перевод откидных модулей 8 (всех или отдельных) в нерабочее положение. Снабжение механизмов поворота 9 откидных модулей 8 электроприводами позволяет обеспечивать перемещение (разворот) каждого откидного модуля 8 как в прямом, так и в противоположном направлениях.

Разворот откидных модулей 8 относительно несущего корпуса 1 и установка их в рабочее положение приводит к увеличению на орбите функционирования инерционных характеристик космического аппарата, создаваемого на базе предлагаемой космической платформы, относительно его осей стабилизации, что, в свою очередь, приведет к уменьшению угловых скоростей вращения космического аппарата.

Периодический разворот (в прямом или противоположном направлениях на заданный угол) откидных модулей 8 позволяет изменять (варьировать) инерционные характеристики и параметры движения космического аппарата на орбите в случае применения системы стабилизации и ориентации космического аппарата с задействованием штанги гравитационного устройства 17.

Размещение приборов полезной нагрузки 5 в откидных модулях 8 позволяет:

Уменьшить трудоемкость установки полезной нагрузки 5 на космическую платформу;

Выполнять, при необходимости, установку полезной нагрузки 5 на космическую платформу в условиях технического комплекса космодрома, а не завода-изготовителя;

Уменьшить габариты космической платформы при транспортировке ее на космодром с завода-изготовителя;

Уменьшить габариты космического аппарата, создаваемого на базе предлагаемой космической платформы (путем его размещения в нерабочем (транспортном); положении в зоне полезного груза подобтекательного пространства ракеты-носителя);

Повысить ремонтоспособность космического аппарата (путем оперативной замены одного (неработоспособного) откидного модуля 8 на другой (работоспособный);

Исключить необходимость демонтажа приборов и устройств полезной нагрузки 5 с целью обеспечения доступа к приборам служебных систем 3, установленных внутри несущего корпуса 1 космической платформы, при необходимости проведения их обслуживания, ремонта или замены.

Кроме того, размещение приборов полезной нагрузки 5 специализированного назначения (например, оптика, радиолокация, радиосредства и т.д.) в различных откидных модулях 8 позволяет обеспечивать поставку полезной нагрузки 5 специализированного назначения на сборочный завод (или на технический комплекс космодрома) непосредственно от изготовителя данной нагрузки с ее размещением (в состоянии поставки) в отдельном откидном модуле 8.

Размещение в откидных модулях 8 дополнительных солнечных батарей 12 и элементов крепления 13 резервных приборов служебных систем 14 позволяет увеличить мощность бортовых систем, повысить степень их резервирования и продлить расчетный срок функционирования космической платформы и космического аппарата, созданного на ее основе.

Взаимное разнесение мест установки полезной нагрузки 5 и приборов служебных систем 3, 14 (за счет их размещения в различных (отдельных) откидных модулях 8 и разворота откидных модулей 8 относительно несущего корпуса 1 на расстояние, требуемое для их нормального функционирования) обеспечивает снижение взаимовлияния электромагнитных полей, создаваемых приборами служебных систем 3,14 и полезной нагрузкой 5. При этом уменьшается вероятность нештатной работы бортовых систем, повышается достоверность полученных результатов функционирования полезной нагрузки 5, увеличивается срок службы отдельных приборов.

Выполнение откидных модулей 8 рамной конструкции уменьшает вероятность механических повреждений полезной нагрузки 5 при наземной подготовке космической платформы на космодроме, что обеспечивается размещением полезной нагрузки 5 внутри рамы 10 (рама 10 фактически является ограждающей (защитной) конструкцией).

Таким образом, предлагаемое устройство имеет существенные отличия и позволяет расширить функциональные возможности и улучшить эксплуатационные характеристики известных космических платформ.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Космическая платформа, содержащая несущий корпус, выполненный в форме параллелепипеда, снабженный откидными модулями, связанными с несущим корпусом разъемными шарнирными узлами, поворотными солнечными батареями, установленными на несущем корпусе с помощью электроприводов, приборами служебных систем, размещенными внутри несущего корпуса, элементы крепления полезной нагрузки и узлы соединения несущего корпуса с системой отделения, отличающаяся тем, что откидные модули снабжены механизмами поворота и узлами фиксации откидных модулей к несущему корпусу, при этом внутри откидных модулей размещены элементы крепления полезной нагрузки, а на откидных модулях установлены дополнительные солнечные батареи.

2. Космическая платформа по п.1, отличающаяся тем, что механизмы поворота откидных модулей снабжены реверсивными электроприводами, а узлы фиксации откидных модулей выполнены, например, в виде пирозамков.

Материал из Википедии - свободной энциклопедии

Космическая платформа (спутниковая платформа ) - это общая унифицированная модель для построения космических аппаратов (КА), которая включает в себя все служебные системы спутника (т. н. модуль служебных систем ), а также конструкцию модуля полезной нагрузки , но без целевой (ретрансляционной, научной или другой) аппаратуры.

С другой стороны, в зависимости от типа КА, понятие платформа часто употребляется для обозначения модуля служебных систем, содержащего только лишь служебные системы спутника (без конструкции модуля полезной нагрузки).

Преимущества использования космических платформ

Использование космических платформ имеет ряд преимуществ по сравнению с индивидуальным изготовлением космический аппаратов :

  • уменьшение расходов на проектирование в связи с серийностью производства и возможностью распределения стоимости проектирования платформы между всеми спутниками серии;
  • увеличение надежности спутников из-за многократной проверки и отработки их систем;
  • уменьшение времени производства спутников до 18-36 месяцев. Кроме того производители могут гарантировать сроки изготовления.

Компоненты космической платформы

Обычно, в космическую платформу входят все служебные системы спутника кроме модуля полезной нагрузки . В этом случае, платформа также называется Модулем служебных систем и содержит:

  • систему энергоснабжения (включая солнечные батареи и аккумуляторы);
  • систему управления движением, ориентации и стабилизации, состоящую из оптических датчиков, измерителей угловых скоростей и маховиков;
  • апогейный двигатель для довывода с геопереходной на геостационарную орбиты ;
  • двигатели коррекции по широте и долготе (обычно с помощью ЭРД);
  • систему терморегулирования, предназначенную для отвода тепла от служебных систем и систем модуля полезной нагрузки;
  • бортовой комплекс управления с системой передачи служебной телеметрической информации;

Также, на космической платформе предусматривается место для установки отсека полезной нагрузки и антенн. Тем не менее, на платформах для построения спутников связи, например Спейсбас , Экспресс или SS/L 1300 , конструкция модуля полезной нагрузки (без ретрансляционной аппаратуры установленной на ней) обычно тоже считается частью платформы.

Обычно платформы оптимизируются под массу выводимой полезной нагрузки, что в свою очередь определяет массу всего спутника и мощность системы энергоснабжения .

Отношение ПН к общей массе КА

Одним из важнейших параметров является отношение массы ПН к общей массе КА. Очевидно, что чем лучше это соотношение, тем эффективнее могут быть выполнены задачи миссии. Обычно грузоподъемность ракеты-носителя определяет максимальную массу КА на орбите. Таким образом, чем меньше весит платформа, тем больше полезного груза может быть доставлено на заданную орбиту .

В настоящее время это отношение составляет примерно 18-19 % для современных тяжелых телекоммуникационных платформ, таких как Спейсбас или Экспресс 2000 . Основной технологической проблемой является энергетическая стоимость повышения орбиты с геопереходной до геостационарной . КА должны нести большое количество горючего для повышения орбиты (до 3 тонн и больше). Кроме того, ещё 400-600 кг используется для удержания спутника на заданной орбите за все время активной эксплуатации .

В недалеком будущем, широкое использование электрических ионных двигателей , а также уменьшение массы солнечных батарей и аккумуляторов должно привести к улучшению отношения массы ПН к общей массе КА до 25 % и более .

Одним из самых перспективных направлений является развитие электрических ионных и плазменных двигателей . Эти двигатели обладают гораздо более высоким удельным импульсом по сравнению с традиционными двух-компонентными гидразиновыми системами (1500-4000 сек. против 300 сек) и поэтому их использование может привести серьёзному уменьшению массы спутников и соответствующему уменьшению стоимости их запуска. Например, электрический ионный двигатель фирмы Boeing XIPS25, использует всего лишь 75 кг горючего для удержания спутника на орбите в течение 15 лет. При возможном использовании этого двигателя для повышения и последующего удержания орбиты, можно сэкономить до 50 млн Евро (хотя в данный момент эта функция полностью не используется) .

С другой стороны, использование новых технологий применительно к солнечным батареям (переход с кремниевых на многослойные GaInP/GaAs/Ge) и аккумуляторам (внедрение литий-ионных технологий) также приведет к снижению веса КА .

Космические платформы СССР

В 1963 году в ОКБ-586 (впоследствии КБ «Южное») в городе Днепропетровск был впервые в мире разработан эскизный проект трёх унифицированных платформ космических аппаратов: ДС-У1 - неориентированная с химическими источниками энергии, ДС-У2 - неориентированная с солнечными батареями, ДС-У3 - ориентированная на Солнце с солнечными батареями.

Типы космических платформ

По массе (вместе с горючим), в настоящее время спутниковые платформы можно разделить на три категории :

  • Легкие, массой до 2000 кг, с мощностью полезной нагрузки до 6 кВт;
  • Средние, массой до 5000 кг, с мощностью до 14 кВт;
  • Тяжелые, массой более пяти тонн мощностью более 15-20 кВт и более.

Также при разработке платформы учитываются тип вывода на опорную орбиту: прямой вывод или с довыводом с геопереходной на геостационарную орбиты с помощью апогейной ДУ спутника. В общем случае, КА построенные на легких платформах могут быть напрямую выведены на геостационарную орбиту, что позволяет избавиться от апогейного двигателя и сопровождающего его топлива.

Список космических платформ

В настоящее время основные производители геостационарных спутников используют следующие спутниковые платформы:

Название Масса КА, кг Мощн. ПН, кВт К-во изготовл. (в производстве) КА Производитель Страна
Средние и тяжелые платформы
Spacebus 4000 3000-5900 до 11,6 65 (7) Thales Alenia Space /
Eurostar 3000 до 6400 6 - 14 более 60 EADS Astrium /
Alphabus 6000 - 8800 12 - 18 1 EADS Astrium / Thales Alenia Space / /
Boeing 702 до 6000 до 18 25 (15) Boeing
Boeing 601 73 (3) Boeing
SS/L 1300 до 8000 до 20 83 (25) Space Systems/Loral
A2100 AX 2800 - 6600 до 15 36 Lockheed Martin Space Systems
КАУР-4 2300 - 2600 1,7 - 6,8 31 ОАО ИСС
Экспресс 2000 до 6000 до 14 0 (4) ОАО ИСС
Дунфан Хун-4 (DFH-4) до 5200 до 8 12 China Aerospace Science and Technology Corporation
DS-2000 3800 - 5100 до 15 4 (7) Mitsubishi Electric
Легкие платформы
STAR bus 1450 (сухая) 1,5 - 7,5 21 (10) Orbital Sciences Corporation
Экспресс 1000 до 2200 до 6 6 (18) ОАО ИСС
A2100 A 1-4 Lockheed Martin Space Systems
LUXOR (SmallGEO) 1600 - 3000 до 4 0 (1) OHB
Навигатор 650 - 850* до 2,4 3 (5) НПО им. Лавочкина
Яхта 350 - 500* до 3,9 4 ГКНПЦ им. М.В.Хруничева
Универсальная космическая платформа 950 - 1200 до 3 4 (1) РКК «Энергия»
* Сухая масса платформы

См. также

Напишите отзыв о статье "Космическая платформа"

Примечания

  1. . ОАО Информационные спутниковые системы имени академика М. Ф. Решетнёва. Проверено 7 декабря 2011. .
  2. . ОАО Информационные спутниковые системы имени академика М. Ф. Решетнёва. Проверено 7 декабря 2011. .
  3. Maral G, Bousquet M SATELLITE COMMUNICATIONS SYSTEMS, Fifth Edition - : John Wiley & Sons Ltd, 2009 - С. 527-661 - ISBN 978-0-470-71458-4
  4. (фр.) (недоступная ссылка - история ) . Alcatel Space, Revue des Télécommunications d"Alcatel - 4e trimestre 2001. Проверено 27 ноября 2011.
  5. Maral G, Bousquet M SATELLITE COMMUNICATIONS SYSTEMS, Fifth Edition - : John Wiley & Sons Ltd, 2009 - С. 561-562 - ISBN 978-0-470-71458-4
  6. John R. Beattie. (англ.) . The Industrial Physicist. Проверено 7 декабря 2011. .
  7. Giorgio Saccoccia. (англ.) (недоступная ссылка - история ) . ESA. Проверено 7 декабря 2011.
  8. . Boeing. Проверено 19 декабря 2010. .
  9. Maral G, Bousquet M SATELLITE COMMUNICATIONS SYSTEMS, Fifth Edition - : John Wiley & Sons Ltd, 2009 - С. 568-569 - ISBN 978-0-470-71458-4
  10. . European Space Agency. Проверено 1 октября 2010. .
  11. . CNES. Проверено 1 октября 2010.
  12. . Gunter Dirk Krebs. Проверено 27 ноября 2011. .
  13. . КОММЕРСАНТЪ BUSINESS GUIDE. Проверено 1 октября 2010. .
  14. (англ.) . Mitsubishi Electric. Проверено 6 августа 2013. .
  15. . Orbital Sciences Corporation. Проверено 30 сентября 2010. .
  16. . НПО им. С.А.Лавочкина. Проверено 6 декабря 2011. .
  17. . www.laspace.ru. Проверено 7 февраля 2016.
  18. . www.laspace.ru. Проверено 7 февраля 2016.
  19. . ФГУП «Государственный космический научно-производственный центр имени М.В.Хруничева». Проверено 6 декабря 2011. .
  20. . РКК «Энергия». Проверено 27 ноября 2011. .
  21. . Gunter Dirk Krebs. Проверено 27 ноября 2011. .

Литература

  • G. Maral, M. Bousquet. SATELLITE COMMUNICATIONS SYSTEMS, Systems, Techniques and Technology, Fifth Edition. - United Kingdom: John Wiley & Sons Ltd., 2009. - 713 с. - ISBN 978-0-470-71458-4 .
  • D. Roddy. SATELLITE COMMUNICATIONS, Fourth Edition. - United States of America: The McGraw-Hill Companies, Inc., 2006. - 636 с. - ISBN 0-07-146298-8 .

Ссылки

Отрывок, характеризующий Космическая платформа

Потирая полные, небольшие, белые руки, ей навстречу, с значительно спокойным лицом, уже шла акушерка.
– Марья Богдановна! Кажется началось, – сказала княжна Марья, испуганно раскрытыми глазами глядя на бабушку.
– Ну и слава Богу, княжна, – не прибавляя шага, сказала Марья Богдановна. – Вам девицам про это знать не следует.
– Но как же из Москвы доктор еще не приехал? – сказала княжна. (По желанию Лизы и князя Андрея к сроку было послано в Москву за акушером, и его ждали каждую минуту.)
– Ничего, княжна, не беспокойтесь, – сказала Марья Богдановна, – и без доктора всё хорошо будет.
Через пять минут княжна из своей комнаты услыхала, что несут что то тяжелое. Она выглянула – официанты несли для чего то в спальню кожаный диван, стоявший в кабинете князя Андрея. На лицах несших людей было что то торжественное и тихое.
Княжна Марья сидела одна в своей комнате, прислушиваясь к звукам дома, изредка отворяя дверь, когда проходили мимо, и приглядываясь к тому, что происходило в коридоре. Несколько женщин тихими шагами проходили туда и оттуда, оглядывались на княжну и отворачивались от нее. Она не смела спрашивать, затворяла дверь, возвращалась к себе, и то садилась в свое кресло, то бралась за молитвенник, то становилась на колена пред киотом. К несчастию и удивлению своему, она чувствовала, что молитва не утишала ее волнения. Вдруг дверь ее комнаты тихо отворилась и на пороге ее показалась повязанная платком ее старая няня Прасковья Савишна, почти никогда, вследствие запрещения князя,не входившая к ней в комнату.
– С тобой, Машенька, пришла посидеть, – сказала няня, – да вот княжовы свечи венчальные перед угодником зажечь принесла, мой ангел, – сказала она вздохнув.
– Ах как я рада, няня.
– Бог милостив, голубка. – Няня зажгла перед киотом обвитые золотом свечи и с чулком села у двери. Княжна Марья взяла книгу и стала читать. Только когда слышались шаги или голоса, княжна испуганно, вопросительно, а няня успокоительно смотрели друг на друга. Во всех концах дома было разлито и владело всеми то же чувство, которое испытывала княжна Марья, сидя в своей комнате. По поверью, что чем меньше людей знает о страданиях родильницы, тем меньше она страдает, все старались притвориться незнающими; никто не говорил об этом, но во всех людях, кроме обычной степенности и почтительности хороших манер, царствовавших в доме князя, видна была одна какая то общая забота, смягченность сердца и сознание чего то великого, непостижимого, совершающегося в эту минуту.
В большой девичьей не слышно было смеха. В официантской все люди сидели и молчали, на готове чего то. На дворне жгли лучины и свечи и не спали. Старый князь, ступая на пятку, ходил по кабинету и послал Тихона к Марье Богдановне спросить: что? – Только скажи: князь приказал спросить что? и приди скажи, что она скажет.
– Доложи князю, что роды начались, – сказала Марья Богдановна, значительно посмотрев на посланного. Тихон пошел и доложил князю.
– Хорошо, – сказал князь, затворяя за собою дверь, и Тихон не слыхал более ни малейшего звука в кабинете. Немного погодя, Тихон вошел в кабинет, как будто для того, чтобы поправить свечи. Увидав, что князь лежал на диване, Тихон посмотрел на князя, на его расстроенное лицо, покачал головой, молча приблизился к нему и, поцеловав его в плечо, вышел, не поправив свечей и не сказав, зачем он приходил. Таинство торжественнейшее в мире продолжало совершаться. Прошел вечер, наступила ночь. И чувство ожидания и смягчения сердечного перед непостижимым не падало, а возвышалось. Никто не спал.

Была одна из тех мартовских ночей, когда зима как будто хочет взять свое и высыпает с отчаянной злобой свои последние снега и бураны. Навстречу немца доктора из Москвы, которого ждали каждую минуту и за которым была выслана подстава на большую дорогу, к повороту на проселок, были высланы верховые с фонарями, чтобы проводить его по ухабам и зажорам.
Княжна Марья уже давно оставила книгу: она сидела молча, устремив лучистые глаза на сморщенное, до малейших подробностей знакомое, лицо няни: на прядку седых волос, выбившуюся из под платка, на висящий мешочек кожи под подбородком.
Няня Савишна, с чулком в руках, тихим голосом рассказывала, сама не слыша и не понимая своих слов, сотни раз рассказанное о том, как покойница княгиня в Кишиневе рожала княжну Марью, с крестьянской бабой молдаванкой, вместо бабушки.
– Бог помилует, никогда дохтура не нужны, – говорила она. Вдруг порыв ветра налег на одну из выставленных рам комнаты (по воле князя всегда с жаворонками выставлялось по одной раме в каждой комнате) и, отбив плохо задвинутую задвижку, затрепал штофной гардиной, и пахнув холодом, снегом, задул свечу. Княжна Марья вздрогнула; няня, положив чулок, подошла к окну и высунувшись стала ловить откинутую раму. Холодный ветер трепал концами ее платка и седыми, выбившимися прядями волос.
– Княжна, матушка, едут по прешпекту кто то! – сказала она, держа раму и не затворяя ее. – С фонарями, должно, дохтур…
– Ах Боже мой! Слава Богу! – сказала княжна Марья, – надо пойти встретить его: он не знает по русски.
Княжна Марья накинула шаль и побежала навстречу ехавшим. Когда она проходила переднюю, она в окно видела, что какой то экипаж и фонари стояли у подъезда. Она вышла на лестницу. На столбике перил стояла сальная свеча и текла от ветра. Официант Филипп, с испуганным лицом и с другой свечей в руке, стоял ниже, на первой площадке лестницы. Еще пониже, за поворотом, по лестнице, слышны были подвигавшиеся шаги в теплых сапогах. И какой то знакомый, как показалось княжне Марье, голос, говорил что то.
– Слава Богу! – сказал голос. – А батюшка?
– Почивать легли, – отвечал голос дворецкого Демьяна, бывшего уже внизу.
Потом еще что то сказал голос, что то ответил Демьян, и шаги в теплых сапогах стали быстрее приближаться по невидному повороту лестницы. «Это Андрей! – подумала княжна Марья. Нет, это не может быть, это было бы слишком необыкновенно», подумала она, и в ту же минуту, как она думала это, на площадке, на которой стоял официант со свечой, показались лицо и фигура князя Андрея в шубе с воротником, обсыпанным снегом. Да, это был он, но бледный и худой, и с измененным, странно смягченным, но тревожным выражением лица. Он вошел на лестницу и обнял сестру.
– Вы не получили моего письма? – спросил он, и не дожидаясь ответа, которого бы он и не получил, потому что княжна не могла говорить, он вернулся, и с акушером, который вошел вслед за ним (он съехался с ним на последней станции), быстрыми шагами опять вошел на лестницу и опять обнял сестру. – Какая судьба! – проговорил он, – Маша милая – и, скинув шубу и сапоги, пошел на половину княгини.

Маленькая княгиня лежала на подушках, в белом чепчике. (Страдания только что отпустили ее.) Черные волосы прядями вились у ее воспаленных, вспотевших щек; румяный, прелестный ротик с губкой, покрытой черными волосиками, был раскрыт, и она радостно улыбалась. Князь Андрей вошел в комнату и остановился перед ней, у изножья дивана, на котором она лежала. Блестящие глаза, смотревшие детски, испуганно и взволнованно, остановились на нем, не изменяя выражения. «Я вас всех люблю, я никому зла не делала, за что я страдаю? помогите мне», говорило ее выражение. Она видела мужа, но не понимала значения его появления теперь перед нею. Князь Андрей обошел диван и в лоб поцеловал ее.
– Душенька моя, – сказал он: слово, которое никогда не говорил ей. – Бог милостив. – Она вопросительно, детски укоризненно посмотрела на него.
– Я от тебя ждала помощи, и ничего, ничего, и ты тоже! – сказали ее глаза. Она не удивилась, что он приехал; она не поняла того, что он приехал. Его приезд не имел никакого отношения до ее страданий и облегчения их. Муки вновь начались, и Марья Богдановна посоветовала князю Андрею выйти из комнаты.
Акушер вошел в комнату. Князь Андрей вышел и, встретив княжну Марью, опять подошел к ней. Они шопотом заговорили, но всякую минуту разговор замолкал. Они ждали и прислушивались.
– Allez, mon ami, [Иди, мой друг,] – сказала княжна Марья. Князь Андрей опять пошел к жене, и в соседней комнате сел дожидаясь. Какая то женщина вышла из ее комнаты с испуганным лицом и смутилась, увидав князя Андрея. Он закрыл лицо руками и просидел так несколько минут. Жалкие, беспомощно животные стоны слышались из за двери. Князь Андрей встал, подошел к двери и хотел отворить ее. Дверь держал кто то.
– Нельзя, нельзя! – проговорил оттуда испуганный голос. – Он стал ходить по комнате. Крики замолкли, еще прошло несколько секунд. Вдруг страшный крик – не ее крик, она не могла так кричать, – раздался в соседней комнате. Князь Андрей подбежал к двери; крик замолк, послышался крик ребенка.
«Зачем принесли туда ребенка? подумал в первую секунду князь Андрей. Ребенок? Какой?… Зачем там ребенок? Или это родился ребенок?» Когда он вдруг понял всё радостное значение этого крика, слезы задушили его, и он, облокотившись обеими руками на подоконник, всхлипывая, заплакал, как плачут дети. Дверь отворилась. Доктор, с засученными рукавами рубашки, без сюртука, бледный и с трясущейся челюстью, вышел из комнаты. Князь Андрей обратился к нему, но доктор растерянно взглянул на него и, ни слова не сказав, прошел мимо. Женщина выбежала и, увидав князя Андрея, замялась на пороге. Он вошел в комнату жены. Она мертвая лежала в том же положении, в котором он видел ее пять минут тому назад, и то же выражение, несмотря на остановившиеся глаза и на бледность щек, было на этом прелестном, детском личике с губкой, покрытой черными волосиками.
«Я вас всех люблю и никому дурного не делала, и что вы со мной сделали?» говорило ее прелестное, жалкое, мертвое лицо. В углу комнаты хрюкнуло и пискнуло что то маленькое, красное в белых трясущихся руках Марьи Богдановны.

Через два часа после этого князь Андрей тихими шагами вошел в кабинет к отцу. Старик всё уже знал. Он стоял у самой двери, и, как только она отворилась, старик молча старческими, жесткими руками, как тисками, обхватил шею сына и зарыдал как ребенок.

Через три дня отпевали маленькую княгиню, и, прощаясь с нею, князь Андрей взошел на ступени гроба. И в гробу было то же лицо, хотя и с закрытыми глазами. «Ах, что вы со мной сделали?» всё говорило оно, и князь Андрей почувствовал, что в душе его оторвалось что то, что он виноват в вине, которую ему не поправить и не забыть. Он не мог плакать. Старик тоже вошел и поцеловал ее восковую ручку, спокойно и высоко лежащую на другой, и ему ее лицо сказало: «Ах, что и за что вы это со мной сделали?» И старик сердито отвернулся, увидав это лицо.

Еще через пять дней крестили молодого князя Николая Андреича. Мамушка подбородком придерживала пеленки, в то время, как гусиным перышком священник мазал сморщенные красные ладонки и ступеньки мальчика.
Крестный отец дед, боясь уронить, вздрагивая, носил младенца вокруг жестяной помятой купели и передавал его крестной матери, княжне Марье. Князь Андрей, замирая от страха, чтоб не утопили ребенка, сидел в другой комнате, ожидая окончания таинства. Он радостно взглянул на ребенка, когда ему вынесла его нянюшка, и одобрительно кивнул головой, когда нянюшка сообщила ему, что брошенный в купель вощечок с волосками не потонул, а поплыл по купели.

Участие Ростова в дуэли Долохова с Безуховым было замято стараниями старого графа, и Ростов вместо того, чтобы быть разжалованным, как он ожидал, был определен адъютантом к московскому генерал губернатору. Вследствие этого он не мог ехать в деревню со всем семейством, а оставался при своей новой должности всё лето в Москве. Долохов выздоровел, и Ростов особенно сдружился с ним в это время его выздоровления. Долохов больной лежал у матери, страстно и нежно любившей его. Старушка Марья Ивановна, полюбившая Ростова за его дружбу к Феде, часто говорила ему про своего сына.

Компания Bigelow Aerospace, занимающаяся изготовлением надувных модулей для орбитальной космической станции МКС, заявила о намерении создать собственные космические станции. Партнером проекта будет Центр по развитию науки в космосе - эта организация управляет американским сегментом Международной космической станции, МКС. Ну а управлять новыми космическими станциями будет учрежденная партнерами компания-оператор Bigelow Space Operations (BSO).

«Bigelow Space Operations будет заниматься продажей, управлением и эксплуатацией новых космических станций, созданных компанией Bigelow Aerospace», - сообщается в аккаунте организации в Twitter.

Компания считает , что ее станции могут с успехом использоваться госструктуры, частные компании и научные специалисты. Прежде, чем приниматься за реализацию сколь-нибудь серьезного проекта, компания займется изучением рынка. Дело в том, что коммерческая эксплуатация орбитальных станций это новое направление космонавтики, поэтому в вопросе необходимо детально разобраться.

На изучение рынка будет потрачено несколько миллионов долларов США. Конкурентом Bigelow Aerospace может быть Китай, у которого тоже есть планы по созданию собственной станции. Причем Поднебесная уже ведет переговоры о совместном использовании своей станции с партнерами из других стран. По мнению источников, близких к китайским чиновникам, которые реализуют эту программу, условия сотрудничества крайне привлекательны.

Запуски орбитальных модулей запланированы Bigelow на 2021 год. Тогда будет реализовано сразу два пуска - модулей B330-1 и B330-2. В модулях будут жить астронавты, причем на постоянной основе. Эти структуры - тестовые, и если они покажут себя хорошо, то компания запустит на орбиту целую орбитальную станцию, причем выведет ее в космос всего одна ракета. Дело в том, что модули станции, созданной Bigelow, будут сжаты, объем их в этом состоянии минимален. Проект будет реализоваться во Флориде, Алабаме или других подходящих местах.

Вся эта история началась с создания надувного пробного модуля для МКС. Его состыковали со станцией в 2016 году, со второй попытки прошло удачно. Как оказалось, стенки модуля достаточно прочные, чтобы выдержать условия космоса. Стены модуля - материал со сложной структурой, который состоит из волокон, подобных кевлару (из него изготавливаются бронежилеты и прочие защитные системы). В мае этого года исполнится уже два года, как модуль находится в космосе. За это время в стенки неоднократно врезались микрометеориты и фрагменты космического мусора, но оболочка оставалась неповрежденной.

Стенки способны защищать обитателей и от излучения. По мнению компании, изготовившей надувные модули, в них вполне может находится группа астронавтов, без всякого вреда для себя. Сейчас есть планы по созданию специального радиационного щита, которым собираются защищать оборудование, продукты или астронавтов - в зависимости от того, с какой целью будет использоваться модуль.


Тот самый модуль с МКС от Bigelow Aerospace

Что касается параметров модуля, то компания Bigelow Aerospace делает свои модули в 9 раз легче стандартных, которые обшиваются алюминием. Масса надувной системы - всего 1360 килограммов. А вот масса обычного модуля Unity составляет около 11 тонн. При этом Beam выводить на орбиту не в пример проще, поскольку он занимает минимальный объем ракеты-носителя.

Компания Bigelow Aerospace из Лас-Вегаса - одна из шести компаний, с НАСА на коммерческой основе в рамках проекта по разработке прототипов жилых модулей в дальнем космосе. Эти разработки, по плану НАСА, будут использоваться для создания орбитальных станций у Луны и Марса, не говоря уже о Земле. В рамках указанного сотрудничества НАСА выделяет шести компаниям $65 млн в течение двух лет, с возможностью дополнительного финансирования в следующем, 2018 году. При этом каждый из партнеров должен быть в состоянии покрыть минимум 30% стоимости работ за свой счет. Само партнерство получило название Next Space Technologies for Exploration Partnerships-2 (NextSTEP-2).

Сейчас руководство Bigelow решило продолжать работу и создать собственные станции, поскольку президент США Дональд Трамп отказался от финансирования МКС. Начиная с 2024-го года США не будет более продолжать свою миссию. Но если в космос отправятся частные орбитальные станции - это будет хорошим шансом для частной же космонавтики. Правительство тогда практически не будет участвовать во многих направлениях работы в этой сфере.

Если поехать в аэропорт Домодедово на электричке или аэроэкспрессе, то можно заметить самую «космическую» станцию железной дороги — небольшую платформу, которая носит неожиданное название «Космос».
В честь Дня Космонавтики я посетил эту платформу и готов показать ее подробнее, а заодно, расскажу, почему она так называется.

2. Аэроэкспрессы проезжают платформу «Космос» без остановок. Чтобы выйти здесь, нужно ехать на простой электричке. Также можно добраться на автобусе или дойти пешком от аэропорта, он сравнительно недалеко.

3. Платформа небольшая, на ней нет даже стационарных билетных касс. В объявлении написано, что в определенные часы работают мобильные кассы, но лично я никого не видел.

4. Откуда же такое название? Когда станция только начала работать, начальником здесь был Вячеслав Иванович Орлов, очень талантливый человек, который помимо работы на железной дороге писал стихи, прозу, заметки в газету.

5. «28 ноября 1958 года я был назначен начальником станции АГ (Аэропорт-Грузовая), получил ведомственную квартиру в посёлке на станции С (ныне - Авиационная) и почувствовал себя, как Лев Толстой, в своей «Неясной поляне», — рассказывает Вячеслав Иванович.

6. «Когда я пришел туда работать, никто даже не знал, что это аэропорт - настолько все было засекречено», — вспоминает Орлов. И смеется — когда станции придумывали название, сначала склонялись к варианту «Шишкино», поскольку неподалеку находился одноименный санаторий. Но Вячеслав Иванович пошутил: «Вот и будет начальник станции Шишкино одни шишки от руководства получать!»

7. Рядом уже были станции «Аэропорт», «Авиационная», «Взлетная». Вячеслав Иванович предложил пойти дальше. А дальше что? Правильно, космос. Так станция получила свое настоящее название. Вячеслав Орлов проработал начальником станции почти 30 лет. У него вышло несколько книг, среди них цикл «Космос на рельсах».

8. Сейчас станцией пользуются, в основном, сотрудники некоторых служб аэропорта, например, расположенного рядом хранилища топливозаправочного комплекса.

9. Сюда по железно дороге прибывает самолетное топливо. Впрочем, это уже



Поделиться