На наклонной плоскости. Другие книги схожей тематики

Настоящая книга, почти не выходящая из рамок элементарной физики, предназначается для читателя, прошедшего физику в полной средней школе и убежденного поэтому, что начала этой науки ему хорошо известны и переизвестны.

Долголетний опыт научил меня, однако, тому, что подлинное знание элементарной физики С явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим ее успехам; в ту же сторону, к последним страницам физической науки, направляют интерес читателей и наши популярно-научные журналы. О пополнении пробелов первоначальной подготовки заботятся мало; считается, что здесь все благополучно. Возвращаться к элементарной физике не принято, и она живет в памяти многих такою, какою была воспринята некогда умом школьника-подростка.

В итоге физику плохо знают не только те, кто не проходил ее систематически, но зачастую и те, кто обучался ей в школе. Элементы физической науки, фундамент естествознания и техники оказываются заложенными довольно шатко. Сила рутины здесь так велика, что некоторые физические предрассудки и заблуждения случалось обнаруживать даже у специалистов-физиков, не исключая и весьма крупных.

Насколько я мог убедиться, сходное положение вещей наблюдается и за рубежом. По-видимому, корень дела кроется в обширности самого предмета элементарной физики, которым трудно вполне овладеть в несколько лет. К чести нашей читательской массы надо признать, что она добросовестно стремится изжить этот недостаток и гораздо серьезнее заботится о пополнении пробелов своего образования, чем читатель за рубежом. Не только среди учащихся, но еще больше среди рабочей молодежи идет интенсивная самообразовательная работа, неизменно растущая и приносящая заметные плоды. В этом убеждают меня многочисленные письма читателей и в особенности С беседы с читательским активом библиотек ряда крупных заводов, ленинградских и московских. У нас охотно читаются такие книги, которые в глазах среднего зарубежного читателя являются слишком трудными.

Возвращаясь к настоящей книге, отмечу, что она представляет собою как бы пространную физическую викторину, которая должна помочь вдумчивому читателю установить, насколько в действительности овладел он основами физики. Однако это никак не вопросник для экзамена: бо́льшая часть вопросов принадлежит к таким, какие едва ли когда-нибудь предлагались на экзаменах. Напротив, книга рассматривает материал, обычно проскальзывающий мимо сетей традиционной экзаменационной проверки, хотя вопросы нашей викторины тесно связаны с элементарным курсом физики. При кажущейся простоте они кроют в себе зачастую неожиданность для читателя. Иные вопросы представляются до того простыми, что у каждого готов на них ответ, который оказывается, однако, ошибочным.

Конечная цель книги С убедить читателя, что область элементарной физики гораздо богаче содержанием, чем думают многие, а попутно С обратить внимание на ошибочность ряда ходячих физических представлений. То и другое должно побудить читателей критически пересмотреть и тщательно проверить багаж своих физических знаний.

Для подлинного проникновения духом физической науки, как и для дальнейшего прогресса самой физики, чрезвычайно важно отрешиться от ложного убеждения, будто науке в области элементарных явлений нечего уже больше делать, будто все здесь исследовано до конца и не может быть интереса останавливаться на рассмотрении подобных азбучных положений. Если вы хотите дать нечто действительно большое в науке, С говорил своим ученикам знаменитый французский физик Лe-Шателье, С если хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные и порой совершенно неожиданные данные.

Подбирая материал для этой книги, я избегал повторения того, что рассмотрено мною в ряде других моих сочинений. Читатель, который даст себе труд просмотреть мои Занимательную физику и Физические головоломки, Занимательную механику! Занимательную астрономию! Межпланетные путешествиям и Физику на каждом шагу, найдет там немало страниц, отвечающих целям настоящей книги.

Для второго издания книга подверглась значительной переработке. Возможностью внести в текст много исправлений и улучшений я в значительной степени обязан благожелательному вниманию ряда сведущих читателей и критиков. Выражая им за оказанную помощь глубокую признательность, позволяю себе надеяться, что они и в дальнейшем не откажутся содействовать своими указаниями очищению текста моей книги от промахов и недомолвок.

Если бы вас высадили на один из тропических островов Тихого океана без всяких орудий, как сдвинули бы вы там с места трехтонный груз С скалу, имеющую 100 футов в горизонтальном протяжении и 15 футов в вертикальном?!!

Сколько примерно должна была бы весить паутинная нить длиною от Земли до Луны? Можно ли такой груз удержать в руках? А увезти на телеге?

Нить паутины имеет в диаметре 200-ю долю миллиметра; удельный вес ее вещества около 1.

Яков Исидорович Перельман

Знаете ли вы физику? Физическая викторина для юношества

Из предисловия автора ко второму изданию

Настоящая книга, почти не выходящая из рамок элементарной физики, предназначается для читателя, прошедшего физику в полной средней школе и убежденного поэтому, что начала этой науки ему хорошо известны и переизвестны.

Долголетний опыт научил меня, однако, тому, что подлинное знание элементарной физики С явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим ее успехам; в ту же сторону, к последним страницам физической науки, направляют интерес читателей и наши популярно-научные журналы. О пополнении пробелов первоначальной подготовки заботятся мало; считается, что здесь все благополучно. Возвращаться к элементарной физике не принято, и она живет в памяти многих такою, какою была воспринята некогда умом школьника-подростка.

В итоге физику плохо знают не только те, кто не проходил ее систематически, но зачастую и те, кто обучался ей в школе. Элементы физической науки, фундамент естествознания и техники оказываются заложенными довольно шатко. Сила рутины здесь так велика, что некоторые физические предрассудки и заблуждения случалось обнаруживать даже у специалистов-физиков, не исключая и весьма крупных.

Насколько я мог убедиться, сходное положение вещей наблюдается и за рубежом. По-видимому, корень дела кроется в обширности самого предмета элементарной физики, которым трудно вполне овладеть в несколько лет. К чести нашей читательской массы надо признать, что она добросовестно стремится изжить этот недостаток и гораздо серьезнее заботится о пополнении пробелов своего образования, чем читатель за рубежом. Не только среди учащихся, но еще больше среди рабочей молодежи идет интенсивная самообразовательная работа, неизменно растущая и приносящая заметные плоды. В этом убеждают меня многочисленные письма читателей и в особенности С беседы с читательским активом библиотек ряда крупных заводов, ленинградских и московских. У нас охотно читаются такие книги, которые в глазах среднего зарубежного читателя являются слишком трудными.

Возвращаясь к настоящей книге, отмечу, что она представляет собою как бы пространную физическую викторину, которая должна помочь вдумчивому читателю установить, насколько в действительности овладел он основами физики. Однако это никак не вопросник для экзамена: бо́льшая часть вопросов принадлежит к таким, какие едва ли когда-нибудь предлагались на экзаменах. Напротив, книга рассматривает материал, обычно проскальзывающий мимо сетей традиционной экзаменационной проверки, хотя вопросы нашей викторины тесно связаны с элементарным курсом физики. При кажущейся простоте они кроют в себе зачастую неожиданность для читателя. Иные вопросы представляются до того простыми, что у каждого готов на них ответ, который оказывается, однако, ошибочным.

Конечная цель книги С убедить читателя, что область элементарной физики гораздо богаче содержанием, чем думают многие, а попутно С обратить внимание на ошибочность ряда ходячих физических представлений. То и другое должно побудить читателей критически пересмотреть и тщательно проверить багаж своих физических знаний.

Для подлинного проникновения духом физической науки, как и для дальнейшего прогресса самой физики, чрезвычайно важно отрешиться от ложного убеждения, будто науке в области элементарных явлений нечего уже больше делать, будто все здесь исследовано до конца и не может быть интереса останавливаться на рассмотрении подобных азбучных положений. Если вы хотите дать нечто действительно большое в науке, С говорил своим ученикам знаменитый французский физик Лe-Шателье, С если хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные и порой совершенно неожиданные данные.

Подбирая материал для этой книги, я избегал повторения того, что рассмотрено мною в ряде других моих сочинений. Читатель, который даст себе труд просмотреть мои Занимательную физику и Физические головоломки, Занимательную механику! Занимательную астрономию! Межпланетные путешествиям и Физику на каждом шагу, найдет там немало страниц, отвечающих целям настоящей книги.

Для второго издания книга подверглась значительной переработке. Возможностью внести в текст много исправлений и улучшений я в значительной степени обязан благожелательному вниманию ряда сведущих читателей и критиков. Выражая им за оказанную помощь глубокую признательность, позволяю себе надеяться, что они и в дальнейшем не откажутся содействовать своими указаниями очищению текста моей книги от промахов и недомолвок.

Вопросы

I. Механика

1

Какие у нас узаконены метрические меры крупнее метра?

2

Что больше: литр или кубический дециметр?

3

Назовите самую маленькую единицу длины.

4

Назовите самую большую единицу длины.

5

Существуют ли металлы легче воды? Назовите самый легкий металл.

6

Как велика плотность самого плотного вещества в мире?

7

Вот один из вопросов знаменитой Эдисоновой викторины :

Если бы вас высадили на один из тропических островов Тихого океана без всяких орудий, как сдвинули бы вы там с места трехтонный груз С скалу, имеющую 100 футов в горизонтальном протяжении и 15 футов в вертикальном?!!

8

Сколько примерно должна была бы весить паутинная нить длиною от Земли до Луны? Можно ли такой груз удержать в руках? А увезти на телеге?

Нить паутины имеет в диаметре 200-ю долю миллиметра; удельный вес ее вещества около 1.

9

Железная Эйфелева башня высотою 300 м (1000 футов) весит 9000 т. Сколько должна весить точная железная модель этой башни высотою 30 см (один фут)? (Рис. 1.)

Рис. 1. Сколько весит такая модель башни Эйфеля?

10

Можете ли вы одним пальцем произвести давление в 1000 ат?

11

Может ли насекомое производить давление в 100 000 ат?

12

По реке плывет весельная лодка и рядом с ней – щепка.

Что легче для гребца: перегнать щепку на 10 м или на столько же отстать от нее?

13

Аэростат несется ветром в северном направлении. В какую сторону протягиваются при этом флаги на его гондоле?

14

Камень, брошенный в стоячую воду, порождает волны, разбегающиеся кругами. Какой формы получаются волны от камня, брошенного в текущую воду реки? (Рис. 2.)

Рис. 2. Какой формы в текущей воде волны, разбегающиеся от брошенного тела?

15

1. Два парохода идут по реке в одну сторону с различными скоростями. В тот момент, когда они поравнялись, с каждого парохода брошена была в воду бутылка. Спустя четверть часа пароходы повернули обратно и с прежними скоростями направились к покинутым бутылкам.

Который из пароходов дойдет до бутылки раньше С быстрый или медленный?

2. Ту же задачу решить при условии, что пароходы шли первоначально навстречу один другому.

16

Подчиняются ли живые существа закону инерции?

17

Может ли тело придти в движение под действием одних только внутренних сил?

18

Почему трение всегда называют силой , несмотря на то, что трение само по себе не может породить движения (оно всегда направлено против движения)?

19

Какую роль играет трение в процессе движения живых существ?

20

Следующая задача взята из учебника механики А.В. Цингера:

Чтобы разорвать веревку, человек тянет ее руками за концы в разные стороны, причем каждая рука тянет с силою 10 кг. Не разорвав таким образом веревки, человек привязывает один ее конец к гвоздю, вбитому в стену, а за другой тянет обеими руками с силою в 20 кг.

Сильнее ли натягивается веревка во втором случае?

21

В знаменитых своих опытах с магдебургскими полушариями Отто Герике впрягал с каждой стороны по 8 лошадей.

Не лучше ли было прикрепить одно полушарие к стене, а к другому припрячь 16 лошадей? Получилась ли бы в этом случае более сильная тяга?

22

Взрослый может вытянуть на безмене 10 кг, ребенок С 3 кг. Сколько покажет указатель безмена, если оба станут растягивать безмен одновременно в противоположные стороны?

23

Стоя на платформе уравновешенных десятичных весов, человек присел. Куда качнулась платформа в момент приседания С вниз или вверх?

24

С воздушного шара, неподвижно держащегося в воздухе, свободно свешивается лестница (рис. 3). По ней начал взбираться человек.

Рис. 3. Куда подвинется аэростат?


Куда при этом подвинется шар: вверх или вниз?

25

На внутренней стенке закрытой банки, уравновешенной на чувствительных весах, сидит муха (рис. 4).

Рис. 4. Задача о мухе, летающей внутри банки


Что произойдет с весами, если, покинув свое место, муха станет летать внутри банки?

26

В последнее время большую популярность на Западе, особенно в Америке, приобрела занимательная игрушка, называемая там йо-йо. Это С катушка, которая спускается на разматывающейся ленте и сама затем поднимается. Игрушка С не новость: ею развлекались еще солдаты наполеоновских армий и даже, по розысканиям сведущих людей, герои Гомера.

С точки зрения механики, йо-йо не что иное, как видоизменение общеизвестного маятника Максвелла (рис. 5): небольшой маховичок падает, разматывая навитые на его ось нити, и приобретает постепенно столь значительную энергию вращения, что, развернув нити до конца, продолжает вращаться, вновь наматывая их и, следовательно, поднимаясь вверх. При подъеме, вследствие превращения кинетической энергии в потенциальную, маховик замедляет вращение, наконец останавливается и опять начинает падение с вращением. Опускание и подъем маховичка повторяются много раз, пока первоначальный запас энергии не рассеется в виде теплоты, возникающей при трении.


Прибор Максвелла описан здесь для того, чтобы предложить следующий вопрос:

Нити маятника Максвелла прикреплены к пружинному безмену (рис. 6). Что должно происходить с указателем безмена в то время, когда маховичок исполняет свой танец вверх и вниз? Останется ли указатель в покое? Если будет двигаться, то в какую сторону?

Рис. 6. Что показывает пружинный безмен?

27

Можно ли в движущемся поезде пользоваться плотничьим уровнем (с пузырьком) для определения наклона пути?

28

1. Перенося в комнате с места на место горящую свечу, мы замечаем, что пламя в начале движения отклоняется назад. Куда отклонится оно, если переносить свечу в закрытом фонаре?

2. Куда отклонится пламя свечи в фонаре, если равномерно кружить фонарь около себя вытянутой рукой?

29

Однородный стержень уравновешен, подпертый в середине (рис. 7). Какая часть стержня перетянет, если правую его половину согнуть вдвое (рис. 8)?

Рис. 7. Стержень уравновешен

Рис. 8. Сохранится ли равновесие?

30

Который из двух изображенных здесь (рис. 9) пружинных безменов, поддерживающих стержень CD в наклонном положении, показывает бо́льшую нагрузку?

Рис. 9. Который из безменов сильнее нагружен?

31

Невесомый рычаг ABC изогнут, как показано на рис. 10. Точка его опоры в В . Желательно поднять груз А наименьшей силой. В каком направлении нужно ее приложить к концу С рычага?

Рис. 10. Задача о кривом рычаге

Рис. 11. С какой силой человек должен тянуть, чтобы удержать платформу от падения?

32

Человек весом 60 кг стоит на платформе, вес которой 30 кг. Платформа подвешена на веревках, перекинутых через блоки, как показано на рис. 11. С какою силою должен человек тянуть за конец веревки а , чтобы удержать платформу от падения?

33

С какой силой надо натягивать веревку, чтобы она не провисала (рис. 12)?

Рис. 12. Можно ли натянуть веревку так, чтобы она не провисала?

34

Чтобы вытащить увязший в выбоине автомобиль, прибегают к следующему приему. Привязывают его длинной прочной веревкой крепко к дереву или к пню близ дороги так, чтобы веревка была натянута возможно туже. Затем тянут за веревку под прямым углом к ее направлению. Благодаря этому усилию, автомобиль сдвигается с места.

На чем основан описанный прием?

35

Известно, что смазка ослабляет трение. Во сколько, приблизительно, раз?

36

Рис. 13. Задача о брошенной и скользящей льдинках

37

Насколько, приблизительно, успевает опуститься первоначально неподвижное свободно падающее тело, пока звучит одно тик-так карманных часов?

38

Я получил ряд писем с выражением недоумения по поводу затяжного прыжка мастера парашютного спорта Евдокимова, поставившего мировой рекорд 1934 г. Евдокимов падал в течение 142 секунд с нераскрытым парашютом и, лишь пролетев 7900 м, дернул за его кольцо. Это никак не согласуется с законами свободного падения тел. Легко убедиться, что если парашютист свободно падал на пути 7900 м, то должен был употребить не 142 секунды, а только 40. Если же он свободно падал 142 секунды, то должен был пролететь путь не в 7,9 км, а около 100 км. Как разрешается это противоречие?

39

В какую сторону надо из движущегося вагона выбросить бутылку, чтобы опасность разбить ее при ударе о землю была наименьшая?

40

В каком случае выброшенная из вагона вещь долетит до земли раньше: когда вагон в покое или когда он движется?

41

Три снаряда пущены из одной точки с одинаковыми скоростями под различными углами к горизонту: в 30°, 45° и 60°. Пути их (в несопротивляющейся среде) показаны на рис. 14.

Правилен ли чертеж?

Рис. 14. Правилен ли чертеж?

42

Какую кривую описывало бы тело, брошенное под углом к горизонту, при отсутствии сопротивления воздуха?

43

Артиллеристы утверждают, что пушечный снаряд приобретает наибольшую скорость не в стволе орудия, а вне его, покинув канал. Возможно ли это?

44

В чем главная причина того, что прыжки в воду с большой высоты опасны для здоровья (рис. 15)?

Рис. 15. В чем главная опасность такого прыжка?

45

Шар положен на край стола, плоскость которого строго перпендикулярна к отвесу, проходящему через середину стола (рис. 16). Останется ли шар в покое при отсутствии трения?

Рис. 16. Останется ли шар в покое?

46

Брусок (рис. 17) в положении В скользит по наклонной плоскости MN , преодолевая трение. Можно ли быть уверенным, что он будет скользить и в положении А (если при этом не опрокидывается)?

Рис. 17. Задача о скользящем бруске

47

1. Из точки А (рис. 18), находящейся на высоте h над горизонтальной плоскостью, движутся два шара: один скатывается по наклону А С, другой падает свободно по отвесной линии АВ.

Который из шаров в конце пути будет обладать большей поступательной скоростью?

Рис. 18. Задача о двух шарах


2. Из двух одинаковых шаров один катится по наклонной плоскости, другой С по краям двух параллельных треугольных досок (рис. 19). Угол наклона, а также высота, с какой началось движение, в обоих случаях одинаковы.

Рис. 19. Который шар быстрее скатится?


Который из шаров раньше достигнет конца наклонного пути?

48

Два цилиндра совершенно одинаковы по весу и наружному виду. Один С сплошной алюминиевый, другой С пробковый с свинцовой оболочкой. Цилиндры оклеены бумагой, которую надо оставить неповрежденной.

Укажите способ узнать, который цилиндр однородный и который составной?

49

Песочные часы с 5-минутным заводом поставлены в бездействующем состоянии на чашку чувствительных весов и уравновешены гирями (рис. 20).

Рис. 20. Песочные часы на весах


Часы перевернули. Что произойдет с весами в течение ближайших пяти минут?

50

Карикатура, воспроизведенная на рис. 21, имеет механическую основу. Удачно ли использованы в ней законы механики?

Рис. 21. Английские министры взбираются вверх, а фунт идет вниз (карикатура)

51

Через блок перекинута веревка с грузами на концах в 1 кг и 2 кг. Блок подвешен к безмену (рис. 22). Какую нагрузку показывает безмен?

Рис. 22. Что показывает безмен?

52

Сплошной железный усеченный конус опирается на свое большое основание (рис. 23). Если конус перевернуть, куда переместится его центр тяжести С к большему или к меньшему основанию?

Рис. 23. Задача о конусе

53

Вы стоите на платформе весов в кабине лифта (рис. 24). Внезапно тросы оборвались, и кабина начала опускаться со скоростью свободно падающего тела.

1. Что покажут весы во время этого падения?

2. Выльется ли во время падения вода из открытого перевернутого кувшина?

Рис. 24. Физические опыты в сорвавшемся подъемнике

54

Вообразите, что на доске А (рис. 25), могущей скользить отвесно вниз в прорезях двух стоек, имеются:

1) цепь (а ), прикрепленная концами к доске;

3) открытый флакон (с) с водою, прикрепленный к доске.

Что произойдет с этими предметами, если доска А станет скользить вниз с ускорением gi, бо́льшим ускорения g свободного падения?

Рис. 25. Опыт со сверхускоренным падением

55

Помешав ложечкой в чашке чая, выньте ее: чаинки на дне, разбежавшиеся к краям, соберутся к середине. Почему?

56

Верно ли, что, стоя на качелях, можно определенными движениями своего тела увеличить размах качаний (рис. 26)?

Рис. 26. Механика на качелях

57

Небесные тела по массе больше земных во много раз. Но их взаимное удаление превышает расстояние между земными предметами тоже в огромное число раз. А так как притяжение прямо пропорционально первой степени произведения масс, но обратно пропорционально квадрату расстояния, то странно, почему мы не замечаем притяжения между земными предметами и почему оно так явно господствует во Вселенной?

Объясните это.

58

На тему предыдущей задачи мною составлена была для немецкого журнала статья. Прежде чем ее напечатать, редакция обратилась ко мне со следующей просьбой:

Нам кажется, что в ваших расчетах не все правильно. Притяжение двух тел равно:

Вы, однако, оперируете всюду с весом , а не с массами. Вес равен mg , откуда масса равна весу, деленному на 9,81. Это в ваших расчетах не было принято в соображение. Не будете ли вы любезны пересмотреть расчеты?

Правильно ли замечание редакции? Нужно ли при вычислении силы притяжения умножать килограммы на килограммы, или необходимо предварительно делить число килограммов на gl

59

Принято считать, что все отвесы близ земной поверхности направлены к центру Земли (если пренебречь незначительным отклонением, обусловленным вращением земного шара). Известно, однако, что земные тела притягиваются не только Землей, но и Луной. Поэтому тела должны бы, казалось, падать по направлению не к центру Земли, а к общему центру масс Земли и Луны.

Рис. 27. К какой точке должны падать земные тела: к центру С земного шара или к общему центру масс (М) Земли и Луны?


Этот общий центр масс далеко не совпадает с геометрическим центром земного шара, а отстоит от него, как легко вычислить, на 4800 км. (Действительно, Луна обладает массой, в 80 раз меньшей, чем Земля; следовательно, общий центр их масс в 80 раз ближе к центру Земли, чем к центру Луны. Расстояние между центрами обоих тел 60 земных радиусов; поэтому общий центр масс отстоит от центра Земли на три четверти земного радиуса.)

Если так, то направление отвесов на земном шаре должно значительно отличаться от направления к центру Земли (рис. 27).

Почему же подобные отклонения нигде в действительности не наблюдаются?

II. Свойства жидкостей

60

Что тяжелее: атмосфера земного шара или вся его вода? Во сколько раз?

61

Назовите самую легкую жидкость.

62

Легендарный рассказ о задаче Архимеда с золотой короной передается в различных вариантах. Древнеримский архитектор Витрувий (I век нашей эры) сообщает об этом следующее:

Рис. 63. Динамометр показывает силу тяги лошади или силу тяги деревца, С но никак не сумму обоих усилий


Итак, веревка, которую тянут в разные стороны силами в 10 кг, растягивается силою 10 кг, а натягиваемая в одну сторону силою в 20 кг (и в обратную сторону – такою же силою противодействия) подвержена натяжению в 20 кг..

21. Магдебургские полушария

После разъяснений предыдущей статьи ясно, что в упряжке при полушариях Герике 8 лошадей были 8 лошадей.

Рис. 64. В этом случае роль тяги согну – того деревца (см. рис. 63) играет противодействие стены совершенно излишни. Их вполне можно было бы заменить сопротивлением какой-нибудь стены или крепкого древесного ствола. По закону действия и противодействия, сила противодействия стены равнялась бы тяге


Чтобы увеличить тягу, целесообразно было бы эту восьмерку освободившихся лошадей припрячь в помощь прочим восьми. (Не следует думать, однако, что тяга при этом удвоилась бы: вследствие неполной согласованности усилий двойное число лошадей порождает не двойную тягу, а менее чем двойную, хотя и бóльшую, чем ординарную.)

Замена 8 лошадей сопротивлением стены выгодна и без использования освободившейся восьмерки лошадей, так как уменьшается несогласованность усилий: противодействие стены проявляется строго в тот самый момент, когда действует тяга лошадей, чего нельзя сказать о противодействии живых двигателей.

22. Безмен

На вопрос этой задачи ошибочно отвечать, что раз взрослый тянет к себе кольцо безмена с силою 10 кг, а ребенок тянет за крюк в свою сторону с силою 3 кг, то указатель должен остановиться у 13 кг.

Это неверно потому, что нельзя тянуть тело с силою 10 кг, если нет равного противодействия. В данном случае противодействующая сила есть сила ребенка, которая не превышает 3 кг; поэтому взрослый может тянуть безмен с силою не более 3 кг. Указатель безмена остановится, следовательно, у деления в 3 кг.

Кому это представляется неправдоподобным, тот пусть рассмотрит случай, когда ребенок, держа безмен, вовсе не тянет его к себе: сможет ли взрослый вытянуть на таком безмене хоть один грамм?

Отметим, кстати, что равенство действия и противодействия не нарушается никогда, ни при каких условиях.

Некоторые не понимают этого по вине своих учителей.

Так, например, в «Физике» проф. А. К. Тимирязева (ч. I, с. 69) можно найти прямое утверждение, что «равновесие (автор разумел равенство ) между действием и противодействием» в некоторых случаях временно нарушается. Это неожиданное в устах профессора физики утверждение поясняется следующим примером.

«На нитке, которую я держу в руках, висит гиря в 5 фунтов. Я держу руку неподвижно; для этого я должен делать усилие в 5 фунтов. Я быстро увеличиваю эту силу, т. е. дергаю нитку вверх. Этим самым я сообщаю ускорение вверх спокойно висевшей гире – я привожу ее в движение из состояния покоя – я нарушил равенство действия и противодействия , вызвав движение – я увеличил действие но в процессе движения развивается противодействие, которое как раз уравновешивает увеличение силы моей руки, вызвавшей это движение».

Подобные «разъяснения», смешивающие равенство сил с их равновесием (сила действия и сила противодействия никогда не уравновешивают друг друга, потому что приложены к разным телам), только затемняют дело и упрочивают ходячие превратные представления о третьем законе Ньютона..

23. Приседание на весах

Ошибочно полагать, что платформа не сдвинется сов – сем, так как вес человеческого тела при приседании не меняется. Та сила, которая при приседании увлекает туловище вниз, тянет ноги вверх: давление их на платформу уменьшается – и она подается вверх.

24. На воздушном шаре

Шар в покое не останется. Пока человек взбирается по лестнице, аэростат будет опускаться. Здесь происходит то же, что наблюдается, когда вы ходите по приставшей к берегу легкой лодке, чтобы выбраться на сушу: лодка отступает под вашими ногами назад. Точно так же и лестница, отталкиваемая вниз ногами взбирающегося по ней человека, будет увлекать аэростат к земле.

Что касается величины перемещения шара, то оно во столько же раз меньше поднятия человека, во сколько раз масса шара больше массы человека.

25. Муха в банке

Муха в банке Предложенный вопрос поставлен был в немецком научном журнале «Umschau» и сделался предметом оживленного обсуждения, в котором участвовало пол – дюжины инженеров. Выдвигались самые разнообразные доводы, привлекались многочисленные формулы, но решения давались противоречивые: спор не привел к единообразному ответу.

Разобраться в задаче можно, однако, и не обращаясь к уравнениям. Покинув стенку банки и держась в воздухе на неизменном уровне, муха давит крылышками на воздух с силою, равною весу насекомого; давление это передается дну банки. Следовательно, весы должны оставаться в том же положении, в каком были, когда муха сидела на стенке.

Так будет до тех пор, пока муха держится на одном уровне. Если же, летая в банке, муха поднимается вверх или опускается вниз, то в момент изменения движения муха, двигаясь с ускорением , находится под действием силы. Когда муха начинает подниматься, приложенная к ней сила направлена вверх, сила же противодействия, приложенная к воздуху в банке, направлена вниз. Передаваясь банке, она увлекает чашку вниз. При полете мухи вниз чашка в силу подобной же причины должна облегчаться.

Итак, при полете мухи вверх чашка опустится, а полет вниз вызовет подъем чашки.

26. Маятник Максвелла

Расчет приводит к довольно парадоксальному результату, который, однако, подтверждается опытом. А именно: в то время, когда маховик идет вниз, нити не подвержены натяжению с силою полного его веса, и указатель безмена поднимается ; он сохраняет неизменным определенное приподнятое положение в течение всего времени, пока маховик опускается. Такое же положение сохраняет указатель и во время подъема маховика и да – же в момент достижения им высшей точки, где он на мгновение словно останавливается. Только в самой низ – кой точке пути маховик заставляет указатель рвануться вниз, чтобы в следующий момент вернуть его опять к прежнему повышенному положению.

«Этот опыт, – пишет проф. Р. Поль, – даже на искушенного в физике производит часто поразительное впечатление».

Подтвердим сказанное вычислением. Прежде всего покажем, что движение маховика вниз есть движение равноускоренное, с постоянным ускорением, меньшим, нежели ускорение свободного падения. Исходя из закона сохранения энергии, составляем уравнение:

где т – масса маховика; g – ускорение свободного падения; h – высота, с какой опустился маховик; mgh – потеря потенциальной энергии, превратившейся в кинетическую энергию поступательного и вращательного движений; v – скорость поступательного движения; ω – угловая скорость вращательного движения; K – момент инерции маховика. Так как энергия вращательного движения маховика составляет некоторую долю энергии его поступательного движения, то правую часть уравнения можем заменить некоторой величиной qmv 2 , где q – отвлеченное число (большее единицы), зависящее только от момента инерции K маховика; следовательно, q во время движения маховика не меняется. Итак,

mgh = qmv2,

Сравнивая полученное выражение с формулой для свободного падения:

Видим, что скорость опускания маховика в каждой точке составляет всегда одинаковую долю скорости свободного падения:

С другой стороны, мы знаем, что скорость v 1 свободного падения связана с его продолжительностью t следующей зависимостью:

v1 = gt.

Это показывает, что маховик опускается равноускоренным движением с ускорением а , равным . Так как q >1 , то a< g .

Сходным образом можно доказать, что подъем маховика совершается равнозамедленным движением с тем же (по величине и направлению) ускорением а .

Установив величину ускорения, определим натяжение нитей маятника при нисходящем и восходящем движении маховика. Так как маховик увлекается вниз с силою, меньшею его веса, то очевидно, что его тянет вверх некоторая сила f , которая равна разности между весом mg маховика и силой та, увлекающей его в движение:

f = mg – ma.

Это и есть натяжение нитей. Отсюда следует, что указатель безмена должен во все время падения маховика стоять выше деления, отвечающего весу маховика.

Для случая, когда маховик идет вверх, натяжение нитей выражается тем же уравнением, какое мы вывели для движения нисходящего:

f = mg – ma.

Значит, положение указателя безмена должно при подъеме маховика быть то же, что и при его опускании.

Уравнение f = mg – та остается в силе и в момент достижения маховиком высшей точки пути: смена восходящего движения нисходящим не влияет на положение указателя.

Напротив, при достижении низшей точки пути маховик резким рывком нитей сдвигает на мгновение указатель вниз. Причина рывка та, что в этот момент маховик, размотав нити до конца, переходит с одной их стороны на другую. Маховик висит тогда на вытянутых нитях, пере – давая точкам их прикрепления не только свой полный вес, но и центробежный эффект движения оси маховика по дуге малого радиуса. Указатель безмена опускается ниже деления, отвечающего полному весу маховика.

27. Плотничий уровень в вагоне

Пузырек уровня при движении вагона отходит от се – редины то в одну, то в другую сторону, – но судить по этому признаку о наклоне пути нужно очень осмотрительно, так как движения пузырька не во всех случаях бывают обусловлены этой причиной. При отходе от станции, когда поезд разгоняется, и при торможении, когда движение замедляется, пузырек уровня отплывает в сторону даже и на строго горизонтальном участке. И только когда поезд движется равномерно, без ускорения, уровень показывает нормально подъемы и уклоны пути.

Рис. 65–66. Отклонение пузырька плотничьего уровня в движущемся вагоне


Чтобы понять это, обратимся к чертежам. Пусть (рис. 65) АВ – уровень, Р – его вес в неподвижном поезде. Поезд трогается на горизонтальном пути в направлении, указанном стрелкой MN , т. е. идет с ускорением. Опора под уровнем стремится выскользнуть вперед; следовательно, уровень стремится скользить по полу назад. Сила, увлекающая уровень назад в горизонтальном на – правлении, изображена на чертеже вектором OR . Равнодействующая Q сил Р и R прижимает уровень к опорной плоскости, действуя на жидкость в нем как вес. Для уровня отвесная линия как бы направлена по OQ , и, следовательно, горизонтальная плоскость временно перемещается в НН . Ясно, что пузырек отвеса отойдет к концу B, приподнятому по отношению к новой горизонтальной плоскости. Это должно происходить на строго горизонтальном пути. На уклоне уровень может ложно показать горизонтальность пути или даже подъема, в зависимости от величины уклона и ускорения поезда.

Когда поезд начинает тормозить, расположение сил меняется. Теперь (рис. 66) опорная плоскость стремится отстать от уровня; на последний начинает действовать сила R′ , увлекающая уровень вперед; при отсутствии трения она заставила бы уровень скользить к передней стенке вагона. Равнодействующая Q′ сил R′ и Р направлена теперь вперед; временная горизонтальная плоскость перемещается в Н′Н′, и пузырек отходит к концу А , хотя бы поезд шел по горизонтальному пути.

Короче говоря, при наличии ускорения пузырек уровня отходит от среднего положения. Уровень показывает на горизонтальном пути подъем, когда поезд движется ускоренно, и уклон, когда поезд идет с замедлением. И только при отсутствии ускорения (положи – тельного или отрицательного) уровень дает нормальные показания.

Нельзя также полагаться на уровень в движущемся поезде при суждении о поперечном наклоне пути: центробежный эффект, складываясь с силою тяжести, может на закруглениях пути обусловить обманчивые показания уровня. (Подробности об этом читатель найдет в моей «Занимательной механике», главе третьей).

28. Отклонение пламени свечи

1. Думающие, что пламя свечи, переносимой в за – крытом фонаре, вовсе не будет отклоняться при движении фонаря, – ошибаются. Причина отклонения вперед та, что пламя обладает меньшею плотностью, чем окружающий его воздух. Одна и та же сила телу с меньшей массою сообщает бóльшую скорость, чем телу с боль-100 шею массою. Поэтому пламя, двигаясь быстрее воздуха в фонаре, отклоняется вперед.

2. Та же причина – меньшая плотность пламени, нежели окружающего воздуха, – объясняет и неожиданное поведение пламени при круговом движении фонаря: оно отклоняется внутрь, а не наружу, как можно было, пожалуй, ожидать. Явление станет понятно, если вспомним, как располагаются ртуть и вода в шаре, вращаемом на центробежной машине: ртуть располагается дальше от оси вращения, чем вода; последняя словно всплывает в ртути, если считать «низом» направление от оси вращения (т. е. направление, в котором «падают» тела под действием центробежного эффекта). Более легкое, чем окружающий воздух, пламя при круговом движении фонаря «всплывает» в воздухе «вверх», т. е. по направлению к оси вращения.

29. Согнутый стержень

Читатель, подозревающий в вопросе подвох и готовый ответить, что стержень после сгибания останется в равновесии, заблуждается. С первого взгляда может, пожалуй, показаться, что обе половины прута, как имеющие одинаковый вес, должны уравновешиваться. Но разве одинаковые грузы на рычаге всегда уравновешивают друг друга? Для равновесия грузов на рычаге необходимо, чтобы отношение их величин было обратно отношению плеч. Пока стержень не был согнут, плечи рычага были равны, так как вес каждой половины приложен был в ее середине (рис. 67); тогда их равные веса уравновешивались. Но после сгибания правой половины стержня правое плечо рычага стало вдвое короче левого. И именно потому, что веса половин стержня равны, они теперь не уравновешивают друг друга: перетягивает левая часть, так как вес ее приложен в точке, удаленной от точки опоры вдвое более, чем в правой части (рис. 67, внизу). Итак, несогнутая часть стержня перетянет согнутую.

Рис. 67. Прямой стержень в равновесии, согнутый – нет

30. Два безмена

Оба безмена покажут одинаковую нагрузку. В этом легко убедиться, разложив (рис. 68) вес R гири на две силы Р и Q , приложенные в точках С и D. Так как МС = MD , то Р = Q. Наклонное положение стержня не нарушает равенства этих сил.

Рис. 68. Оба безмена растягиваются одинаково, так как


Сходным образом часто ошибочно судят о нагрузке, приходящейся на каждого из двоих несущих мебель по лестнице. Когда двое несут, например, шкаф вверх по лестнице, принято думать, что нагрузка заднего больше нагрузки переднего. При этом рассуждают так, словно шкаф, который держат в руках или на плечах, стремится вниз наклонно. На самом деле направление сил отвесное, и нагрузка на обоих одинакова.

31. Рычаг

Сила F (рис. 69) должна быть направлена под прямым углом к линии ВС: тогда плечо этой силы будет наибольшим и, следовательно, для получения требуемого статического момента понадобится наименьшая сила.

Рис. 69. Решение задачи о кривом рычаге

32. На платформе

Определить величину искомого усилия можно следующим рассуждением.

Рис. 70. К ответу на вопрос 32


На верхний блок действует натяжение двух веревок, общая величина которого равна весу человека плюс вес платформы, т. е. 90 кг. Натяжение каждой веревки с и d равно, следовательно, 45 кг. Сила в 45 кг, удерживая нижний блок, уравновешивает натяжение двух веревок а и b ; натяжение каждой из них равно 22 1 / 2 кг.

Итак, искомое натяжение веревки а = 22 1 / 2 кг. С такой силой человек должен тянуть веревку, чтобы удерживать платформу от падения.

33. Провисающая веревка

Как бы сильно веревка ни была натянута, она неизбежно провисает. Сила тяжести, вызывающая провисание, направлена отвесно, натяжение же веревки не имеет вертикального направления. Такие две силы ни при каких условиях не могут уравновеситься, т. е. их равнодействующая не может равняться нулю. Эта-то равнодействующая и вызывает провисание веревки.

Рис. 71. Нельзя натянуть веревку так, чтобы она между блоками не провисала


Никаким усилием, как бы велико оно ни было, нельзя натянуть веревки строго прямолинейно (кроме случая, когда она направлена отвесно). Провисание неизбежно; можно уменьшить его величину до желаемой степени, но нельзя свести его к нулю. Итак, всякая неотвесно натянутая веревка, всякий передаточный ремень должны провисать.

По той же причине невозможно, между прочим, натянуть и гамак так, чтобы веревки его были горизонтальны. Туго натянутая проволочная сетка кровати прогибается под грузом лежащего на ней человека. Гамак же, натяжение веревок которого гораздо слабее, при лежании на нем человека превращается в свешивающийся мешок.

Рис. 72. Гамак невозможно натянуть строго горизонтально

34. Увязший автомобиль

Силы одного человека часто оказывается достаточно, чтобы извлечь тяжелую машину тем примитивным способом, который описан в задаче. Веревка, при любой ее натянутости, должна уступить действию даже умеренной силы, приложенной под прямым углом к ее направлению. Причина С та же, какая заставляет провисать всякую натянутую веревку.

Возникающие при этом силы показаны на рис. 73. Сила CF тяги человека разлагается на две С CQ и СР , направленные вдоль веревки. Сила CQ тянет пень и, если он достаточно крепок, парализуется его сопротивлением. Сила же СР увлекает автомобиль, и так как она значительно больше, чем CF, то может извлечь машину из выбоины. Выигрыш силы тем больше, чем больше угол АСВ , т. е. чем сильнее натянута веревка.

Рис. 73. Как вытащить автомобиль из выбоины

35. Трение и смазка

Смазка ослабляет трение средним числом раз в 10.

36. По воздуху и по льду

Можно думать, что так как сопротивление воздуха слабее, чем трение о лед, то тело, летящее через воздух, достигает дальше, чем скользящее по льду. Заключение это неправильно: оно не учитывает того, что сила тяжести пригибает вниз путь брошенного тела, которое вследствие этого и не может быть далеко закинуто. Сделаем расчет, причем ради упрощения выкладок будем считать сопротивление воздуха равным нулю. Оно, впрочем, и действительно крайне ничтожно для тех скоростей, какие можно сообщить телу рукой человека.

Для тел, брошенных в пустоте под углом к горизонту, наибольшая дальность достигается тогда, когда угол равен 45°. При этом, как выводится в курсах механики, дальность бросания определяется формулой:

Где v – начальная скорость; g – ускорение тяжести. Если же тело скользит по поверхности другого тела (в данном случае лед по льду), то сообщенная ему кинетическая энергия расходуется на преодоление работы силы трения f , равной kmg , где k – коэффициент трения, а mg (произведение массы тела на ускорение тяжести) – вес тела. Работа трения на пути L′ равна

kmgL′ .

Из уравнения

находим величину L′ пробега льдинки

Принимая коэффициент трения льда о лед равным 0,02, имеем

Между тем дальность бросания равна всего , в 25 раз меньше.

Итак, заставив льдинку скользить по льду, мы можем закинуть ее раз в 25 дальше, чем бросив в воздух.

Если принять во внимание, что брошенная льдинка может продолжать двигаться и после падения, то дальность скольжения будет превышать дальность бросания уже не столь значительно; но и в таком случае преимущество на стороне скользящей, а не брошенной льдинки.

37. Падение тела

Падение тела «Тик – так» карманных часов длится не одну секунду, как часто думают, а только 0,4 с. Поэтому путь, проходимый падающим телом в этот промежуток времени, равен

т. е. около 80 см.

38. Затяжной прыжок с парашютом

Противоречие объясняется тем, что падение с нераскрытым парашютом ошибочно принято было за свободное, не замедляемое сопротивлением воздуха. Между тем оно существенно отличается от падения в несопротивляющейся среде.

Попробуем установить, хотя бы приблизительно, подлинную картину падения при затяжном прыжке. Будем пользоваться для расчетов следующей найденной из опыта приближенной формулой для величины f сопротивления воздуха при рассматриваемых условиях:


f = 0,03 v 2 кг,


где v – скорость падения в метрах в секунду. Сопротивление, как видим, пропорционально квадрату скорости; а так как парашютист падает с возрастающей скоростью, то наступает момент, когда сила сопротивления делается равной весу тела. С этого момента скорость падения расти больше не будет; падение из ускоренного становится равномерным.

Для парашютиста это наступает тогда, когда его вес (вместе с парашютом) сделается равным 0,03v 2 ; принимая вес снаряженного парашютиста в 90 кг, имеем уравнение


0,03v 2 = 90,


откуда v = 55 м/с.

Итак, парашютист падает ускоренно лишь до тех пор, пока не накопит скорости 55 м/с. Это наибольшая скорость, с какою он опускается, в дальнейшем скорость уже не возрастает. Определим – опять приближенно – сколько секунд употребил парашютист для достижения этой максимальной скорости. Примем во внимание, что в самом начале падения, пока скорость мала, сопротивление воздуха ничтожно, и тело падает как свободное, т. е. с ускорением 9,8 м/с. К концу же интервала ускоренного движения, когда устанавливается равномерное падение, ускорение равно нулю. Для нашего приближенного расчета можно допустить, что ускорение в среднем равнялось

Если принять таким образом, что секундная скорость нарастала на 4,9 м в секунду, то она достигает величины 55 м по истечении

55: 4,9 = 11 с.


Путь 5, проходимый телом в 11 секунд такого ускоренного движения, равен

Теперь выясняется подлинная картина падения Евдокимова. Первые 11 с он падал с постепенно уменьшающимся ускорением, пока не накопил скорости 55 м/с, приблизительно на 300-м метре пути. Остальной путь затяжного прыжка он проходил равномерным движением со скоростью 55 м/с. Равномерное движение, согласно нашему приближенному расчету, длилось

а весь затяжной прыжок

11 + 138 = 149 с,


что мало отличается от действительной продолжительности (142 с).

Сделанный нами элементарный расчет надо рассматривать лишь как первое приближение к действительности, так как он основан на ряде упрощающих допущений.

Приведем для сравнения данные, полученные путем опыта: при весе снаряженного парашютиста 82 кг максимальная скорость устанавливается на 12-й секунде, когда парашют опускается на 425–460 м (Забелин, М. Прыжок с парашютом. М., 1933).

39. Куда бросить бутылку?

Так как мы привыкли к тому, что прыгать из движущегося вагона безопаснее вперед по направлению движения, то может казаться, что бутылка ударится о землю слабее, если ее кинуть вперед. Это неверно: вещи надо бросать назад , против движения поезда. Тогда скорость, сообщенная бутылке бросанием, будет отниматься от той, какую бутылка имеет вследствие инерции: в итоге бутылка встретит землю с меньшей скоростью. При бросании вперед произошло бы обратное: скорости сложились бы, и удар получился бы сильнее.

То, что для человека безопаснее все же прыгать вперед, а не назад, объясняется совсем другими причинами: падая вперед, мы меньше расшибаемся, чем при падении назад .

40. Из вагона

Тело, брошенное с некоторою начальною скоростью, – безразлично, в каком направлении, – подвержено той же силе тяжести, какая увлекает и тело, уроненное без начальной скорости. Ускорение падения для обоих тел одинаково, поэтому они достигнут земли одновременно. Значит, вещь, брошенная из движущегося вагона, достигает земли в такой же промежуток времени, как и брошенная из вагона неподвижного.

41. Три снаряда

Рисунок 14 ошибочен. Дальность полета снарядов, брошенных под углами в 30° и в 60°, должна быть одинакова (как и вообще для всяких углов, дополняющих друг друга до 90°). На рис. 14 это не соблюдено.

Что касается снаряда, брошенного под углом в 45°, то на рис. 14 правильно показано, что дальность его наибольшая. Эта максимальная дальность должна вчетверо превышать подъем самой высокой точки траектории, – это на рис. 14 также соблюдено (приблизительно). Правильный чертеж приложен (рис. 74).

Рис. 74. К ответу на вопрос 41

42. Путь брошенного тела

В большинстве учебных книг утверждается без оговорок, что тело, брошенное в пустоте под углом к горизонту, движется по параболе. Весьма редко делается при этом замечание, что дуга параболы является только приближенным изображением истинной траектории тела; оно верно лишь при небольших начальных скоростях брошенного тела, т. е. пока тело не слишком удаляется от земной поверхности и, следовательно, пока можно пренебречь уменьшением силы тяжести. Если бы брошенное тело двигалось в пространстве, где сила тяжести постоянна, путь его был бы строго параболический. В реальных же условиях, когда сила притяжения убывает с расстоянием по закону обратных квадратов, брошенное тело должно подчиняться 1–му закону Кеплера и, следовательно, двигаться по эллипсу , фокус которого находится в центре Земли.

Поэтому, строго говоря, каждое тело, брошенное на земной поверхности под углом к горизонту, должно в пустоте двигаться не по дуге параболы, а по дуге эллипса . При современных артиллерийских скоростях различие между обеими траекториями весьма незначительно.

Но в будущем, когда технике придется иметь дело со скоростями крупных жидкостных ракет, летящих в несопротивляющейся среде, нельзя будет даже приближенно принимать путь ракеты выше пределов атмосферы за параболический.

Рис. 75. Тело, брошенное наклонно к горизонту, должно в пустоте двигаться по дуге эллипса, фокус которого F в центре планеты

43. Наибольшая скорость артиллерийского снаряда

Скорость артиллерийского снаряда должна возрастать все время, пока давление на него пороховых газов сзади превосходит сопротивление воздуха спереди. Давление же пороховых газов не прекращается в момент выхода снаряда из канала орудия: газы продолжают давить на снаряд и вне орудия с силою, которая в первые мгновения превосходит сопротивление воздуха; следовательно, скорость снаряда должна еще в течение некоторого времени расти. Только тогда, когда расширение газов в свободном пространстве уменьшит их давление до того, что оно станет слабее сопротивления воздуха, снаряд будет подвержен спереди большему напору, чем сзади, и скорость его станет уменьшаться.

Итак, максимальной своей скорости снаряд действительно должен достигать не внутри орудия, а вне его, на некотором расстоянии от жерла, т. е. спустя короткий промежуток после того, как он уже покинул ствол орудия.

44. Прыжки в воду

Опасность прыжка в воду с значительной высоты состоит, главным образом, в том, что накопленная при падении скорость сводится к нулю на слишком коротком пути. Если, например, пловец бросается с высоты 10 м и погружается в воду на глубину 1 м, то скорость, накопленная на пути 10 м свободного падения, уничтожается на участке в 1 м. Отрицательное ускорение при погружении в воду должно быть в 10 раз больше ускорения свободно падающего тела. При погружении в воду пловец испытывает поэтому давление снизу, в данном случае вдесятеро превосходящее обычное давление, порождаемое весом. Иными словами, тело пловца становится словно в 10 раз тяжелее С вместо 70 кг весит 700 кг. Такой непомерный груз, действуя даже короткое время (пока длится погружение), может вызвать в организме серьезные расстройства.

Отсюда следует, между прочим, что вредные последствия прыжка смягчаются при возможно более глубоком погружении в воду; накопленная при падении скорость поглощается тогда на более длинном пути, и ускорение (отрицательное) становится меньше.

45. На краю стола

Если плоскость стола перпендикулярна к отвесной линии, проходящей через ее середину, то края стола расположены, очевидно, дальше от центра Земли, т. е. выше, чем середина (практически на весьма незначительную величину). При полном отсутствии трения и при идеально плоской поверхности шар должен поэтому скатиться с края стола к его середине. Здесь, однако, он не может остановиться С накопленная кинетическая энергия увлечет его далее до точки, находящейся на одном уровне с начальной, т. е. до противоположного края.

Рис. 76. При взгляде на этот рисунок, не у всех явится мысль, что шар должен скатиться к середине стола

77. Но из этого чертежа ясно, что шар не может оставаться в покое (при отсутствии трения)


Оттуда шар снова откатится в первоначальное положение и т. д. Короче говоря, при отсутствии трения о плоскость стола и сопротивления воздуха, шар, положенный на край идеально плоского стола, пришел бы в нескончаемое движение.

Один американец предлагал устроить на этом принципе вечное движение. Проект его, изображенный на рис. 78, по идее совершенно правилен и осуществил бы вечное движение, если бы возможно было избавиться от трения. Впрочем, то же самое можно осуществить и проще С с помощью груза, качающегося на нити: при отсутствии трения в точке привеса (и сопротивления воздуха) такой груз должен качаться вечно . Производить работу подобные приспособления, однако, не способны.

В заключение поучительно остановиться на возражении, сделанном одним из читателей, который утверждает, что в приведенном рассуждении смешиваются две точки зрения – геометрическая и физическая. Геометрически, – поясняет читатель, – мы считаем лучи Солнца сходящимися на его поверхности, физически же признаем их параллельными. Подобно этому, в нашей задаче две отвесные линии, проведенные на Земле в расстоянии 1 м, геометрически пересекаются в центре земного шара, но физически должны считаться параллельными. А потому сила, увлекающая шар с края стола к середине, физически равна нулю; никакого скатывания наблюдаться не может.

Рис. 78. Один из проектов «вечного движения»


Возражение ошибочно. Нетрудно убедиться расчетом, что отвесные линии, проведенные на Земле в расстоянии 1 м одна от другой, составляют между собою угол, который в 23 000 раз больше, чем угол между лучами Солнца, направленными к тем же точкам. Что касается величины силы, побуждающей шар скатываться с края стола, длиною в 1 м, то она составляет примерно одну 10–миллионную долю веса шара. В условиях нашей задачи, т. е. при полном отсутствии сопротивлений, всякая сколь угодно малая сила должна привести тело в движение, как бы велика ни была его масса. В данном случае, впрочем, сила не так уж мала: она одного порядка величины с тою силою, которая порождает океанские приливы; последняя сила даже и в реальных условиях (т. е. при наличии сопротивлений) ощутительно проявляет свое действие.

46. На наклонной плоскости

Не следует думать, что в положении А брусок, оказывая на опорную плоскость большее удельное давление, испытывает и большее трение. Величина трения не зависит от размеров трущихся поверхностей. Поэтому если брусок скользил, преодолевая трение, в положении В , то он будет скользить и в положении А.

47. Два шара

1. При решении этой задачи нередко делают существенную ошибку: не принимают во внимание, что отвесно падающий шар движется только поступательно, между тем как шар, скатывающийся по плоскости, совершает, кроме поступательного движения, также и вращательное. Не свободны от этого недосмотра даже некоторые школьные учебники.

Какое влияние оказывает отмеченное обстоятельство на скорость скатывающегося тела, видно из следующего вычисления.

Потенциальная энергия шара, обусловленная его положением вверху наклонной плоскости, превращается при отвесном падении целиком в энергию поступательного движения, и из уравнения

или (после замены веса р шара произведением его массы m на ускорение g тяжести) из равенства

легко получается скорость v такого шара в конце пути

где h – высота наклонной плоскости.

Иначе обстоит дело с шаром, скатывающимся по наклонной плоскости. В этом случае та же потенциальная энергия ph преобразуется в сумму двух кинетических энергий – в энергию поступательного движения со скоростью v 1 и вращательного – с угловою скоростью ω. Величина первой энергии равна

Вторая равна полупроизведению момента инерции K шара на квадрат его угловой скорости ω:

Имеем, следовательно, уравнение:

Из курса механики известно, что момент инерции K однородного шара массы т и радиуса r относительно оси, проходящей через центр, равен 2 / 5 тr 2 . Далее, легко сообразить, что угловая скорость ω этого шара, катящегося с поступательною скоростью v 1 , равна . Поэтому энергия вращательного движения

Заменив в нашем уравнении, кроме того, вес р шара равным ему выражением mg , получаем:

или, после упрощения,

gh = 0,7v 1 2 .


Отсюда поступательная скорость

Сопоставляя эту скорость со скоростью в конце отвесного падения (), видим, что они заметно различаются: скатившийся шар (любого радиуса и любой массы) в конце пути, да и в каждой его точке, движется вперед со скоростью на 16 % меньшею, чем шар, свободно упавший с той же высоты.

Сравнивая шар, скатывающийся по наклонной плоскости, с телом, скользящим по той же плоскости с равной высоты, легко установить, что скорость первого в каждой точке пути на 16 % меньше скорости второго.

Скользящий шар при отсутствии трения достигает конца наклонного пути раньше (на 16 %), нежели катящийся. То же верно и для тела, падающего отвесно: оно должно опередить скатывающийся шар на 16 %.

Кто знаком с историей физики, тому известно, что Галилей установил законы падения тел, производя опыты с шарами, которые он пускал по наклонному желобу (длина – 12 локтей, возвышение одного конца 1–2 локтя). После сказанного выше может возникнуть сомнение в правильности пути, избранного Галилеем. Сомнение, однако, отпадает, если вспомним, что скатывающийся шар в своем поступательном перемещении движется равноускоренно, так как в каждой точке наклонного желоба скорость его составляет одну и ту же долю (0,84) скорости отвесно падающего шара на том же уровне. Форма зависимости между пройденным путем и временем остается та же, что и для тела, свободно падающего. Поэтому Галилей и мог правильно установить законы падения тел в результате своих опытов с наклонным желобом.

Конец ознакомительного фрагмента.

За два года до смерти американский изобретатель пожелал поощрить стипендией наиболее сметливого юношу Соединенных Штатов. С разных концов республики направлены были к нему одареннейшие школьники, по одному из каждого штата, и Эдисон, во главе особой, учрежденной им комиссии, подверг молодых людей испытанию, предложив ответить письменно на 57 вопросов из физики, химии, математики и общего характера. Победителем в состязании оказался 16-летний Вильбер Хастон из Детройта. Правда, выдающимся изобретателем этот юноша так и не стал.

Сиракузский правитель, по преданию С родственник Архимеда. (Не смешивать с ученым-механиком древности Героном.)

Ныне – «Чистые пруды»

Микрон становится уже довольно крупной единицей длины и для современной техники: массовое производство сложных машин, возможное лишь при полной взаимозаменяемости частей, ввело в производственную практику употребление измерительных приборов, улавливающих десятые доли микрона (см. ответ на вопрос 218).

Строго говоря, о диаметре электрона можно говорить лишь условно. «Если сделать предположение, – пишет проф. Дж. П. Томсон, – что электрон подчиняется тем же самым законам, каким следует в лаборатории заряженный металлический шар, то можно подсчитать и «диаметр» электрона; для него получится значение 3,7· 10–13 см. Но этот результат не удалось еще проверить никаким опытом».

Литий находит себе применение для изготовления красных сигнальных ракет, в стекольной промышленности (изготовление молочного стекла), в металлопромышленности (для придания твердости сплавам) и др.

Название сплава – «электрон» – произошло от наименования фирмы, на предприятиях которой он впервые был изготовлен. Советский самолет «Серго Орджоникидзе» был целиком построен из электрона отечественного изготовления.

70-тонные брусья Эйфелевой башни заменились бы в модели проволочками, весящими 0,07 г.

Подробнее об этом см. мою «Занимательную механику» главу первую.

Всего безопаснее, впрочем, прыгать не вперед, а назад, но лицом вперед. Подробнее об этом см. «Занимательная физика»

В Парижской обсерватории был произведен (Борда) опыт с маятником, качающимся в безвоздушном пространстве при минимально уменьшенном трении в точке привеса: маятник качался 30 часов. Интересно, как затухают постепенно колебания 98-метрового маятника, подвешенного в здании Исаакиевского собора.

Первоначально 12-метровые размахи спустя 3 часа уменьшаются в 10 раз. Через 6 часов от начала наблюдений размахи сокращаются до 6 см, через 9 часов – до 6 мм. Спустя 12 часов от начала наблюдений размахи делаются незаметными для невооруженного глаза.

Подлинное знание элементарной физики - явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим ее успехам. Возвращаться к элементарной физике не принято, и она живет в памяти многих такою, какою была воспринята некогда умом школьника-подростка. Настоящая книга представляет собою пространную физическую "викторину", которая должна помочь вдумчивому читателю установить, насколько в действительности овладел он основами физики. Конечная цель книги - убедить читателя, что область элементарной физики гораздо богаче содержанием, чем думают многие, а попутно - обратить внимание на ошибочность ряда ходячих физических представлений. То и другое должно побудить читателей критически пересмотреть и тщательно проверить багаж своих физических знаний.

Издательство: "Терра" (2015)

ISBN: 978-5-4224-0502-2,978-5-4224-0827-6,978-5-4224-0999-0

Место рождения:
Дата смерти:
Место смерти:
Гражданство:
Род деятельности:
Жанр:
Дебют:

очерк «По поводу ожидаемого огненного дождя»

Я́ков Иси́дорович Перельма́н ( , - , ) - российский, учёный, популяризатор , и , один из основоположников жанра , и основоположник , автор понятия научно-фантастическое .

Биография

Яков Исидорович Перельман родился 4 декабря (22 ноября по старому стилю) 1882 года в городе Гродненской губернии (ныне Белосток входит в состав ). Его отец работал счетоводом, мать преподавала в начальных классах. Родной брат Якова Перельмана, Осип Исидорович, был прозаиком и , писавшим по-русски и на (псевдоним Осип Дымов).

1916 год - вышла в свет вторая часть книги «Занимательная физика».

Библиография

Библиография Перельмана насчитывает более 1000 статей и заметок, опубликованных им в различных изданиях. И это помимо 47 научно-популярных, 40 научно-познавательных книг, 18 школьных учебников и учебных пособий.

По данным Всесоюзной книжной палаты, с по год его книги только в нашей стране издавались 449 раз; их общий тираж составил более 13 миллионов экземпляров. Они печатались:

  • на русском языке 287 раз (12,1 миллиона экземпляров);
  • на 21 языке народов СССР - 126 раз (935 тысяч экземпляров).

Согласно подсчётам московского библиофила Ю. П. Ирошникова, книги Я. И. Перельмана 126 раз издавались в 18 зарубежных странах на языках:

  • немецком - 15 раз;
  • французском - 5;
  • польском - 7;
  • английском - 18;
  • болгарском - 9;
  • чешском - 3;
  • албанском - 2;
  • хинди - 1;
  • венгерском - 8;
  • новогреческом - 1;
  • румынском - 6;
  • испанском - 19;
  • португальском - 4;
  • итальянском - 1;
  • финском - 4;
  • на восточных языках - 7;
  • других языках - 6 раз.

Книги

  • Азбука метрической системы. Л., Научное книгоиздательство, 1925 г.
  • Быстрый счет . Л., 1941 г.
  • В мировые дали (о межпланетных перелетах). М., Изд-во Осоавиахима СССР, 1930 г.
  • Веселые задачи. Пг., Изд-во А. С. Суворина, 1914.
  • Вечера занимательной науки. Вопросы, задачи, опыты, наблюдения из области астрономии, метеорологии, физики, математики (в соавторстве с В. И. Прянишниковым). Л., Леноблоно, 1936.
  • Вычисления с приближенными числами. М., АПН СССР, 1950.
  • Газетный лист. Электрические опыты. М. - Л., Радуга, 1925.
  • Геометрия и начатки тригонометрии. Краткий учебник и собрание задач для самообразования. Л., Севзаппромбюро ВСНХ, 1926.
  • Далекие миры. Астрономические очерки. Пг., Изд-во П. П. Сойкина, 1914.
  • Для юных математиков. Первая сотня головоломок. Л., Начатки знания, 1925.
  • Для юных математиков. Вторая сотня головоломок. Л., Начатки знания, 1925.
  • Для юных физиков. Опыты и развлечения. Пг., Начатки знания, 1924.
  • Живая геометрия. Теория и задачи. Харьков - Киев, Униздат, 1930.
  • Живая математика . Математические рассказы и головоломки. М.-Л., ПТИ, 1934
  • Загадки в диковинки в мире чисел. Пг., Наука и школа, 1923.
  • Занимательная алгебра . Л., Время, 1933.
  • Занимательная арифметика . Загадки и диковинки в мире чисел. Л., Время, 1926.
  • Занимательная астрономия . Л., Время, 1929.
  • Занимательная геометрия . Л., Время, 1925.
  • Занимательная геометрия на вольном воздухе и дома. Л., Время, 1925.
  • Занимательная математика . Л., Время, 1927.
  • Занимательная математика в рассказах. Л., Время, 1929.
  • Занимательная механика . Л., Время, 1930.
  • Занимательная физика. Кн. 1 СПб., Изд-во П. П. Сойкина, 1913.
  • Занимательная физика. Кн. 2 . Пг., Изд-во П. П. Сойкина, 1916 (по 1981 год - 21 издание).
  • Занимательные задачи. Л., Время, 1928.
  • Занимательные задачи и опыты . М., Детгиз, 1959.
  • (Физическая викторина для юношества). М. - Л., ГИЗ, 1934.
  • К звездам на ракете. Харьков, Укр. рабочий, 1934.
  • Как решать задачи по физике. М. - Л., ОНТИ, 1931.
  • Математика на вольном воздухе. Л., Политехническая школа, 1931.
  • Математика на каждом шагу. Книга для внеклассного чтения школ ФЗС. М. - Л., Учпедгиз, 1931.
  • Между делом. Опыты и развлечения для детей старшего возраста. М. - Л., Радуга, 1925.
  • Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел. Пг., Изд-во П. П. Сойкина, 1915 (10).
  • Метрическая система. Обиходный справочник. Пг., Научное книгоиздательство, 1923.
  • Наука на досуге. Л., Молодая гвардия, 1935.
  • Научные задачи и развлечения (головоломки, опыты, занятия). М. - Л., Молодая гвардия, 1927.
  • Не верь своим глазам! Л., Прибой, 1925.
  • Новые и старые меры. Метрические меры в обиходной жизни, их преимущества. Простейшие приемы перевода в русские. Пг., Изд. журнала «В мастерской природы», 1920.
  • Новый задачник к краткому курсу геометрии. М. - Л., ГИЗ, 1922.
  • Новый задачник по геометрии . Пг., ГИЗ, 1923.
  • Обманы зрения. Пг., Научное книгоиздательство, 1924.
  • Полет на Луну. Современные проекты межпланетных перелетев. Л., Сеятель, 1925.
  • Пропаганда метрической системы. Методический справочник для лекторов и преподавателей. Л., Научное книгоиздательство, 1925.
  • Путешествия па планеты (физика планет). Пг., Изд-во А. Ф. Маркса, 1919 .
  • Развлечения со спичками. Л., Прибой, 1926.
  • Ракетой на Луну. М. - Л., ГИЗ, 1930.
  • Техническая физика. Пособие для самообучения и собрание практических упражнений. Л., Севзаппромбюро ВСНХ, 1927.
  • Фигурки-головоломки из 7 кусочков. М. - Л., Радуга, 1927.
  • Физика на каждом шагу. М., Молодая гвардия, 1933.
  • Физическая хрестоматия. Пособие по физике и книга для чтения.
    • Вып. I. Механика. Пг., Сеятель, 1922;
    • вып. II. Теплота, Пг., Сеятель, 1923;
    • вып. III. Звук. Л., ГИЗ, 1925;
    • вып. IV. Свет. Л., ГИЗ, 1925.
  • Фокусы и развлечения. Чудо нашего века. Числа-великаны. Между делом. Л., Радуга, 1927.
  • Хрестоматия-задачник по начальной математике (для трудовых школ и самообразования взрослых). Л., ГИЗ, 1924.
  • Циолковский. Его жизнь, изобретения и научные труды. По поводу 75-летия со дня рождения. М. - Л., ГТТИ, 1932.
  • Циолковский К. Э. Его жизнь и технические идеи. М. - Л., ОНТИ, 1935.
  • Числа-великаны. М. - Л., Радуга, 1925.
  • Чудо нашего века. М. - Л., Радуга, 1925.
  • Юный землемер. Л., Прибой, 1926.
  • Ящик загадок и фокусов. М. - Л., ГПЗ, 1929.

Примечания

Ссылки

  • Григорий Мишкевич, «Доктор занимательных наук ». М.: «Знание», 1986.
  • Н.Карпушина, Яков Перельман: штрихи к портрету . , № 5, 2007.

Другие книги схожей тематики:

    Автор Книга Описание Год Цена Тип книги
    Перельман Яков Исидорович Яков Перельман - талантливый ученый и блестящий популяризатор науки. Его ставшая классикой работа "Знаете ли вы физику?"будет лучшим помощником любому школьнику, увлекающемуся физикой. В книге… - Эксмо, (формат: 84x108/32, 368 стр.) Захватывающая наука 2016
    358 бумажная книга
    Яков Перельман - талантливый ученый и блестящий популяризатор науки. Его ставшая классикой работа "Знаете ли вы физику?"будет лучшим помощником любому школьнику, увлекающемуся физикой. В книге… - Эксмо, (формат: 84x108/32, 368 стр.) Захватывающая наука 2016
    302 бумажная книга
    Перельман, Яков Исидорович Яков Перельман - талантливый ученый и блестящий популяризатор науки. Его ставшая классикой работа "Знаете ли вы физику?" будет лучшим помощником любому школьнику, увлекающемуся физикой. В книге… - Эксмо, (формат: 289.00mm x 216.00mm x 8.00mm, 80 стр.) захватывающая наука 2016
    318 бумажная книга
    Яков Перельман Яков Перельман – талантливый ученый и блестящий популяризатор науки. Его ставшая классикой работа «Знаете ли вы физику?» будет лучшим помощником любому школьнику, увлекающемуся физикой. В книге… - Эксмо, (формат: 289.00mm x 216.00mm x 8.00mm, 80 стр.) Захватывающая наука Якова Перельмана электронная книга
    199 электронная книга
    Перельман Я.И. Яков Перельман - талантливый ученый и блестящий популяризатор науки. Его ставшая классикой работа"Знаете ли вы физику?"будет лучшим помощником любому школьнику, увлекающемуся физикой. В книге… - Издательство "Эксмо" ООО, (формат: 289.00mm x 216.00mm x 8.00mm, 80 стр.) Захватывающая наука 2016
    216 бумажная книга
    Перельман Я.И. Сборник вопросов и ответов "Знаете ли вы физику?"приобщает к миру научных знаний, помогает привить читателю вкус к изучению точных наук, вызывает интерес к самостоятельным творческим занятиям. Для… - СЗКЭО Кристалл, (формат: Твердая глянцевая, 350 стр.) Дом занимательной науки 2017
    205 бумажная книга
    Перельман Я. Сборник вопросов и ответов «Знаете ли вы физику?» приобщает к миру научных знаний, помогает привить читателю вкус к изучению точных наук, вызывает интерес к самостоятельным творческим занятиям.. … - СЗКЭО СПб, (формат: Твердая глянцевая, 272 стр.) 2017
    198 бумажная книга
    Я. И. Перельман Сборник вопросов и ответов `Знаете ли вы физику?` приобщает к миру научных знаний, помогает привить читателю вкус к изучению точных наук, вызывает интерес к самостоятельным творческим занятиям. Для… - СЗКЭО, (формат: Твердая глянцевая, 272 стр.) Дом занимательной науки 2017
    148 бумажная книга
    Перельман Я. Знаете ли вы физику В книге Я. И. Перельмана представлены оригинальные задачи различной степени сложности, которые помогут вам по-новому взглянуть на физику. Интересные факты, примеры событий, поддающихся действию… - Центрполиграф, (формат: Твердая глянцевая, 350 стр.) 2011
    317 бумажная книга
    Яков Перельман Одно из лучших классических пособий по физике. Увлекательные физические викторины, скрывающие неожиданные результаты, научат логически рассуждать и нестандартномыслить - АСТ, электронная книга 2007
    139 электронная книга
    Перельман Я. И. Подлинное знание элементарной физики - явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим ее успехам. Возвращаться к элементарной физике не… - Терра, - 2015
    347 бумажная книга
    Перельман Яков Исидорович Подлинное знание элементарной физики - явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим ее успехам. Возвращаться к элементарной физике не… - Римис, 2009
    323 бумажная книга
    Перельман Яков Исидорович Подлинное знание элементарной физики - явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим ее успехам. Возвращаться к элементарной физике не… - Книговек, 2015
    374 бумажная книга
    Яков Перельман Яков Исидорович Перельман (1882-1942) - российский ученый, основоположник жанра научно-занимательной литературы, чьи книги по математике, физике, астрономии на протяжении десятилетий пользуются… - Книжный Клуб Книговек, (формат: 84x108/32, 416 стр.) 2014
    332 бумажная книга
    Я. И. Перельман Подлинное знание элементарной физики - явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим ее успехам. Возвращаться к элементарной физике не… - РИМИС, (формат: 84x108/32, 368 стр.) Подробнее... Википедия Википедия - родился 13 января 1831 года в сельце Кудинове, Мещовского уезда, Калужской губернии. Отец его, Ник. Бор., едва ли происходил из старинного дворянского рода Леонтьевых, в молодости служил в гвардии, но за участие в каком то буйстве был оттуда… … Большая биографическая энциклопедия

    Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким скучным, предлагаем начать учебу с занимательных фактов.

    Почему в радуге семь цветов

    Интересные факты о физике могут касаться даже радуги! Количество цветов в ней определил Исаак Ньютон. Таким явлением, как радуга, интересовался ещё Аристотель, а персидским учёным суть ее открылась ещё в 13-14 веке. Тем не менее мы руководствуемся описанием радуги, которое Ньютон сделал в своей работе «Оптика» в 1704 году. Он выделил цвета с помощью стеклянной призмы.

    Если внимательно посмотреть на радугу, то можно увидеть, как цвета плавно перетекают из одного в другой, образуя огромное количество оттенков. И Ньютон изначально выделил только пять основных: фиолетовый, голубой, зеленый, желтый, красный. Но ученый обладал страстью к нумерологии, и поэтому захотел привести количество цветов к мистической цифре "семь". Он добавил к описанию радуги ещё два цвета - оранжевый и синий. Так получилась семицветная радуга.

    Форма жидкости

    Физика - вокруг нас. Интересные факты могут удивить нас, даже если дело касается такой привычной вещи, как обычная вода. Мы все привыкли думать, что жидкость не имеет собственной формы, об этом говорит даже школьный учебник по физике! Однако это не так. Естественная форма жидкости - шар.

    Высота Эйфелевой башни

    Какова точная высота Эйфелевой башни? А это зависит от погоды! Дело в том, что высота башни колеблется на целых 12 сантиметров. Это происходит от того, что в жаркую солнечную погоду строение нагревается, и температура балок может доходить до 40 градусов по Цельсию. А как известно, вещества могут расширяться под воздействием высокой температуры.

    Самоотверженные ученые

    Интересные факты об ученых-физиках могут быть не только забавными, но и рассказывать об их самоотверженности и преданности любимому делу. Во время изучения электрической дуги физик Василий Петров удалил верхний слой кожи на кончиках пальцев, чтобы ощущать слабые токи.

    А Исаак Ньютон ввел в собственный глаз зонд, чтобы понять природу зрения. Ученый считал, что мы видим потому, что свет давит на сетчатку.

    Зыбучие пески

    Интересные факты о физике могут помочь понять свойства такой занимательной вещи, как зыбучие пески. Они представляют собой Человек или животное не могут погрузиться в зыбучий песок полностью из-за высокой вязкости, но и выбраться из него очень сложно. Чтобы вытащить ногу из зыбучего песка, нужно приложить усилия, сравнимые с поднятием легкового автомобиля.

    В нем нельзя утонуть, но опасность для жизни представляют обезвоживание, солнце, приливы. При попадании в зыбучий песок нужно лечь на спину и ждать помощи.

    Сверхзвуковая скорость

    Вы знаете, каким было первое приспособление, преодолевшее Обычный пастуший кнут. Щелчок, пугающий коров, это не что иное, как хлопок при преодолении При сильном ударе кончик кнута движется так быстро, что создает в воздухе ударную волну. То же самое происходит с самолетом, летящим со сверхзвуковой скоростью.

    Фотонные сферы

    Интересные факты о физике и природе черных дыр таковы, что иногда просто невозможно даже вообразить себе реализацию теоритических выкладок. Как известно, свет состоит из фотонов. Попадая под влияние гравитации черной дыры фотоны образуют дуги, области, где они начинают вращаться по орбите. Ученые полагают, что если поместить человека в такую фотонную сферу, то он сможет увидеть собственную спину.

    Скотч

    Вряд ли вы разматывали скотч в вакууме, но ученые в своих лабораториях это сделали. И выяснили, что при разматывании возникает видимое свечение и рентгеновское излучение. Мощность рентгеновского излучения такова, что позволяет даже делать снимки частей тела! А вот почему это происходит - загадка. Подобный эффект можно наблюдать при разрушении ассиметричных связей в кристалле. Но вот незадача - никакой кристаллической структуры в скотче нет. Так что ученым придется придумать другое объяснение. Не стоит опасаться разматывать скотч в домашних условиях - в воздухе никакого излучения не происходит.

    Эксперименты на людях

    В 1746 году французский физик и, по совместительству, священник Жан-Антуан Нолле исследовал природу электрического тока. Ученый решил узнать, какова скорость электрического тока. Вот только как это сделать в условиях монастыря…

    Физик пригласил на эксперимент 200 монахов, соединил их с помощью железных проводов и разрядил в бедняг батарею из недавно изобретенных лейденских банок (они являются первыми конденсаторами). Все монахи отреагировали на удар одновременно, и это дало понять, что скорость тока чрезвычайно высока.

    Гениальный двоечник

    Интересные факты из жизни физиков могут подавать ложные надежды неуспевающим ученикам. Среди нерадивых учеников ходит легенда, что знаменитый Эйнштейн был самым настоящим двоечником, плохо знал математику и вообще завалил выпускные экзамены. И ничего, стал всемирно Спешим разочаровать: Альберт Эйнштейн начал проявлять недюжинные математические способности ещё в детстве и имел знания, намного превосходящие школьную программу.

    Возможно, слухи о плохой успеваемости ученого возникли потому, что он не сразу поступил в высшую политехническую школу Цюриха. Альберт блестяще сдал экзамены по физике и математике, но в других дисциплинах нужное количество баллов не набрал. Подтянув знания по нужным предметам, будущий ученый успешно сдал экзамены в следующем году. Ему было 17 лет.

    Птички на проводе

    Вы замечали, что птицы любят сидеть на проводах? Но почему же они не погибают от удара током? Все дело в том, что тело - не очень хороший проводник. Птичьи лапы создают параллельное соединение, через которое протекает малый ток. Электричество предпочитает провод, который является лучшим проводником. Но стоит птице коснуться ещё какого-либо элемента, например, заземленной опоры, как электричество устремляется через её тело, приводя к гибели.

    Люки против болидов

    Интересные факты о физике можно вспомнить даже во время просмотра городских гонок "Формулы 1". Спортивные болиды движутся с такой большой скоростью, что между днищем машины и поверхностью дороги создается низкое давление, которого вполне хватит, чтобы поднять в воздух крышку люка. Именно так и произошло на одной из городских гонок. Крышка люка столкнулась со следующей машиной, возник пожар, гонка была остановлена. С тех пор во избежание несчастных случаев крышки люка привариваются к ободу.

    Природный ядерный реактор

    Один из самых серьезных разделов науки - ядерная физика. Интересные факты есть и здесь. Вы знали, что 2 миллиарда лет назад в районе Окло действовал самый настоящий природный ядерный реактор? Реакция протекала 100 000 лет, пока урановая жила не истощилась.

    Интересен тот факт, что реактор был саморегулируемый - в жилу попадала вода, которая играла роль замедлителя нейронов. При активном ходе цепной реакции вода выкипала, и реакция ослабевала.


    Настоящая книга, почти не выходящая из рамок элементарной физики, предназначается для читателя, прошедшего физику в полной средней школе и убеждённого поэтому, что начала этой науки ему хорошо известны и переизвестны.
    Долголетний опыт научил меня однако тому, что подлинное знание элементарной физики - явление довольно редкое. Внимание большинства интересующихся физикой преждевременно обращается к новейшим её успехам; в ту же сторону, к последним страницам физической науки, направляют интерес читателей и наши популярно-научные журналы. О пополнении пробелов первоначальной подготовки заботятся мало; считается, что здесь всё благополучно. Возвращаться к элементарной физике не принято, и она живёт в памяти многих такою, какою была воспринята некогда умом школьника-подростка.
    В итоге физику плохо знают не только те, кто не проходил её систематически, но зачастую и те, кто обучался ей в школе. Элементы физической науки, фундамент естествознания и техники, оказываются заложенными довольно шатко. Сила рутины здесь так велика, что некоторые физические предрассудки и заблуждения случалось обнаруживать даже у специалистов-физиков, не исключая и весьма крупных.
    Насколько я мог убедиться, сходное положение вещей наблюдается и за рубежом. Повидимому, корень дела кроется в обширности самого предмета элементарной физики, которым трудно вполне овладеть в несколько лет. К чести нашей читательской массы надо признать, что она добросовестно стремится изжить
    этот недостаток и гораздо серьёзнее заботится о пополнении пробелов своего образования, чем читатель за рубежом. Не только среди учащихся, но ещё больше среди рабочей молодёжи идёт интенсивная самообразовательная работа, неизменно растущая и приносящая заметные плоды. В этом убеждают меня многочисленные письма читателей и в особенности - беседы с читательским активом библиотек ряда крупных заводов, ленинградских и московских. У нас охотно читаются такие книги, которые в глазах среднего зарубежного читателя являются слишком трудными. Мои «Занимательная физика» и «Занимательная геометрия» разошлись в СССР в десятках тысяч экземпляров, а германское издательство популярно-научной литературы нашло их недостаточно приспособленными к уровню массового читателя Германии. «Замечательно, что они разошлись в России таким большим тиражом, - писал редактор издательства. - Для нас это почти непостижимо. Мы по опыту знаем, что нельзя рассчитывать на многое с книгами, предполагающими у читателя известную подготовку в указанных областях, и не можем ввиду этого решиться на издание их немецкого перевода»*.
    *«Занимательная физика» всё же была издана в Германии, не в переделке для детей среднего возраста. Между тем, в СССР издан полный её перевод на немецкий язык (тираж 10000 экз.), а русское издание разошлось в 170 000 экз.
    Возвращаясь к настоящей книге, отмечу, что она представляет собою как бы пространную физическую «викторину», которая должна помочь вдумчивому читателю установить, насколько в действительности овладел он основами физики. Однако, это никак не вопросник для экзамена: большая часть вопросов принадлежит к таким, какие едва ли когда-нибудь предлагались на экзаменах. Напротив, книга рассматривает материал, обычно проскальзывающий мимо сетей традиционной экзаменной проверки, хотя вопросы нашей «викторины» тесно Связаны с элементарным курсом физики. При кажущейся простоте, они кроют в себе зачастую неожиданность для читателя. Иные вопросы представляются до того простыми, что у каждого готов на них ответ, который оказывается однако ошибочным.
    Конечная цель книги - убедить читателя, что область элементарной физики гораздо богаче содержанием, чем думают многие, а попутно - обратить внимание на ошибочность ряда ходячих физических представлений. То и другое должно побудить читателей критически пересмотреть и тщательно проверить багаж своих физических знаний.
    Для подлинного проникновения духом физической науки, как и для дальнейшего прогресса самой физики, чрезвычайно важно отрешиться от ложного убеждения, будто науке в области элементарных явлений нечего уже больше делать, будто всё здесь исследовано до конца и не может быть интереса останавливаться на рассмотрении подобных азбучных положений. «Если вы хотите дать нечто действительно большое в науке, - говорил своим ученикам знаменитый французский физик Ле-Шателье, - если хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные и порой совершенно неожиданные данные».
    Подбирая материал для этой книги, я избегал повторения того, что рассмотрено мною в ряде других моих сочинений. Читатель, который даст себе труд просмотреть мои «Занимательную физику» (две части), «Занимательную механику», «Занимательную астрономию», «Межпланетные путешествия» и «Физику на каждом шагу», найдёт там немало "страниц, отвечающих целям настоящей книги.
    Для второго издания книга подверглась значительной переработке. Возможностью внести в текст много исправлений и улучшений я в значительной степени обязан благожелательному вниманию ряда сведущих читателей и критиков. Выражая им за оказанную помощь глубокую признательность, позволяю себе надеяться, что они и в дальнейшем не откажутся содействовать своими указаниями очищению текста моей книги от промахов и недомолвок.
    Адрес для корреспонденции: Ленинград 136, Плуталова, 2, кв. 12, Якову Исидоровичу Перельману.

    Предисловие

    I. Механический отдел физики

    1. Меры крупнее метра
    2. Литр и кубический дециметр
    3. Мельчайшая мера длины
    4. Наибольшая мера длины
    5. Лёгкие металлы. Металлы легче воды
    6. Вещество наибольшей плотности
    7. На необитаемом острове
    8. Вес паутинной нити
    9. Модель Эйфелевой башни
    10. Тысяча атмосфер под пальцем
    11. Сто тысяч атмосфер силою насекомого
    12. Гребец на реке
    13. Флаги аэростата
    14. Круги на воде
    15. Бутылки и пароходы
    16. Закон инерции и живые существа
    17. Движение и внутренние силы
    18. Трение как сила
    19. Трение и движение животных
    20. Натяжение верёвки
    21. Магдебургские полушария
    22. Безмен
    23. Приседание на весах
    24. На воздушном шаре
    25. Муха в банке
    26. Маятник Максвелла
    27. Плотничий уровень в вагоне
    28. Отклонение пламени свечи
    29. Согнутый стержень
    30. Два пружинных безмена
    31. Рычаг
    32. На платформе
    33. Провисающая верёвка
    34. Увязший автомобиль
    35. Трение и смазка
    36. По воздуху и по льду
    37. Падение тела
    38. Затяжной прыжок с парашютом
    39. Куда бросить бутылку?
    40. Из вагона
    41. Три снаряда
    42. Путь брошенного тела
    43. Наибольшая скорость артиллерийского снаряда
    44. Прыжки в воду
    45. На краю стола
    46. На наклонной плоскости
    47. Два шара
    48. Два цилиндра
    49. Песочные часы на весах
    50. Механика в карикатуре
    51. Грузы на блоке
    52. Центр тяжести конуса
    53. В падающей кабине
    54. Сверхускоренное падение
    55. Чаинки в воде
    56. На качели
    57. Парадоксы тяготения
    58. Расчёты силы притяжения
    59. Направление отвеса

    II. Свойства жидкостей

    60. Вода и воздух
    61. Самая лёгкая жидкость
    62. Задача Архимеда
    63. Сжимаемость воды
    64. Стрельба по воде
    65. Электрическая лампочка в воде
    66. Плавание в ртути
    67. Погружение в сыпучий песок
    68. Шарообразная форма жидкости
    69. Капли воды
    70. Капиллярное поднятие
    71. В наклонной трубке
    72. Движущиеся капли
    73. Пластинка на дне сосуда с жидкостью
    74. Отсутствие поверхностного натяжения
    75. Поверхностное давление
    76. Водопроводный кран
    77. Скорость вытекания
    78-79. Задачи о ванне
    80. Водяные вихри
    81. В половодье и в межень
    82. Волны прибоя

    III. Свойства газов.

    83. Третья составная часть воздуха
    84. Самый тяжёлый газ
    85. Давит ли на нас 20 тонн?
    86. Сила выдоха и дуновения
    87. Давление пороховых газов
    88. Единица атмосферного давления
    89. Вода в опрокинутом стакане
    90. Ураган и пар
    91. Тяга заводской трубы
    92. Где больше кислорода?
    93. Пузырьки в воде
    94. Почему облака не падают?
    95. Пуля и мяч
    96. Почему газ можно вздесить?
    97. По примеру слона
    98. Давление в гондоле стратостата
    99. Ввод верёвки в гондолу стратостата
    100. Барометр, подвешенный к весам
    101. Сифон в воздухе
    102. Сифон в пустоте
    103. Сифон для газов
    104. Подъём воды насосом
    105. Истечение газа
    106. Проект дарового двигателя
    107. Тушение пожара кипятком
    108. Задача о резервуаре с газом
    109. Воздушный пузырёк на дне океана
    110. Сегнерово колесо в пустоте
    111. Вес сухого и влажного воздуха
    112. Максимальное разрежение
    113. Что мы называем «пустотой»
    114. Почему существует атмосфера?
    115. Газ, не заполняющий резервуара

    IV. Тепловые явления.

    116. Происхождение шкалы Реомюра
    117. Происхождение шкалы Фаренгейта
    118. Длина делений на шкале термометра
    119. Термометр для температур до 750°
    120. Градусы термометра
    121. Тепловое расширение железобетона
    122. Наибольшее тепловое расширение
    123. Наименьшее тепловое расширение
    124. Аномалия теплового расширения
    125. Дырочка в железном листе
    126. Сила теплового расширения
    127. Нагревание плотничьего уровня
    128. Течения в воздухе
    129. Теплопроводность дерева и снега
    130. Медная и чугунная посуда
    131. Замазывание рам на зиму
    132. В натопленной комнате
    133. Вода на дне реки
    134. Замерзание рек
    135. Почему вверху атмосфера холоднее, чем внизу?
    136. Скорость нагревания
    137. Температура пламени свечи
    138. Почему гвоздь не плавится на свечке?
    139. Что такое калория?
    140. Нагревание воды в трёх состояниях
    141. Нагревание 1 См3 меди
    142. Тела наибольшей теплоёмкости
    143. Теплоёмкость пищи
    144. Самый легкоплавкий металл
    145. Самый тугоплавкий металл
    146. Нагревание стали
    147. Бутылка воды во льду
    148. Может ли лёд тонуть в воде?
    149. Замерзание еоды в трубах
    150. Скользкость льда
    151. Понижение точки таяния льда
    152. «Сухой лёд»
    153. Цвет водяного пара
    154. Кипение воды
    155. Нагревание паром
    156. Кипящий чайник на ладони
    157. Жарение и варка
    158. Горячее яйцо в руке
    150. Ветер и термометр
    160. Принцип холодной стены
    161. Калорийность дров
    162. Калорийность пороха и керосина
    163. Мощность горящей спички
    164. Выведение пятен утюгом
    165. Растворимость поваренной соли

    V. Звук и свет.

    166. Эхо
    167. Звук грома
    168. Звук и ветер
    169. Давление звука
    170. Почему дверь заглушает звук?
    171. Звуковая линза
    172. Преломление звука
    173. Шум в раковине
    174. Камертон и резонатор
    175. Куда деваются волны звука?
    176. Видимость лучей света. 48 247
    177. Восход Солнца
    178. Тень проволоки
    179. Тень облака
    180. Чтение при лунном свете
    181. Чёрный бархат и белый снег
    182. Звезда и свеча
    183. Цвет лунной поверхности
    184. Почему снег белый?
    185. Блеск начищенного сапога
    186. Число цветов в спектре и радуге
    187. Радуга
    188. Сквозь цветные стёкла
    189. Изменение цвета золота
    190. Дневное и вечернее освещение
    191. Цвет неба
    192. Распространение жизни в мировом пространстве
    193. Красный сигнал
    194. Преломление и плотность
    196. Две линзы
    196. Светила близ горизонта
    107. Лупа из проколотого картона
    198. Солнечная постоянная
    199. Что чернее всего?
    200. Температура Солнца
    201. Температура мирового пространства

    VI. Разные вопросы.

    202. Магнитный сплав
    200. Деление магнита
    204. Железо на весах
    205. Электрич. и магнитное притяжение и отталкивание
    206. Электроёмкость человеческого тела
    207. Сопротивление нитей накала
    208. Электропроводность стекла
    209. Вред от частого включения электролампочек
    210. Яркость электролампочек
    211. Нить накала
    212. Длина молнии
    213. Длина отрезка
    214. На эскалаторе
    215. Назначение «Дубинушки»
    216. Два города
    217. Бутылка на дне океана
    218. Плитки Иогансона
    219. Свеча в закрытой банке
    220. Хронология термометрических шкал
    221. Изобретатели термометров
    222. Масса земного шара
    223. Движение солнечной системы
    224. К полёту на Луну
    225. Человек в среде без тяжести
    226. Третий закон Келлера
    2?7. Вечное движение
    228. Человеческий организм и тепловая машина
    229. Почему светятся метеоры
    230. Туманы в фабричных районах
    231. Дым, пыль и туман
    232. Луна и облака
    233. Энергия молекул воды
    234. Тепловое движение при 273° Ц
    235. Достижим ли абсолютный нуль?
    236. Что называется вакуумом
    237. Средняя температура всего вещества
    238. Десятимиллионная доля грамма
    239. Число Авогадро
    240. Литр спирта в океане
    241. Расстояние между молекулами газа
    242. Масса атома водорода и масса Земли
    243. Величина молекул
    244. Электрон и Солнце
    245. Масштаб мира
    246. Весомость энергии
    247. Школьная механика и теория относительности
    Соотношения размеров тел от протона до мироздания



    Поделиться