Ниобий происхождение названия. Формула ниобия структурная химическая

С элементом, занимающим в менделеевской таблице 41-ю клетку, человечество знакомо давно. Возраст его нынешнего названия – ниобий – почти на полстолетия меньше. Случилось так, что элемент №41 был открыт дважды. Первый раз – в 1801 г. английский ученый Чарльз Хатчет исследовал образец верного минерала, присланного в Британский музей из Америки. Из этого минерала он выделил окисел неизвестного прежде элемента. Новый элемент Хатчет назвал колумбием, отмечая тем самым его заокеанское происхождение. А черный минерал получил название колумбита.

Через год шведский химик Экеберг выделил из колумбита окисел еще одного нового элемента, названного танталом. Сходство соединений Колумбия и тантала было так велико, что в течение 40 лет большинство химиков считало: тантал и колумбий – один и тот же элемент.

В 1844 г. немецкий химик Генрих Розе исследовал образцы колумбита, найденные в Баварии. Он вновь обнаружил окислы двух металлов. Один из них был окислом известного уже тантала. Окислы были похожи, и, подчеркивая их сходство, Розе назвал элемент, образующий второй окисел, ниобием по имени Ниобы, дочери мифологического мученика Тантала.

Впрочем, Розе, как и Хатчет, не сумел получить этот элемент в свободном состоянии.

Металлический ниобий был впервые получен лишь в 1866 г. шведским ученым Бломстрандом при восстановлении хлорида ниобия водородом. В конце XIX в. были найдены еще два способа получения этого элемента. Сначала Муассан получил его в электропечи, восстанавливая окись ниобия углеродом, а затем Гольдшмидт сумел восстановить тот же элемент алюминием.

А называть элемент №41 в разных странах продолжали по-разному: в Англии и США – колумбием, в остальных странах – ниобием. Конец этой разноголосице положил Международный союз чистой и прикладной химии (ИЮПАК) в 1950 г. Было решено повсеместно узаконить название элемента «ниобий», а за основным минералом ниобия так и закрепилось наименование «колумбит». Его формула (Fe, Mn) (Nb, Ta) 2 О 6 .

Глазами химика

Элементарный ниобий – чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (№205). Но при высоких температурах химическая активность ниобия повышается. Если при 150...200°C окисляется лишь небольшой поверхностный слой металла, то при 900...1200°C толщина окисной пленки значительно увеличивается.

Ниобий активно реагирует со многими неметаллами. С ним образуют соединения галогены, азот, водород, углерод, сера. При этом ниобий может проявлять разные валентности – от двух до пяти. Но главная валентность этого элемента 5+. Пятивалентный ниобий может входить в состав соли и как катион, и как один из элементов аниона, что свидетельствует об амфотерном характере элемента №41.

Соли ниобиевых кислот называют ниобатами. Их получают в результате обменных реакций после сплавления пятиокиси ниобия с содой:

Nb 2 O 5 + 3Na 2 CO 4 → 2Na 3 NbО 4 + 3CO 2 .

Довольно хорошо изучены соли нескольких ниобиевых кислот, в первую очередь метаниобиевой HNbO 3 , а также диниобаты и пентаниобаты (K 4 Nb 2 O 7 , К 7 Nb 5 О 16 · m H 2 O). А соли, в которых элемент №41 выступает как катион, обычно получают прямым взаимодействием простых веществ, например 2Nb + 5Cl 2 → 2NbCl 5 .

Ярко окрашенные игольчатые кристаллы пентагалогенидов ниобия (NbCl – желтого цвета, NbBr 5 – пурпурно-красного) легко растворяются в органических растворителях – хлороформе, эфире, спирте. Но при растворении в воде эти соединения полностью разлагаются, гидролизуются с образованием ниобатов:

NbCl 5 + 4Н 2 О → 5HCl + Н 3 NbO 4 .

Гидролиз можно предотвратить, если в водный раствор добавить какую-либо сильную кислоту. В таких растворах пентагалогениды ниобия растворяются, не гидролизуясь.

Ниобий образует двойные соли и комплексные соединения, наиболее легко – фтористые. Фторниобаты – так называются эти двойные соли. Они получаются, если в раствор ниобцевой и плавиковой кислот добавить фторид какого-либо металла.

Состав комплексного соединения зависит от соотношения реагирующих в растворе компонентов. Рентгенометрический анализ одного из этих соединений показал строение, отвечающее формуле K 2 NbF 7 . Могут образоваться и оксосоединения ниобия, например оксофторнпобат калия K 2 NbOF 5 · H 2 O.

Химическая характеристика элемента не исчерпывается, конечно, этими сведениями. Сегодня самые важные из соединений элемента №41 – это его соединения с другими металлами.

Ниобий и сверхпроводимость

Удивительное явление сверхпроводимости, когда при понижении температуры проводника в нем происходит скачкообразное исчезновение электрического сопротивления, впервые наблюдал голландский физик Г. Камерлинг-Оннес в 1911 г. Первым сверхпроводником оказалась ртуть, но не ей, а ниобию и некоторым интерметаллическим соединениям ниобия суждено было стать первыми технически важными сверхпроводящими материалами.

Практически важны две характеристики сверхпроводников: величина критической температуры, при которой происходит переход в состояние сверхпроводимости, и критического магнитного поля (еще Камерлинг-Оннес наблюдал утрату сверхпроводником сверхпроводимости при воздействии на него достаточно сильного магнитного поля). По состоянию на 1 января 1975 г. сверхпроводником – «рекордсменом» по величине критической температуры было интерметаллическое соединение ниобия и германия состава Nb 3 Ge. Его критическая температура 23,2°К; это выше температуры кипения водорода. (Большинство известных сверхпроводников становятся сверхпроводниками лишь при температуре жидкого гелия).

Способность переходить в состояние сверхпроводимости свойственна также стапниду ниобия Nb 3 Sn, сплавам ниобия с алюминием и германием или с титаном и цирконием. Все эти сплавы и соединения уже используются для изготовления сверхпроводящих соленоидов, а также некоторых других важных технических устройств.

Ниобий – металл

Металлический ниобий можно получить восстановлением его соединений, например хлорида ниобия или фтор-ниобата калия, при высокой температуре:

K 2 NbF 7 + 5Na → Nb + 2KF + 5NaF.

Но прежде чем достигнуть этой в сущности последней стадии производства, ниобиевая руда проходит множество этапов переработки. Первый из них – обогащение руды, получение концентратов. Концентрат сплавляют с различными плавнями: едким натром или содой. Полученный сплав выщелачивают. Но растворяется он не полностью. Нерастворимый осадок и есть ниобий. Правда, он здесь еще в составе гидроокиси, не разделен со своим аналогом по подгруппе – танталом – и не очищен от некоторых примесей.

До 1866 г. не было известно ни одного пригодного для производственных условий способа разделения тантала и ниобия. Первым метод разделения этих чрезвычайно похожих элементов предложил Жан Шарль Галиссар де Мариньяк. Метод основан на разной растворимости комплексных соединений этих металлов и называется фторидным. Комплексный фторид тантала нерастворим в воде, а аналогичное соединение ниобия растворимо.

Фторидный метод сложен и не позволяет полностью разделить ниобий и тантал. Поэтому в наши дни он почти не применяется. На смену ему пришли методы избирательной экстракции, ионного обмена, ректификации галогенидов и др. Этими методами получают окисел и хлорид пятивалентного ниобия.

После разделения ниобия и тантала идет основная операция – восстановление. Пятиокись ниобия Nb 2 O 5 восстанавливают алюминием, натрием, сажей или карбидом ниобия, полученным при взаимодействии Nb 2 O 5 с углеродом; пентахлорид ниобия восстанавливают металлическим натрием или амальгамой натрия. Так получают порошкообразный ниобий, который нужно затем превратить в монолит, сделать пластичным, компактным, пригодным для обработки. Как и другие тугоплавкие металлы, ниобий-монолит получают методами порошковой металлургии, суть которой в следующем.

Из полученного металлического порошка под большим давлением (1 т/см 2) прессуют так называемые штабики прямоугольного или квадратного сечения. В вакууме при 2300°C эти штабики спекают, соединяют в пруты, которые плавят в вакуумных дуговых печах, причем пруты в этих печах выполняют роль электрода. Такой процесс называется плавкой с расходуемым электродом.

Монокристаллический пластичный ниобий получают методом бестигельной зонной электронно-лучевой плавки. Суть его в том, что на порошкообразный ниобий (операции прессования и спекания исключены!) направляют мощный пучок электронов, который плавит порошок. Капли металла стекают на ниобиевый слиток, который постепенно растет и выводится из рабочей камеры.

Как видите, путь ниобия от руды до металла в любом случае довольно долог, а способы производства сложны.

Ниобий и металлы

Рассказ о применении ниобия логичнее всего начать с металлургии, так как именно в металлургии он нашел наиболее широкое применение. И в цветной металлургии, и в черной.

Сталь, легированная ниобием, обладает хорошей коррозионной стойкостью. «Ну и что? – скажет иной искушенный читатель. – Хром тоже повышает коррозионную стойкость стали, и он намного дешевле ниобия». Этот читатель прав и неправ одновременно. Неправ потому, что забыл об одном.

В хромоникелевой стали, как и во всякой другой, всегда есть углерод. Но углерод соединяется с хромом, образуя карбид, который делает сталь более хрупкой. Ниобий имеет большее сродство к углероду, чем хром. Поэтому при добавлении в сталь ниобия обязательно образуется карбид ниобля. Легированная ниобием сталь приобретает высокие антикоррозионные свойства и не теряет своей пластичности. Нужный эффект достигается, когда в тонну стали добавлено всего 200 г металлического ниобия. А хромо-маргаицевой стали ниобий придает высокую износоустойчивость.

Ниобием легируют и многие цветные металлы. Так, алюминий, легко растворяющийся в щелочах, не реагирует с ними, если в него добавлено всего 0,05% ниобия. А медь, известную своей мягкостью, и многие ее сплавы ниобий словно закаляет. Он увеличивает прочность таких металлов, как титан, молибден, цирконий, и одновременно повышает их жаростойкость и жаропрочность.

Сейчас свойства и возможности ниобия по достоинству оценены авиацией, машиностроением, радиотехникой, химической промышленностью, ядерной энергетикой. Все они стали потребителями ниобия.

Уникальное свойство – отсутствие заметного взаимодействия ниобия с ураном при температуре до 1100°C и, кроме того, хорошая теплопроводность, небольшое эффективное сечение поглощения тепловых нейтронов сделали ниобий серьезным конкурентом признанных в атомной промышленности металлов – алюминия, бериллия и циркония. К тому же искусственная (наведенная) радиоактивность ниобия невелика. Поэтому из него можно делать контейнеры для хранения радиоактивных отходов или установки по их использованию.

Химическая промышленность потребляет сравнительно немного ниобия, но это объясняется только его дефицитностью. Из ниобийсодержащих сплавов и реже из листового ниобия иногда делают аппаратуру для производства высокочистых кислот. Способность ниобия влиять на скорость некоторых химических реакций используется, например, при синтезе спирта из бутадиена.

Потребителями элемента №41 стали также ракетная и космическая техника. Не секрет, что на околоземных орбитах уже вращаются какие-то количества этого элемента. Из ниобийсодержащих сплавов и чистого ниобия сделаны некоторые детали ракет и бортовой аппаратуры искусственных спутников Земли.

Минералы ниобия

Колумбит (Fe, Mn) (Nb, Та) 2 О 6 был первым минералом ниобия, известным человечеству. И этот же минерал – самый богатый элементом №41. На долю окислов ниобия и тантала приходится до 80% веса колумбита. Гораздо меньше ниобия в пирохлоре (Са, Na) 2 (Nb, Та, Ti) 2 O 6 (O, OH, F) и лопарите (Na, Се, Са) 2 (Nb, Ti) 2 O 6 . А всего известно больше 100 минералов, в состав которых входит ниобий. Значительные месторождения таких минералов есть в разных странах: США, Канаде, Норвегии, Финляндии, но крупнейшим поставщиком концентратов ниобия на мировой рынок стало африканское государство Нигерия. В СССР есть большие запасы лопарита, они найдены на Кольском полуострове.

Розовый карбид

Монокарбид ниобия NbC – пластичное вещество с характерным розоватым блеском. Это важное соединение довольно легко образуется при взаимодействии металлического ниобия с углеводородами. Сочетание хорошей ковкости и высокой термостойкости с приятными «внешними данными» сделало мо-нокарбид ниобия ценным материалом для изготовления покрытий. Слой этого вещества толщиной всего 0,5 мм надежно защищает от коррозии при высоких температурах многие материалы, в частности графит, который другими покрытиями фактически незащатим. NbC используется и как конструкционный материал в ракетостроении и производстве турбин.

Нервы, сшитые ниобием

Высокая коррозионная стойкость ниобия позволила использовать его в медицине. Ниобиевые нити не вызывают раздражения живой ткани и хорошо сращиваются с ней. Восстановительная хирургия успешно использует такие нити для сшивания порванных сухожилий, кровеносных сосудов и даже нервов.

Наружность не обманчива

Ниобий не только обладает комплексом нужных технике свойств, но и выглядит достаточно красиво. Этот белый блестящий металл ювелиры пытались использовать для изготовления корпусов ручных часов. Сплавы ниобия с вольфрамом или рением иногда заменяют благородные металлы: золото, платину, иридий. Последнее особенно важно, так как сплав ниобия с рением не только внешне похож на металлический иридий, но почти так же износостоек. Это позволило некоторым странам обходиться без дорогого иридия в производстве напаек для перьев авторучек.

Ниобий и сварка

В конце 20-х годов нашего века электро-и газосварка стали вытеснять клепку и другие способы соединения узлов и деталей. Сварка повысила качество пзделий, ускорила и удешевила процессы их сборки. Особенно перспективной сварка казалась при монтаже крупных установок, работающих в коррозионно-активных средах или под большим давлением. Но тут выяснилось, что при сварке нержавеющей стали сварной шов имеет намного меньшую прочность, чем сама сталь. Чтобы улучшить свойства шва, в «нержавейку» стали вводить различные добавки. Лучшей из них оказался ниобий.

Заниженные цифры

Ниобий не случайно считается редким элементом: он действительно встречается не часто и в небольших количествах, причем всегда в виде минералов и никогда в самородном состоянии. Любопытная деталь: в разных справочных изданиях кларк (содержание в земной коре) ниобия разный. Это объясняется главным образом тем, что в последние годы в странах Африки найдены новые месторождения минералов, содержащих ниобий. В «Справочнике химика», т. 1 (М., «Химия», 1963) приведены цифры: 3,2·10 –5 % (1939 г.), 1·10 –3 % (1949 г.) и 2,4·10 –3 % (1954 г.). Но и последние цифры занижены: африканские месторождения, открытые в последние годы, сюда не вошли. Тем не менее подсчитано, что из минералов уже известных месторождений можно выплавить примерно 1,5 млн т металлического ниобия.

Ниобий - элемент побочной подгруппы пятой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 41. Обозначается символом Nb (лат. Niobium ).

История открытия ниобия

Случилось так, что элемент №41 был открыт дважды. Первый раз – в 1801 г. английский ученый Чарльз Хатчет исследовал образец верного минерала, присланного в Британский музей из Америки. Из этого минерала он выделил окисел неизвестного прежде элемента. Новый элемент Хатчет назвал колумбием, отмечая тем самым его заокеанское происхождение. А черный минерал получил название колумбита.

Через год шведский химик Экеберг выделил из колумбита окисел еще одного нового элемента, названного танталом. Сходство соединений Колумбия и тантала было так велико, что в течение 40 лет большинство химиков считало: тантал и колумбий – один и тот же элемент.

В 1844 г. немецкий химик Генрих Розе исследовал образцы колумбита, найденные в Баварии. Он вновь обнаружил окислы двух металлов. Один из них был окислом известного уже тантала. Окислы были похожи, и, подчеркивая их сходство, Розе назвал элемент, образующий второй окисел, ниобием по имени Ниобы, дочери мифологического мученика Тантала.

Впрочем, Розе, как и Хатчет, не сумел получить этот элемент в свободном состоянии.

Металлический ниобий был впервые получен лишь в 1866 г. шведским ученым Бломстрандом при восстановлении хлорида ниобия водородом. В конце XIX в. были найдены еще два способа получения этого элемента. Сначала Муассан получил его в электропечи, восстанавливая окись ниобия углеродом, а затем Гольдшмидт сумел восстановить тот же элемент алюминием.

А называть элемент №41 в разных странах продолжали по-разному: в Англии и США – колумбием, в остальных странах – ниобием. Конец этой разноголосице положил Международный союз чистой и прикладной химии (ИЮПАК) в 1950 г. Было решено повсеместно узаконить название элемента «ниобий», а за основным минералом ниобия так и закрепилось наименование «колумбит». Его формула (Fe, Mn) (Nb, Ta) 2 О 6 .

Нахождение ниобия в природе

Кларк ниобия 18 г/т. Содержания ниобия увеличивается от ультраосновных (0,2 г/т Nb) к кислым породам (24 г/т Nb). Ниобию всегда сопутствует тантал. Близкие химические свойства ниобия и тантала обуславливают совместное их нахождение в одних и тех же минералах и участие в общих геологических процессах. Ниобий способен замещать титан в ряде титансодержащих минералов (сфен, ортит, перовскит, биотит). Форма нахождения ниобия в природе может быть разной: рассеянной (в породообразующих и акцессорных минералах магматических пород) и минеральной. В общей сложности известно более 100 минералов, содержащих ниобий. Из них промышленное значение имеют лишь некоторые: колумбит-танталит (Fe, Mn)(Nb, Ta) 2 O 6 , пирохлор (Na, Ca, TR, U) 2 (Nb, Ta, Ti) 2 O 6 (OH, F) (Nb 2 O 5 0 - 63 %), лопарит (Na, Ca, Ce)(Ti, Nb)O 3 ((Nb, Ta) 2 O 5 8 - 10 %), иногда используются эвксенит, торолит, ильменорутил, а также минералы, содержащие ниобий в виде примесей (ильменит, касситерит, вольфрамит). В щелочных - ультраосновных породах ниобий рассеивается в минералах типа перовскита и в эвдиалите. В экзогенных процессах минералы ниобия и тантала, являясь устойчивыми, могут накапливаться в деллювиально-аллювиальных россыпях (колумбитовые россыпи), иногда в бокситах коры выветривания.

Колумбит (Fe, Mn) (Nb, Та) 2 О 6 был первым минералом ниобия, известным человечеству. И этот же минерал – самый богатый элементом №41. На долю окислов ниобия и тантала приходится до 80% веса колумбита. Гораздо меньше ниобия в пирохлоре (Са, Na) 2 (Nb, Та, Ti) 2 O 6 (O, OH, F) и лопарите (Na, Се, Са) 2 (Nb, Ti) 2 O 6 . А всего известно больше 100 минералов, в состав которых входит ниобий. Значительные месторождения таких минералов есть в разных странах: США, Канаде, Норвегии, Финляндии, но крупнейшим поставщиком концентратов ниобия на мировой рынок стало африканское государство Нигерия. В России есть большие запасы лопарита, они найдены на Кольском полуострове.

Получение ниобия

Руды ниобия - обычно комплексные и бедны металлом. Рудные концентраты содержат Nb 2 O 5: пирохлоровые - не менее 37 %, лопаритовые - 8 %, колумбитовые - 30-60 %. Большую их часть перерабатывают алюмо- или силикотермическим восстановлением на феррониобий (40-60 % Nb) и ферротанталониобий. Металлический ниобий получают из рудных концентратов по сложной технологии в три стадии:

1) вскрытие концентрата, 2) разделение ниобия и тантала и получение их чистых химических соединений, 3) восстановление и рафинирование металлического ниобия и его сплавов.

Металлический ниобий можно получить восстановлением его соединений, например хлорида ниобия или фтор-ниобата калия, при высокой температуре:

K 2 NbF 7 + 5Na → Nb + 2KF + 5NaF.

Но прежде чем достигнуть этой в сущности последней стадии производства, ниобиевая руда проходит множество этапов переработки. Первый из них – обогащение руды, получение концентратов. Концентрат сплавляют с различными плавнями: едким натром или содой. Полученный сплав выщелачивают. Но растворяется он не полностью. Нерастворимый осадок и есть ниобий. Правда, он здесь еще в составе гидроокиси, не разделен со своим аналогом по подгруппе – танталом – и не очищен от некоторых примесей.


Кристаллы ниобия и металлический ниобиевый кубик

До 1866 г. не было известно ни одного пригодного для производственных условий способа разделения тантала и ниобия. Первым метод разделения этих чрезвычайно похожих элементов предложил Жан Шарль Галиссар де Мариньяк. Метод основан на разной растворимости комплексных соединений этих металлов и называется фторидным. Комплексный фторид тантала нерастворим в воде, а аналогичное соединение ниобия растворимо.

Фторидный метод сложен и не позволяет полностью разделить ниобий и тантал. Поэтому в наши дни он почти не применяется. На смену ему пришли методы избирательной экстракции, ионного обмена, ректификации галогенидов и др. Этими методами получают окисел и хлорид пятивалентного ниобия.

После разделения ниобия и тантала идет основная операция – восстановление. Пятиокись ниобия Nb 2 O 5 восстанавливают алюминием, натрием, сажей или карбидом ниобия, полученным при взаимодействии Nb 2 O 5 с углеродом; пентахлорид ниобия восстанавливают металлическим натрием или амальгамой натрия. Так получают порошкообразный ниобий, который нужно затем превратить в монолит, сделать пластичным, компактным, пригодным для обработки. Как и другие тугоплавкие металлы, ниобий-монолит получают методами порошковой металлургии, суть которой в следующем.

Из полученного металлического порошка под большим давлением (1 т/см 2) прессуют так называемые штабики прямоугольного или квадратного сечения. В вакууме при 2300°C эти штабики спекают, соединяют в пруты, которые плавят в вакуумных дуговых печах, причем пруты в этих печах выполняют роль электрода. Такой процесс называется плавкой с расходуемым электродом.

Монокристаллический пластичный ниобий получают методом бестигельной зонной электронно-лучевой плавки. Суть его в том, что на порошкообразный ниобий (операции прессования и спекания исключены!) направляют мощный пучок электронов, который плавит порошок. Капли металла стекают на ниобиевый слиток, который постепенно растет и выводится из рабочей камеры.

Как видите, путь ниобия от руды до металла в любом случае довольно долог, а способы производства сложны.

Физические свойства ниобия

Ниобий - блестящий серебристо-серый металл.

Элементарный ниобий – чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (№205). Но при высоких температурах химическая активность ниобия повышается. Если при 150...200°C окисляется лишь небольшой поверхностный слой металла, то при 900...1200°C толщина окисной пленки значительно увеличивается.

Кристаллическая решетка Ниобия объемно центрированная кубическая с параметром а = 3,294Å.

Чистый металл пластичен и может быть прокатан в тонкий лист (до толщины 0, 01 мм.) в холодном состоянии без промежуточного отжига.

Можно отметить такие свойства ниобия как высокая температура плавления и кипения, более низкая работа выхода электронов по сравнению с другими тугоплавкими металлами - вольфрамом и молибденом. Последнее свойство характеризует способность к электронной эмиссии (испусканию электронов), что используется для применения ниобия в электровакуумной технике. Ниобий также имеет высокую температуру перехода в состояние сверхпроводимости.

Плотность 8,57 г/см 3 (20 °С); t пл 2500 °С; t кип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м 2) 1·10 -5 (2194 °С), 1·10 -4 (2355 °С), 6·10 -4 (при t пл), 1·10 -3 (2539 °С).

При обычной температуре ниобий устойчив на воздухе. Начало окисления (плёнки побежалости) наблюдается при нагревании металла до 200 - 300°С. Выше 500° происходит быстрое окисление с образованием окисла Nb 2 O 5 .

Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10 -8 ом·м (15,22·10 -6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м 2 , то же в кгс/мм 2 34,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м 2 . Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

Химические свойства ниобия

Химически ниобий довольно устойчив. При прокаливании на воздухе окисляется до Nb 2 О 5 . Для этого оксида описано около 10 кристаллических модификаций. При обычном давлении стабильна β-форма Nb 2 О 5 .

При сплавлении Nb 2 О 5 с различными оксидами получают ниобаты: Ti 2 Nb 10 О 29 , FeNb 49 О 124 . Ниобаты могут рассматриваться как соли гипотетических ниобиевых кислот. Они делятся на метаниобаты MNbO 3 , ортониобаты M 3 NbO 4 , пирониобаты M 4 Nb 2 O 7 или полиниобаты M 2 O·nNb 2 O 5 (M - однозарядный катион, n = 2-12). Известны ниобаты двух- и трехзарядных катионов.

Ниобаты реагируют с HF, расплавами гидрофторидов щелочных металлов (KHF 2) и аммония. Некоторые ниобаты с высоким отношением M 2 O/Nb 2 O 5 гидролизуются:

6Na 3 NbO 4 + 5H 2 O = Na 8 Nb 6 O 19 + 10NaOH.

Ниобий образует NbO 2 , NbO, ряд оксидов, промежуточных между NbO 2,42 и NbO 2,50 и близких по структуре к β-форме Nb 2 О 5 .

С галогенами ниобий образует пентагалогениды NbHal 5 , тетрагалогениды NbHal 4 и фазы NbHal 2,67 - NbHal 3+x , в которых имеются группировки Nb 3 или Nb 2 . Пентагалогениды ниобия легко гидролизуются водой.

Характерное свойство ниобия - способность поглощать газы - водород, азот и кислород. Небольшие примеси этих элементов сильно влияют на механические и электрические свойства металла. При низкой температуре водород поглощается медленно, при температуре примерно 360°С водород поглощается с максимальной скоростью, причём происходит не только адсорбция, но и образуется гидрид NbH. Поглощённый водород придаёт металлу хрупкость, но при нагревании в вакууме выше 600°С почти весь водород выделяется и прежние механические свойства восстанавливаются.

Ниобий поглощает азот уже при 600°С, при более высокой температуре образуется нитрид NbN, который плавится при 2300°С.

Углерод и углеродсодержащие газы (СН 4 , СО) при высокой температуре (1200 - 1400°С) взаимодействуют с металлом с образованием твёрдого и тугоплавкого карбида NbC (плавится при 3500°С).

С бором и кремнием ниобий образует тугоплавкиё и твёрдый борид и силицид NbB 2 (плавится при 2900°С).

В присутствии паров воды и кислорода NbCl 5 и NbBr 5 образуют оксигалогениды NbOCl 3 и NbOBr 3 - рыхлые ватообразные вещества.

При взаимодействии ниобия и графита образуются карбиды Nb 2 C и NbC, твердые жаропрочные соединения. В системе Nb - N существуют несколько фаз переменного состава и нитриды Nb 2 N и NbN. Сходным образом ведет себя ниобий в системах с фосфором и мышьяком. При взаимодействии ниобия с серой получены сульфиды: NbS, NbS 2 и NbS 3 . Синтезированы двойные фториды Nb и калия (натрия) - K 2 .

Ниобий устойчив против действия соляной, серной, азотной, фосфорной и органических кислот любой концентрации на холоду и при 100 - 150°С. Металл растворяется в плавиковой кислоте и особенно интенсивно - в смеси плавиковой и азотной кислот.

Менее устойчив ниобий в щелочах. Горячие растворы едких щелочей заметно разъедает металл, в расплавленных щелочах и соде он быстро окисляется с образованием натриевой соли ниобиевой кислоты.

Из водных растворов выделить электрохимически ниобий пока не удалось. Возможно электрохимическое получение сплавов, содержащих ниобий. Электролизом безводных солевых расплавов может быть выделен металлический ниобий.

Конфигурация внешних электронов атома Nb 4d 4 5s l . Наиболее устойчивы соединения пятивалентного Ниобия, но известны и соединения со степенями окисления + 4, +3, +2 и +1, к образованию которых Ниобий склонен более, чем тантал. Например, в системе Ниобий-кислород установлены фазы: оксид Nb 2 O 5 (t пл 1512 °С, цвет белый), нестехеометрические NbO 2,47 и NbO 2,42, оксид NbO 2 (t пл 2080 °С, цвет черный), оксид NbO (t пл 1935 °С, цвет серый) и твердый раствор кислорода в Ниобии. NbO 2 - полупроводник; NbO, сплавленная в слиток, обладает металлическим блеском и электропроводностью металлического типа, заметно испаряется при 1700 °С, интенсивно - при 2300-2350 °С, что используют для вакуумной очистки Ниобия от кислорода; Nb 2 O 5 имеет кислотный характер; ниобиевые кислоты не выделены в виде определенных химические соединений, но известны их соли - ниобаты.

С водородом Nb образует твердый раствор внедрения (до 10 ат.% Н) и гидрид состава от NbH 0,7 до NbH. Растворимость водорода в Nb (в г/см 3) при 20 °С 104, при 500°С 74,4, при 900°С 4,0. Поглощение водорода обратимо: при нагревании, особенно в вакууме, водород выделяется; это используют для очистки Nb от водорода (сообщающего металлу хрупкость) и для гидрирования компактного Nb: хрупкий гидрид измельчают и дегидрируют в вакууме, получая чистый порошок Ниобий для электролитических конденсаторов. Растворимость азота в Ниобии составляет (% по массе) 0,005, 0,04 и 0,07 соответственно при 300, 1000 и 1500 °С. Рафинируют Ниобий от азота нагреванием в глубоком вакууме выше 1900 °С или вакуумной плавкой. Высший нитрид NbN светло-серого цвета с желтоватым оттенком; температура перехода в сверхпроводящее состояние 15,6 К. С углеродом при 1800-2000°С Nb образует 3 фазы: α-фаза - твердый раствор внедрения углерода в Ниобий, содержащий до 2 ат.% С при 2335 °С; β-фаза - Nb 2 C, δ-фаза - NbC.

Химический состав ниобия в слитках и штабиках

Примеси, %, не более

Ниобий в слитках

ГОСТ 16099-70

Ниобий в штабиках

ГОСТ 16100-70

Применение ниобия

Сейчас свойства и возможности ниобия по достоинству оценены авиацией, машиностроением, радиотехникой, химической промышленностью, ядерной энергетикой. Все они стали потребителями ниобия.

Уникальное свойство – отсутствие заметного взаимодействия ниобия с ураном при температуре до 1100°C и, кроме того, хорошая теплопроводность, небольшое эффективное сечение поглощения тепловых нейтронов сделали ниобий серьезным конкурентом признанных в атомной промышленности металлов – алюминия, бериллия и циркония. К тому же искусственная (наведенная) радиоактивность ниобия невелика. Поэтому из него можно делать контейнеры для хранения радиоактивных отходов или установки по их использованию.

Производство ниобия в России

В последние годы мировое производство ниобия находится на уровне 24-29 тыс. т. Следует отметить, что мировой рынок ниобия существенно монополизирован бразильской компанией СВММ, на долю которой приходится около 85% мирового объема выпуска ниобия.
Основным потребителем ниобийсодержащей продукции (к ней прежде всего относится феррониобий) является Япония. Эта страна импортирует ежегодно свыше 4 тыс. т феррониобия из Бразилии. Поэтому японские импортные цены на ниобийсодержащую продукцию можно с большой уверенностью принимать за близкие к среднемировым значениям.
В последние годы имеет место тенденция роста цен на феррониобий. Это связано с растущим его применением для производства низколегированных сталей предназначен-ных, главным образом для труб нефте- и газопроводов. Вообще надо отметить, что за последние 15 лет мировое потребление ниобия возрастает в среднем на 4-5 % ежегодно.
С сожалением надо признать, что Россия находится на «обочине» рынка ниобия. В начале 90-х годов, по оценкам специалистов Гиредмета, в бывшем СССР производилось и
потреблялось около 2 тыс.т ниобия (в пересчете на оксид ниобия). В настоящее время потребление российской промышленностью ниобиевой продукции не превышает всего 100 - 200 т.
Следует отметить, что в бывшем СССР были созданы значительные мощности по выпуску ниобия, разбросанные по разным республикам – Россия, Эстония, Казахстан. Это традиционная черта развития промышленности СССР поставила сейчас Россию в очень сложное положение по многим видам сырья и металлам.
Рынок ниобия начинается с производства ниобийсодержащего сырья. Основным его видом в России был и остается лопаритовый концентрат, получаемый на Ловозерском ГОКе (теперь - АО «Севредмет», Мурманская область). До распада СССР предприятие выпускало около 23 тыс.т лопаритового концентрата (содержание в нем оксида ниобия около 8,5 %). В последующем производство концентрата постоянно снижалось, в 1996-1998 гг. предприятие неоднократно останавливалось из-за отсутствия сбыта. В настоящее время, по оценкам, производство лопаритового концентрата на предприятии находится на уровне 700 - 800 т в месяц.
Следует отметить, что предприятие достаточно жестко привязано к своему единственному потребителю - Соликамскому магниевому заводу. Дело в том, что лопаритовый концентрат – это достаточно специфический продукт, который получают только в России. Его технология переработки достаточно сложна из-за содержащегося в нем комплекса редких металлов (ниобий, тантал, титан). Кроме того, концентрат радиоактивен, во многом поэтому все попытки выйти на мировой рынок с этой продукцией закончились безрезультатно. Следует также отметить, что из лопаритового концентрата невозможно получение феррониобия.
В 2000 г. на комбинате «Севредмет» силами компании «Росредмет» запущена экспериментальная установка по переработке лопаритового концентрата с получением в числе других металлов товарной ниобийсодержащей продукции (оксида ниобия).

Основными рынками ниобиевой продукции СМЗ являются страны дальнего зарубежья: поставки осуществляются в США, Японию и страны Европы. Доля экспорта в общем объеме производства составляет свыше 90 %.
Значительные мощности по выпуску ниобия в СССР были сосредоточены в Эстонии - на Силламяэском химико-металлургическом произ-водственном объединении (г. Силламяэ). Сейчас эстонское предприятие называется «Силмет». В советские времена предприятие перерабатывало лопаритовый концентрат Ловоозерского ГОКа, с 1992 г. его отправка была прекращена. Сейчас «Силмет» перерабатывает только небольшой объем гидроксида ниобия Соликамского магниевого завода. Большую часть ниобийсодержащего сырья в настоящее время предприятие получает из Бразилии и Нигерии. Руководство предприятия не исключает поставок лопаритового концентрата, однако «Севредмет» пытается проводить политику переработки его на месте, поскольку экспорт сырья менее выгоден, чем готовой продукции.

Производство ниобиевых полупроводников в России

Единственное в России производство сверхпроводников на основе ниобий-олова и ниобий-титана, созданное в 2009 на ОАО «ЧМЗ», представляет собой замкнутый цикл, начиная от изготовления исходных материалов и комплектующих (ниобия, ниобий-титановых сплавов, высокооловянистой бронзы) до готовых сверхпроводящих стрендов, оснащенный участками измерения электрофизических характеристик и контроля параметров всего технологического передела. Создание широкомасштабного производства сверхпроводящих материалов ведется при научном руководстве ОАО «ВНИИНМ им. А.А. Бочвара».

Всего на Чепецком механическом заводе до 2013 года будет выпущено 170 тонн СПМ для проекта ИТЭР на основе ниобий-титана и ниобий-олова.

0,145 нм, (в скобках указано координац. число) Nb 2+ 0,085 нм (6), Nb 3+ 0,086 нм (6), Nb 4+ 0,082 нм (6), 0,092 нм (8), Nb 5 + 0,062 нм (4), 0,078 нм (6), 0,083 нм (7), 0,088 нм (8).

Содержание в земной коре 2 . 10 -3 % по массе. Встречается в природе обычно вместе с Та. Наиб. важные -колумбит-танталит, и лопарит. Колумбит-танталит (Fe,Mn)(Nb,Ta) 2 O 6 содержит 82-86% Nb и Та. При содержании ниобия выше, чем Та, наз. колумбитом, при обратном соотношении - танталитом. (Na,Ca,Ce) 2 (Nb,Ti) 2 (OH,F)O 6 обычно содержит 37,5-65,6% Nb 2 O 5 ; лопарит (Na,Ce,Ca,SrXNb,Ti)O 3 -8-10% Nb 2 O 5 . ниобия слабо парамагнитны и радиоактивны из-за примесей U и Th.

Колумбит встречается в изверженных пегматитах, биотитах и щелочных гранитах, иногда-в россыпных месторождениях (Нигерия), его часто добывают как побочный продукт обогащения оловянных концентратов. содержится в карбонатитах, щелочных (Канада), нефелин-сиенитовых пегматитах, в элювиальных продуктах выветривания сиенито-карбонатитов (Бразилия). Крупные залежи лопарита имеются в СССР.

Общие мировые запасы ниобия (без СССР) оценивались (1980) в 18 млн. т, в пром. месторождениях-ок. 3,4 млн. т (из них 3,2 млн.т в Бразилии).

Свойства. Ниобий-блестящий серебристо-серый ; кри-сталлич. решетка объемноцентрир. кубическая типа a-Fe, а = 0,3294 нм, z = 2, пространств. группа Im3m; т. пл. 2477 °С, т. кип. ок. 4760 °С; плотн. 8,57 г/см 3 ; С 0 р 24,44Дж/( . К); DH 0 пл 31,0 кДж/ (2477 °С), DH 0 возг 720кДж/ (0 К), DH 0 исп 662 кДж/ (4760 °С); S 0 298 36,27 ДжДмоль К); ур-ние температурной зависимости над жидким ниобием: lgр(Па) = 13,877-40169/T (2304 <= Т<= 2596 К); температурный коэф. линейного расширения 7,1 . 10 -6 К -1 (0-100 °С); 52,3 Вт/(м. К) при 20 °С и 65,2 Вт/(м. К) при 600 °С; r 1,522 . 10 -9 Ом. м при 0°С, температурный коэф. r 3,95 х х 10 -3 К -1 (0-100°С). Ниобий парамагнитен, уд. магн. восприимчивость + 2,28 . 10 -6 (18 °С). Т-ра перехода в сверхпрово-дящее состояние 9,28 К.

Чистый ниобий легко обрабатывается на холоду; жаропрочен; s раст 342 МПа (20 °С) и 312 МПа (800 °С); относит. удлинение 19,2% (20 °С) и 20,7% (800 °С); по Бринеллю 450 МПа для чистого и 750-1800 МПа для технического. Примеси H,N,C и О снижают ниоби\ и повышают его . В хрупкое состояние ниобий переходит при т-рах от - 100 до - 200°С.

Химически ниобий довольно устойчив. В компактном виде начинает окисляться на выше 200 °С, давая , взаимод. с Сl 2 выше 200 °С, с F 2 и Н 2 -выше 250 °С (интенсивно с Н 2 -при 360 °C), с N 2 -вышe 400 °С, с С и углеводородами-при 1200-1600 °С. На холоду не раств. в , соляной и серной к-тах, не реагирует с HNO 3 , Н 3 РО 4 , НСlО 4 , водным р-ром NH 3 . Устойчив к расплавл. Li, Na, К, Sn, Pb, Bi, а также Hg. Раств. во фтористоводородной к-те, ее смесях с HNO 3 , в расплавл. NH 4 HF 2 и NaOH. Обратимо поглощает Н 2 , образуя твердый р-р внедрения (до 10 ат. % Н) и состава NbH x (x = 0,7-1,0) с ромбич. кристаллич. решеткой; для NbH 0,761 DH 0 обр - 74,0 кДж/ ; р-римость в ниобии меняется от 104 см 3 /г при 20 °С до 4,0 см 3 /г при 900 °С, выше 1000 °С Н 2 практически не раств. в ниобии. образуются также на первых стадиях ниобия во фтористоводородной к-те, ее смеси с HNO 3 и NH 4 HF 2 , а также при к-т с из ниобия (таким путем получен NbH 2,00). ниобия и при нагр. используют для получения мелкодисперсного .

При взаимодействии ниобия с С образуется одна из трех фаз: твердый р-р С в , Nb 2 C или NbC. Твердый р-р содержит 2 ат. % С при 2000 °С; р-римость С в ниобии резко падает с понижением т-ры. К а р б и д Nb 2 C образует три полиморфные модификации: до 1230 °С устойчива ромбич. a-фаза (пространств. группа Pbcn), при 1230°С она превращ. в гексагoн. b-фазу (пространств. группа Р6 3 22), к-рая при 2450 °С переходит в др. гексагoн. -g-фазу (пространств. группа P6 3 /mmc); т. пл. ок. 2990 °С (инконгруэнтно, с выделением твердого NbС x). Для a-Nb 2 C: C 0 p 63,51 Дж/( . К); DH 0 обр - 188 кДж/ ; S 0 298 64,10 ДжДмоль. К); т-ра перехода в сверхпроводящее состояние 9,2 К. NbC-кристаллы или серо-коричневого цвета, область гомогенности от NbC 0,70 до NbC 1,0 ; при 377 °С наблюдается полиморфный переход, высокотемпературная кубич. фаза (а = 0,4458 нм, пространств. группа Рт3т, плотн. 7,81 г/см 3) инконгруэнтно плавится ок. 3390 °С; DH 0 обр - 135 кДж/ ; S 0 298 35,4 ДжДмоль К); т-ра перехода в сверхпроводящее состояние 12,1 К. Фаза NbC 0,80 имеет т. пл. ~ 3620 °С. NbC образует твердые р-ры с ТаС, TiC, ZrC и др. В пром-сти NbC получают взаимод. Nb 2 O 5 с ок. 1800 °С в Н 2 ; м.б. также получен из элементов или нагреванием летучих галогенидов ниобия в до 2300-2900 °С.

В системе Nb-N образуются: твердый р-р внедрения в ниобии (a-фаза), н и т р и д ы Nb 2 N (гексагон. р-фа-за) и NbN (кубич. d- и гексагон. q-фазы) и еще неск. фаз. Р-римость N 2 в ниобии при атм. описывается ур-нием с = 180ехр(- 57300/RT) ат. % (1073 <= T<= 1873 К). b-Фаза гомогенна в области NbN 0,4 -NbN 0,5 ; для нее а = 0,3056 нм с = 0,4995 нм, пространств. группа Р6 3 /ттс- С 0 p 67 ДжДмоль. К); DH 0 обр - 249 кДж/ ; S 0 298 79 ДжДмоль. К). Светло-серая с желтоватым блеском d-фаза гомогенна в области NbN 0,88 -NbN l,06 , для нее а = 0,4373-0,4397 нм, пространств. группа Fm3m. Для q-фа-зы: С 0 р 37,5 ДжДмоль. К), DH 0 oбр -234 кДж/ , S 0 298 33,3 ДжДмоль К). не раств. в соляной к-те, HNO 3 и H 2 SO 4 , при кипячении со выделяют NH 3 , при нагр. на окисляются. Т-ры перехода в сверхпроводящее состояние для NbN x с x = 0,80, 0,90, 0,93 и 1,00 равны соотв. 13,8, 16,0, 16,3 и 16,05 К. получают нагреванием или ниобия в N 2 или NH 3 до 1100-1800 °С или взаимод. летучих галогенидов ниобия с NH 3 . Известны карбо- (получают взаимод. Nb, N 2 или NH 3 с выше 1200°С) и оксинитриды ниобия.

Получение. Ок. 95% ниобия получают из пирохлоровых, тан-талит-колумбитовых и лопаритовых . обогащают гравитац. методами и , а также электромагн. или радиометрич. , выделяя пирохлоровые и колум-битовые концентраты с содержанием Nb 2 O 5 до 60%.

Концентраты перерабатывают до феррониобия или техн. Nb 2 O 5 , реже-до NbCl 5 и K 2 NbF 7 (см. ). Металлический ниобий получают из Nb 2 O 5 , K 2 NbF 7 или NbCl 5 .

При произ-ве феррониобия смесь пирохлоровых концентратов с Fe 2 O 3 , порошкообразным Аl и флюса загружают в вертикальные водоохлаждаемые стальные или медные реакторы и с помощью спец. запала инициируют экзотермич. р-ции: 3Nb 2 O 5 + 10Al6Nb + + 5Аl 2 О 3 ; Fe 2 O 3 + 2Аl2Fe + Al 2 O 3 . Затем сливают шлак, охлаждают и измельчают полученный . Выход ниобия в слиток при массе загрузки концентрата до 18 т достигает 98%.

Техн. Nb 2 O 5 получают Nb и Та из концентратов и шлаков оловянной плавки действием фтористоводородной к-ты с послед. очисткой и разделением Nb и Та 100%-ным , циклогекса-ноном, (реже-др. экстрагентами), реэкстракцией ниобия действием водного р-ра NH 4 F, из реэкстракта Nb, его и прокаливанием.

По сульфатному способу концентраты обрабатывают H 2 SO 4 или ее смесью с (NH 4) 2 SO 4 при 150-300 °С, выщелачивают р-римые , отделяют Nb и Та от Ti, разделяют и очищают Nb и Та их фторидных или оксофторидных комплексов, выделяя затем Nb 2 O 5 .

Хлоридный способ предусматривает смешивание концентрата с , брикетирование и брикетов в шахтной при 700-800 °С или непосредственно порошкообразного концентрата и в солевом хлоридном на основе NaCl и КСl. Далее проводят отделение летучих Nb и Та, их разделение и очистку и раздельный с прокаливанием осадка ниобия. Иногда хлорируют феррониобий или отходы .

Восстанавливают Nb 2 O 5 до алюмино- или карбо-термически либо нагреванием смеси Nb 2 O 5 и NbC при 1800-1900 °С в . Применяют также натриетермич. K 2 NbF 7 , электролитич. Nb 2 O 5 или K 2 NbF 7 в K 2 NbF 7 и . Особо чистый или покрытия из ниобия на др. получают NbCl 5 при т-рах выше 1000°С.

Порошкообразный ниобий брикетируют, спекают штабики и переплавляют их в в электродуговых или электроннолучевых . На начальных стадиях очистки применяют также с расходуемым в KCl-NaCl.

Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

41
1 12 18 8 2
НИОБИЙ
92,906
4d 4 5s 1

Ниобий

С элементом, занимающим в менделеевской таблице 41-ю клетку, человечество знакомо давно. Возраст его нынешнего названия – ниобий – почти на полстолетия меньше. Случилось так, что элемент №41 был открыт дважды. Первый раз – в 1801 г. английский ученый Чарльз Хатчет исследовал образец верного минерала, присланного в Британский музей из Америки. Из этого минерала он выделил окисел неизвестного прежде элемента. Новый элемент Хатчет назвал колумбием, отмечая тем самым его заокеанское происхождение. А черный минерал получил название колумбита.

Через год шведский химик Экеберг выделил из колумбита окисел еще одного нового элемента, названного танталом. Сходство соединений Колумбия и тантала было так велико, что в течение 40 лет большинство химиков считало: тантал и колумбий – один и тот же элемент.

В 1844 г. немецкий химик Генрих Розе исследовал образцы колумбита, найденные в Баварии. Он вновь обнаружил окислы двух металлов. Один из них был окислом известного уже тантала. Окислы были похожи, и, подчеркивая их сходство, Розе назвал элемент, образующий второй окисел, ниобием по имени Ниобы, дочери мифологического мученика Тантала.

Впрочем, Розе, как и Хатчет, не сумел получить этот элемент в свободном состоянии.

Металлический ниобий был впервые получен лишь в 1866 г. шведским ученым Бломстрандом при восстановлении хлорида ниобия водородом. В конце XIX в. были найдены еще два способа получения этого элемента. Сначала Муассан получил его в электропечи, восстанавливая окись ниобия углеродом, а затем Гольдшмидт сумел восстановить тот же элемент алюминием.

А называть элемент №41 в разных странах продолжали по-разному: в Англии и США – колумбием, в остальных странах – ниобием. Конец этой разноголосице положил Международный союз чистой и прикладной химии (ИЮПАК) в 1950 г. Было решено повсеместно узаконить название элемента «ниобий», а за основным минералом ниобия так и закрепилось наименование «колумбит». Его формула (Fe, Mn) (Nb, Ta) 2 О 6 .

Глазами химика

Элементарный ниобий – чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (Nb 2 O 5). Но при высоких температурах химическая активность ниобия повышается. Если при 150...200°C окисляется лишь небольшой поверхностный слой металла, то при 900...1200°C толщина окисной пленки значительно увеличивается.

Ниобий активно реагирует со многими неметаллами. С ним образуют соединения галогены, азот, водород, углерод, сера. При этом ниобий может проявлять разные валентности – от двух до пяти. Но главная валентность этого элемента 5+. Пятивалентный ниобий может входить в состав соли и как катион, и как один из элементов аниона, что свидетельствует об амфотерном характере элемента №41.

Соли ниобиевых кислот называют ниобатами. Их получают в результате обменных реакций после сплавления пятиокиси ниобия с содой:

Nb 2 O 5 + 3Na 2 CO 3 → 2Na 3 NbО 4 + 3CO 2 .

Довольно хорошо изучены соли нескольких ниобиевых кислот, в первую очередь метаниобиевой HNbO 3 , а также диниобаты и пентаниобаты (K 4 Nb 2 O 7 , К 7 Nb 5 О 16 · m H 2 O). А соли, в которых элемент №41 выступает как катион, обычно получают прямым взаимодействием простых веществ, например 2Nb + 5Cl 2 → 2NbCl 5 .

Ярко окрашенные игольчатые кристаллы пентагалогенидов ниобия (NbCl 5 – желтого цвета, NbBr 5 – пурпурно-красного) легко растворяются в органических растворителях – хлороформе, эфире, спирте. Но при растворении в воде эти соединения полностью разлагаются, гидролизуются с образованием ниобатов:

NbCl 5 + 4Н 2 О → 5HCl + Н 3 NbO 4 .

Гидролиз можно предотвратить, если в водный раствор добавить какую-либо сильную кислоту. В таких растворах пентагалогениды ниобия растворяются, не гидролизуясь.

Ниобий образует двойные соли и комплексные соединения, наиболее легко – фтористые. Фторниобаты – так называются эти двойные соли. Они получаются, если в раствор ниобиевой и плавиковой кислот добавить фторид какого-либо металла.

Состав комплексного соединения зависит от соотношения реагирующих в растворе компонентов. Рентгеноструктурный анализ одного из этих соединений показал строение, отвечающее формуле K 2 NbF 7 . Могут образоваться и оксосоединения ниобия, например оксофторниобат калия K 2 NbOF 5 · H 2 O.

Химическая характеристика элемента не исчерпывается, конечно, этими сведениями. Сегодня самые важные из соединений элемента №41 – это его соединения с другими металлами.

Ниобий и сверхпроводимость

Удивительное явление сверхпроводимости, когда при понижении температуры проводника в нем происходит скачкообразное исчезновение электрического сопротивления, впервые наблюдал голландский физик Г. Камерлинг-Оннес в 1911 г. Первым сверхпроводником оказалась ртуть, но не ей, а ниобию и некоторым интерметаллическим соединениям ниобия суждено было стать первыми технически важными сверхпроводящими материалами.

Практически важны две характеристики сверхпроводников: величина критической температуры, при которой происходит переход в состояние сверхпроводимости, и критического магнитного поля (еще Камерлинг-Оннес наблюдал утрату сверхпроводником сверхпроводимости при воздействии на него достаточно сильного магнитного поля). По состоянию на 1 января 1975 г. сверхпроводником – «рекордсменом» по величине критической температуры было интерметаллическое соединение ниобия и германия состава Nb 3 Ge. Его критическая температура 23,2°К; это выше температуры кипения водорода. (Большинство известных сверхпроводников становятся сверхпроводниками лишь при температуре жидкого гелия).

Способность переходить в состояние сверхпроводимости свойственна также станниду ниобия Nb 3 Sn, сплавам ниобия с алюминием и германием или с титаном и цирконием. Все эти сплавы и соединения уже используются для изготовления сверхпроводящих соленоидов, а также некоторых других важных технических устройств.

Ниобий – металл

Металлический ниобий можно получить восстановлением его соединений, например хлорида ниобия или фтор-ниобата калия, при высокой температуре:

K 2 NbF 7 + 5Na → Nb + 2KF + 5NaF.

Но прежде чем достигнуть этой в сущности последней стадии производства, ниобиевая руда проходит множество этапов переработки. Первый из них – обогащение руды, получение концентратов. Концентрат сплавляют с различными плавнями: едким натром или содой. Полученный сплав выщелачивают. Но растворяется он не полностью. Нерастворимый осадок и есть ниобий. Правда, он здесь еще в составе гидроокиси, не разделен со своим аналогом по подгруппе – танталом – и не очищен от некоторых примесей.

До 1866 г. не было известно ни одного пригодного для производственных условий способа разделения тантала и ниобия. Первым метод разделения этих чрезвычайно похожих элементов предложил Жан Шарль Галиссар де Мариньяк. Метод основан на разной растворимости комплексных соединений этих металлов и называется фторидным. Комплексный фторид тантала нерастворим в воде, а аналогичное соединение ниобия растворимо.

Фторидный метод сложен и не позволяет полностью разделить ниобий и тантал. Поэтому в наши дни он почти не применяется. На смену ему пришли методы избирательной экстракции, ионного обмена, ректификации галогенидов и др. Этими методами получают окисел и хлорид пятивалентного ниобия.

После разделения ниобия и тантала идет основная операция – восстановление. Пятиокись ниобия Nb 2 O 5 восстанавливают алюминием, натрием, сажей или карбидом ниобия, полученным при взаимодействии Nb 2 O 5 с углеродом; пентахлорид ниобия восстанавливают металлическим натрием или амальгамой натрия. Так получают порошкообразный ниобий, который нужно затем превратить в монолит, сделать пластичным, компактным, пригодным для обработки. Как и другие тугоплавкие металлы, ниобий-монолит получают методами порошковой металлургии, суть которой в следующем.

Из полученного металлического порошка под большим давлением (1 т/см 2) прессуют так называемые штабики прямоугольного или квадратного сечения. В вакууме при 2300°C эти штабики спекают, соединяют в пруты, которые плавят в вакуумных дуговых печах, причем пруты в этих печах выполняют роль электрода. Такой процесс называется плавкой с расходуемым электродом.

Монокристаллический пластичный ниобий получают методом бестигельной зонной электронно-лучевой плавки. Суть его в том, что на порошкообразный ниобий (операции прессования и спекания исключены!) направляют мощный пучок электронов, который плавит порошок. Капли металла стекают на ниобиевый слиток, который постепенно растет и выводится из рабочей камеры.

Как видите, путь ниобия от руды до металла в любом случае довольно долог, а способы производства сложны.

Ниобий и металлы

Рассказ о применении ниобия логичнее всего начать с металлургии, так как именно в металлургии он нашел наиболее широкое применение. И в цветной металлургии, и в черной.

Сталь, легированная ниобием, обладает хорошей коррозионной стойкостью. «Ну и что? – скажет иной искушенный читатель. – Хром тоже повышает коррозионную стойкость стали, и он намного дешевле ниобия». Этот читатель прав и неправ одновременно. Неправ потому, что забыл об одном.

В хромоникелевой стали, как и во всякой другой, всегда есть углерод. Но углерод соединяется с хромом, образуя карбид, который делает сталь более хрупкой. Ниобий имеет большее сродство к углероду, чем хром. Поэтому при добавлении в сталь ниобия обязательно образуется карбид ниобия. Легированная ниобием сталь приобретает высокие антикоррозионные свойства и не теряет своей пластичности. Нужный эффект достигается, когда в тонну стали добавлено всего 200 г металлического ниобия. А хромо-марганцевой стали ниобий придает высокую износоустойчивость.

Ниобием легируют и многие цветные металлы. Так, алюминий, легко растворяющийся в щелочах, не реагирует с ними, если в него добавлено всего 0,05% ниобия. А медь, известную своей мягкостью, и многие ее сплавы ниобий словно закаляет. Он увеличивает прочность таких металлов, как титан, молибден, цирконий, и одновременно повышает их жаростойкость и жаропрочность.

Сейчас свойства и возможности ниобия по достоинству оценены авиацией, машиностроением, радиотехникой, химической промышленностью, ядерной энергетикой. Все они стали потребителями ниобия.

Уникальное свойство – отсутствие заметного взаимодействия ниобия с ураном при температуре до 1100°C и, кроме того, хорошая теплопроводность, небольшое эффективное сечение поглощения тепловых нейтронов сделали ниобий серьезным конкурентом признанных в атомной промышленности металлов – алюминия, бериллия и циркония. К тому же искусственная (наведенная) радиоактивность ниобия невелика. Поэтому из него можно делать контейнеры для хранения радиоактивных отходов или установки по их использованию.

Химическая промышленность потребляет сравнительно немного ниобия, но это объясняется только его дефицитностью. Из ниобийсодержащих сплавов и реже из листового ниобия иногда делают аппаратуру для производства высокочистых кислот. Способность ниобия влиять на скорость некоторых химических реакций используется, например, при синтезе спирта из бутадиена.

Потребителями элемента №41 стали также ракетная и космическая техника. Не секрет, что на околоземных орбитах уже вращаются какие-то количества этого элемента. Из ниобийсодержащих сплавов и чистого ниобия сделаны некоторые детали ракет и бортовой аппаратуры искусственных спутников Земли.

Минералы ниобия

Колумбит (Fe, Mn) (Nb, Та) 2 О 6 был первым минералом ниобия, известным человечеству. И этот же минерал – самый богатый элементом №41. На долю окислов ниобия и тантала приходится до 80% веса колумбита. Гораздо меньше ниобия в пирохлоре (Са, Na) 2 (Nb, Та, Ti) 2 O 6 (O, OH, F) и лопарите (Na, Се, Са) 2 (Nb, Ti) 2 O 6 . А всего известно больше 100 минералов, в состав которых входит ниобий. Значительные месторождения таких минералов есть в разных странах: США, Канаде, Норвегии, Финляндии, но крупнейшим поставщиком концентратов ниобия на мировой рынок стало африканское государство Нигерия. В СССР есть большие запасы лопарита, они найдены на Кольском полуострове.

Розовый карбид

Монокарбид ниобия NbC – пластичное вещество с характерным розоватым блеском. Это важное соединение довольно легко образуется при взаимодействии металлического ниобия с углеводородами. Сочетание хорошей ковкости и высокой термостойкости с приятными «внешними данными» сделало монокарбид ниобия ценным материалом для изготовления покрытий. Слой этого вещества толщиной всего 0,5 мм надежно защищает от коррозии при высоких температурах многие материалы, в частности графит, который другими покрытиями фактически незащитим. NbC используется и как конструкционный материал в ракетостроении и производстве турбин.

Нервы, сшитые ниобием

Высокая коррозионная стойкость ниобия позволила использовать его в медицине. Ниобиевые нити не вызывают раздражения живой ткани и хорошо сращиваются с ней. Восстановительная хирургия успешно использует такие нити для сшивания порванных сухожилий, кровеносных сосудов и даже нервов.

Наружность не обманчива

Ниобий не только обладает комплексом нужных технике свойств, но и выглядит достаточно красиво. Этот белый блестящий металл ювелиры пытались использовать для изготовления корпусов ручных часов. Сплавы ниобия с вольфрамом или рением иногда заменяют благородные металлы: золото, платину, иридий. Последнее особенно важно, так как сплав ниобия с рением не только внешне похож на металлический иридий, но почти так же износостоек. Это позволило некоторым странам обходиться без дорогого иридия в производстве напаек для перьев авторучек.

Ниобий и сварка

В конце 20-х годов нашего века электро- и газосварка стали вытеснять клепку и другие способы соединения узлов и деталей. Сварка повысила качество изделий, ускорила и удешевила процессы их сборки. Особенно перспективной сварка казалась при монтаже крупных установок, работающих в коррозионно-активных средах или под большим давлением. Но тут выяснилось, что при сварке нержавеющей стали сварной шов имеет намного меньшую прочность, чем сама сталь. Чтобы улучшить свойства шва, в «нержавейку» стали вводить различные добавки. Лучшей из них оказался ниобий.

Заниженные цифры

Ниобий не случайно считается редким элементом: он действительно встречается не часто и в небольших количествах, причем всегда в виде минералов и никогда в самородном состоянии. Любопытная деталь: в разных справочных изданиях кларк (содержание в земной коре) ниобия разный. Это объясняется главным образом тем, что в последние годы в странах Африки найдены новые месторождения минералов, содержащих ниобий. В приведены цифры: 3,2·10 –5 % (1939 г.), 1·10 –3 % (1949 г.) и 2,4·10 –3 % (1954 г.). Но и последние цифры занижены: африканские месторождения, открытые в последние годы, сюда не вошли. Тем не менее подсчитано, что из минералов уже известных месторождений можно выплавить примерно 1,5 млн т металлического ниобия.

Общие сведения и методы получения

Ниобий (Nb) - металл серо-стального цвета.

Открыт в 1801 г английским химиком Хатчетом в минерале, най­денном в Колумбии, и получил вследствие этого название «Колумбии».

В 1844 г. немецкий химик Розе «открыл» этот элемент вторичной, полагая, что он еще неизвестен, назвал «ниобием» в честь Ниобеи (до­чери Тантала)-мифологической богини слез. Позднее было установ­лено, что ниобий н Колумбии - один и тот же элемент.

Считают, что металлический ииобнй впервые был получен в 1866 г. шведским ученым Бломстрадом путем восстановления хлорида ниобия водородом. Компактный пластичный ниобий получил (1907 г.) немец­кий химик Болтон. В промышленных масштабах ниобий начали вы­пускать в конце тридцатых годов XX в.

Он входит в состав около 100 минералов, большей частью представляющих собой сложные комплексные соли ииобиевой и танталовой кислот. В минера­лах в различных количествах содержатся железо, марганец, щелочные и щелочноземельные металлы, а также редкоземельные элементы, ти­тан, цирконий, торий, уран, олово, сурьма, висмут, вольфрам и др.

Наиболее важные минералы ниобия подразделяются на две группы:

1. Танталониобаты - соли ниобиевой и танталовой кислот. Основ­ными минералами в этой группе являются танталит и колумбит; в тан­талите преобладает тантал, в колумбите - ниобий. Общее содержание ниобия и тантала в этих минералах, выраженное в виде суммы двух оксидов (Nb 2 0 5 + Ta 2 0 5), составляет 82-86 %.

2. Титано (тантало) ниобаты - сложные соли титановой, ниобиевой (танталовой) кислот. Почти все минералы этой группы содержат ред­коземельные элементы. Соотношение между ниобием и танталом изме­няется в широких пределах, но большей частью преобладает ниобий. Наиболее важные минералы этой группы - пирохлор, лопарит, коппит, бетафит.

Наиболее важные промышленные источники ниобия - колумбит (50-76 % Nb 2 0 5) и пирохлор (40-70 % Nb 2 0 5). Меньшее значение имеют фаргусонит (38-58 % Nb^Os), эвксенит (21-34% Nb 2 0 5) и ло­парит (7-20 % Nb 2 0 5).

Основным способом обогащения руд, содержащих колумбит и тан­талит, является гравитационное обогащение. В результате получают коллективный концентрат, содержащий, помимо колумбита и танталита, также касситерит, вольфрамит и некоторые другие минералы. Дальней­шее обогащение ведут, применил флотацию и электромагнитные методы.

Пирохлоровые и лопаритовые руды обогащают в основном также гравитацией с последующим доведением до требуемых кондиций фло­тацией, электромагнитным и электростатическим методами.

Согласно техническим условиям, принятым в нашей стране, колум-битовые концентраты I сорта должны содержать не менее 60 % Nb 2 Os, II сорта - не менее 50 % Nb 2 0 5 .

В пирохлоровых концентратах, предназначенных главным образом для выплавки феррониобия, должно содержаться не менее 37 % (Nb, Та) 2 0 5 , а в лопаритовом концентрате - не менее 8% (Nb, Та)Об.

Кроме рудных концентратов, существенным источником ниобия яв­ляются шлаки оловянных заводов, в которых при выплавке олова Из касситерита концентрируются оксиды ниобия. Шлаки содержат от 3 до 15 % (Nb, Та) 2 0 5 .

Металлический ниобий получают из рудных концентратов в три ста­дии: 1) вскрытие концентрата; 2) разделение ниобия и тантала и полу­чение их чистых химических соединений; 3) восстановление и рафини­рование металлического ниобия.

Для вскрытия концентратов танталита - колумбита применяют сплав­ление с щелочами (NaOH, КОН) или разложение плавиковой кислотой. Для вскрытия лопаритовых концентратов используют способ хлориро­вания и сернокислый способ.

Разделение тантала и ниобия и очистку их соединений от примесей осуществляют дробной кристаллизацией комплексных фтористых солей, экстракцией органическими растворителями, разделением с помощью ионообменных смол, ректификацией хлоридов, избирательным восста­новлением пятихлористого ниобия.

Основные промышленные методы получения металлического нио­бия- алюминотермический, натриетермический, карботермический.

При использовании всех методов, кроме алюминотермического, нио­бий получают в виде порошка; при алюмотермическом методе получа­ют сплав ниобия с алюминием, который удаляют при вакуумной перс-плавке.

Компактный металл производят либо методами порошковой метал­лургии, спекая спрессованные из порошков ниобия штабики в вакууме при 2573 К, либо электронно-лучевой и вакуумно-дуговой плавками. Вакуумным спеканием получают ниобий чистотой более 99,6 % Nb, дуговой плавкой - чистотой 99,7-99,8 % Nb, электронно-лучевой плав­кой-чистотой 99,88-99,9 % Nb.

Монокристаллы ниобия высокой чистоты получают бестигельной электронно-лучевой зонной плавкой.

Физические свойства

Атомные характеристики. Атомный номер 41, атомная масса 92,906 а. е м, атомный объем 10,83*10 -6 м 3 /моль, атомный радиус 0,147 нм, ионный раднус Nb 5 + 0,069 нм, Nb 4+ 0,077 нм. Конфигурация внешних электронных оболочек 4d 4 5s".

Химические свойства

Нормальный электродный потенциал реакции Nb - 3e =i =*Nb 3+ <р 0 = -1,1 В. В соединениях проявляет степень окисления +1, +2, +3, +4, +5. Элек­трохимический эквивалент 0,19256 мг/Кл.

При нормальной температуре компактный ниобий на воздухе устой­чив. Окисление компактного металла начинается при 200-300 0 О, по­рошкообразного при 150 °С; выше 500 °С происходит быстрое окисление с образованием оксида Nb 2 6 6 .

Ниобий устойчив против действия соляной, серной, азотной, фосфор­ной и органических кислот любой концентрации на холоду и при 100- 150 °С. По стойкости в горячих соляной и серной кислотах он уступает танталу. Ниобий растворяется в плавиковой кислоте и особенно интен­сивно в смеси плавиковой н азотной кислот. Менее устойчив ниобий в щелочах. Горячие растворы едких щелочей заметно разъедают металл; в расплавленных щелочах и соде ниобий быстро окисляется с образо­ванием натриевой соли ниобиевой кислоты.

Характерным свойством ниобия является способность поглощать га­зы: водород, азот, кислород. Небольшие примеси этих элементов ока­зывают существенное влияние на механические и электрические свойства ниобия.

Кислород образует с ниобием твердый раствор внедрения и ряд ок­сидов: NbO, Nb0 2 , Nb 2 0 5 . Оксиды NbO н Nb0 2 образуются при темпе­ратуре ниже 400"С, a Nb 2 0 5 - при 400°С и выше. Оксид ниобия (И) NbO имеет г. ц. к. решетку с периодом а=0,4203 нм, плотность 7,260 Мг/м 3 , температура плавления 1935 "С. Оксид ниобия (IV) NbOj - полупроводник, структура тетрагональная (а = 0,482 нм, с=0,299 нм), температура плавления 2080 °С. Оксид ниобия (V) Nb 2 O s существует в трех модификациях: L - ниже 900 "С, М - в интервале 900-1100 °С и Я -выше 1100 °С. Низкотемпературная модификация имеет ортором-бическую структуру, плотность 4,950 Мг/м 3 , температура плавления 1510 "С.

Водород - наиболее вредная примесь в ниобии, сильно снижающая его пластичность. Компактный ниобий начинает взаимодействовать с водородом при 250 °С и очень быстро при 360 °С, образуя вначале твер­дый раствор, а затем гидрид (NbH), имеющий две модификации. По­глощение водорода носит обратимый характер: при нагревании в ва-

кууме выше 600 °С газ удаляется и механические свойства металла вос­станавливаются.

Ниобий поглощает азот уже при 600 °С, образуя раствор внедрения, при более высокой температуре образуется нитрид (NbN), температу­ра плавления которого 2300 °С. Азот может быть удален из твердого раствора в ниобии нагреванием выше 1900 °С в вакууме или вакуумной плавкой.

Углерод и углеродсодержащие газы (СО, СН 4) взаимодействуют с ниобием при 1200-1400°С с образованием твердого раствора и туго* плавких карбидов.

Ниобий с бором и кремнием образует тугоплавкие и твердые бориды (NbB, Nb 2 B, NbB, Nb 3 B 4 , NbB 2) и силициды (NbSi 4 , Nb 5 Si 3 , NbSi 2).

Известны два фосфида (NbP и NbP 2) и два сульфида (NbS, NbS 2) ниобия с узкими областями гомогенности.

С галогенами ниобий образует ряд галогенидов, оксигалогенидов и комплексных солей. Фтор действует на ниобий при комнатной темпера­туре, хлор - при температуре выше 200 °С, бром - выше 250 °С. Вые-шие хлориды и фториды ниобия (NbF 5 и NbCI 5) - легкоплавкие, лег­колетучие соединения, весьма гигроскопичны, в воде гидролизуются с образованием оксигалогенидов и гидратированных оксидов.

Ниобий взаимодействует с подавляющей частью элементов Перио­дической системы. По характеру этого взаимодействия все элементы классифицируются на четыре основные группы.

Первую группу составляют элементы, образующие с ниобием не­прерывные твердые растворы: Ti, Zr, Hf, V, Та, Мо и W.

Во вторую группу входят элементы, образующие с ниобием огра-ничейные твердые растворы: Си, Аи, Zn, Cd, Be, Ga, In, TI, B, Se, Y, La, Ac и лантаноиды: N, P, As, Sb, Bi, Cr, Mn, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir и Pt.

Третью группу составляют элементы VI и VII групп подгруппы Б, образующие с ниобием соединения с ионным или ковалентным типом связи: S, Se, Те, Ро, F, С1, В, А1.

Четвертую группу составляют элементы, ие взаимодействующие е ниобием: Li, Na, К, Pb, Cs, Fr, Са, Sr, и инертные газы: Не, Ne, Аг, Кг, Хс.

Ниобий обладает высокой химической стойкостью в различных аг­рессивных средах и, кроме того, отличается высокой стойкостью против воздействия расплавленных металлов, применяемых в качестве тепло­носителей в реакторах.

Технологические свойства

Чистый ниобий легко поддается обработке давлением (ковке, прокатке, волочению) и хорошо деформируется в холодном состоянии, сравни­тельно медленно при этом нагартовываясь. Учитывая, что при нагреве ниобий поглощает водород, азот, кислород, которые оказывают отри­цательное влияние на его пластичность, горячая деформация возможна только при применении специальной защиты (например, деформация в среде инертного газа). После обжатия с высокой степенью (70-95 %) листы (нли другие изделия) перед дальнейшей холодной деформацией подвергают отжигу при 1100-1300 °С в среде инертного газа или в ва­кууме. Отжиг готовых изделий производят в основном для снятия на­пряжений, вызванных обработкой давлением (или резанием), при 900- 1000 °С, в течение 1-5 ч, также в среде инертного газа или в вакууме.

Температура рекристаллизации ниобия повышается с увеличением содержания кислорода и других газов. Температура начала рекристал­лизации чистого ниобия 930-940 °С, полная рекристаллизация проис­ходит при 1200 °С.

Легирование ниобия вольфрамом, танталом, цирконием, молибде­ном повышает температуру рекристаллизации на 220-250 °С.

Ниобий хорошо сваривается с титаном, медью, цирконием и други» ми металлами. Сварку ведут в вакууме или нейтральной среде, приме» няя различные виды дуговой и электронно-лучевой сварки. При пайка на ниобий предварительно наносят электролитическим путем слой меди или никеля.

Обработку ниобия резанием можно производить обычными режущи­ми инструментами, но в связи со склонностью к налипанию требуется применять специальные смазочно-охлаждающие жидкости.

Области применения

Наиболее важные области применения чистого ниобия - производство жаропрочных и других сплавов, атомная энергетика и химическое ап-паратостроение. Металл используется для легирования медных, никеле­вых и других цветных сплавов с целью повышения их прочности и жа­ропрочности. В виде ферросплавов ниобий добавляют в различные стали для придания им необходимых физико-механических свойств. Ма­лые добавки ниобия модифицируют структуру и способствуют повы­шению коррозионной стойкости алюминиевых сплавов. Будучи введен в титановые сплавы, ниобий повышает их прочность и коррозионную стойкость. Небольшие присадки ниобия применяются для создания сплавов с особыми физико-химическими свойствами (с повышенной элек­трической проводимостью и теплопроводностью, коррозионной стойко­стью и др.).

Некоторые соединения ниобия (карбиды, бориды) используются при производстве сверхтвердых металлокерамических сплавов для повыше­ния их стойкости против износа и выкрашивания при механической об­работке сталей.

Благодаря отсутствию значительного взаимодействия с ураном, плу« тонием и жидкометаллическими теплоносителями, а также высокой устойчивости при облучении и сравнительно небольшому захвату теп­ловых нейтронов, ниобий и его сплавы представляют собой ценные кон­струкционные материалы для атомной энергетики и ракетостроения.

В последние годы большое значение в атомной технике приобрели сверхпроводящие ниобиевые сплавы; их используют при создании сверх» мощных магнитов для новых атомных ускорителей, для отражателей горячей плазмы в термоядерных установках, а также при создании кван­товых генераторов.

Ниобиевые жаропрочные сплавы используют в авиационных реак­тивных двигателях для изготовления турбинных дисков н неохлаждае-» мых турбинных лопаток взамен охлаждаемых. Кроме того, ниобий применяют для обшивки кромок крыльев и стабилизаторов в сверхзву­ковых самолетах, а также для изготовления различных деталей и узлов, работающих при высоких температурах.

Ниобий - один из важных конструкционных материалов, применяе­мых в радиотехнической и электротехнической промышленности (элек­тронные лампы радарных установок, катоды косвенного нагрева мощ­ных генераторных ламп и др.).

Антикоррозионные свойства ниобия позволяют применять его в ка­честве химически стойкого материала в теплообменниках и конденса­торах, для облицовки цистерн, для изготовления фильтров, мешалок, трубопроводов и других деталей аппаратов химической промышленно­сти. Соединения ниобия (в частности, Nb 2 0 5) применяют в качестве ка­тализаторов в химической промышленности, в производстве специаль­ных стекол и т. д.

Применение ниобия и его сплавов в аппаратуре химического маши­ностроения позволяет резко увеличить срок его службы и в ряде слу­чаев способствует интенсификации процессов химического производ­ства.



Поделиться