Зависимость сопротивления нихрома от температуры график. Зависимость сопротивления нихрома от температуры

Сопротивление меди действительно меняется с температурой, но сначала нужно определиться, имеется ли в виду удельное электрическое сопротивление проводников (омическое сопротивление), что важно для питания по Ethernet, использующего постоянный ток, или же речь идет о сигналах в сетях передачи данных, и тогда мы говорим о вносимых потерях при распространении электромагнитной волны в среде витой пары и о зависимости затухания от температуры (и частоты, что не менее важно).

Удельное сопротивление меди

В международной системе СИ удельное сопротивление проводников измеряется в Ом∙м. В сфере ИТ чаще используется внесистемная размерность Ом∙мм 2 /м, более удобная для расчетов, поскольку сечения проводников обычно указаны в мм 2 . Величина 1 Ом∙мм 2 /м в миллион раз меньше 1 Ом∙м и характеризует удельное сопротивление вещества, однородный проводник из которого длиной 1 м и с площадью поперечного сечения 1 мм 2 дает сопротивление в 1 Ом.

Удельное сопротивление чистой электротехнической меди при 20°С составляет 0,0172 Ом∙мм 2 /м . В различных источниках можно встретить значения до 0,018 Ом∙мм 2 /м, что тоже может относиться к электротехнической меди. Значения варьируются в зависимости от обработки, которой подвергнут материал. Например, отжиг после вытягивания («волочения») проволоки уменьшает удельное сопротивление меди на несколько процентов, хотя проводится он в первую очередь ради изменения механических, а не электрических свойств.

Удельное сопротивление меди имеет непосредственное значение для реализации приложений питания по Ethernet. Лишь часть исходного постоянного тока, поданного в проводник, достигнет дальнего конца проводника – определенные потери по пути неизбежны. Так, например, PoE Type 1 требует, чтобы из 15,4 Вт, поданных источником, до запитываемого устройства на дальнем конце дошло не менее 12,95 Вт.

Удельное сопротивление меди изменяется с температурой, но для температур, характерных для сферы ИТ, эти изменения невелики. Изменение удельного сопротивления рассчитывается по формулам:

ΔR = α · R · ΔT

R 2 = R 1 · (1 + α · (T 2 - T 1))

где ΔR – изменение удельного сопротивления, R – удельное сопротивление при температуре, принятой в качестве базового уровня (обычно 20°С), ΔT – градиент температур, α – температурный коэффициент удельного сопротивления для данного материала (размерность °С -1). В диапазоне от 0°С до 100°С для меди принят температурный коэффициент 0,004 °С -1 . Рассчитаем удельное сопротивление меди при 60°С.

R 60°С = R 20°С · (1 + α · (60°С - 20°С)) = 0,0172 · (1 + 0,004 · 40) ≈ 0,02 Ом∙мм 2 /м

Удельное сопротивление при увеличении температуры на 40°С возросло на 16%. При эксплуатации кабельных систем, разумеется, витая пара не должна находиться при высоких температурах, этого не следует допускать. При правильно спроектированной и установленной системе температура кабелей мало отличается от обычных 20°С, и тогда изменение удельного сопротивления будет невелико. По требованиям телекоммуникационных стандартов сопротивление медного проводника длиной 100 м в витой паре категорий 5e или 6 не должно превышать 9,38 Ом при 20°С. На практике производители с запасом вписываются в это значение, поэтому даже при температурах 25°С ÷ 30°С сопротивление медного проводника не превышает этого значения.

Затухание сигнала в витой паре / Вносимые потери

При распространении электромагнитной волны в среде медной витой пары часть ее энергии рассеивается по пути от ближнего конца к дальнему. Чем выше температура кабеля, тем сильнее затухает сигнал. На высоких частотах затухание сильнее, чем на низких, и для более высоких категорий допустимые пределы при тестировании вносимых потерь строже. При этом все предельные значения заданы для температуры 20°С. Если при 20°С исходный сигнал приходил на дальний конец сегмента длиной 100 м с уровнем мощности P, то при повышенных температурах такая мощность сигнала будет наблюдаться на более коротких расстояниях. Если необходимо обеспечить на выходе из сегмента ту же мощность сигнала, то либо придется устанавливать более короткий кабель (что не всегда возможно), либо выбирать марки кабелей с более низким затуханием.

  • Для экранированных кабелей при температурах выше 20°С изменение температуры на 1 градус приводит к изменению затухания на 0.2%
  • Для всех типов кабелей и любых частот при температурах до 40°С изменение температуры на 1 градус приводит к изменению затухания на 0.4%
  • Для всех типов кабелей и любых частот при температурах от 40°С до 60°С изменение температуры на 1 градус приводит к изменению затухания на 0.6%
  • Для кабелей категории 3 может наблюдаться изменение затухания на уровне 1,5% на каждый градус Цельсия

Уже в начале 2000 гг. стандарт TIA/EIA-568-B.2 рекомендовал уменьшать максимально допустимую длину постоянной линии/канала категории 6, если кабель устанавливался в условиях повышенных температур, и чем выше температура, тем короче должен быть сегмент.

Если учесть, что потолок частот в категории 6А вдвое выше, чем в категории 6, температурные ограничения для таких систем будут еще жестче.

На сегодняшний день при реализации приложений PoE речь идет о максимум 1-гигабитных скоростях. Когда же используются 10-гигабитные приложения, питание по Ethernet не применяется, по крайней мере, пока. Так что в зависимости от ваших потребностей при изменении температуры вам нужно учитывать либо изменение удельного сопротивления меди, либо изменение затухания. Разумнее всего и в том, и в другом случае обеспечить кабелям нахождение при температурах, близких к 20°С.

Температурные коэффициенты сопротивления металлов

Задача 18.1. Для измерения температуры применили железную проволочку, имеющую при температуре t 1 = 10 °С сопротивление R 1 = 15 Ом. При некоторой температуре t 2 она имела сопротивление R 2 = 18,25 Ом. Найти эту температуру. Температурный коэффициент сопротивления железа a = 6,0×10 –3 1/°С.

Подставим численные значения:

Ответ : .

СТОП! Решите самостоятельно: А5, В7–В9, С3–С4.

Задача 18.2. Найти температуру t 2 вольфрамовой нити лампочки, если при включении в сеть с напряжением U = 220 В по нити идет ток I = 0,68 А. При температуре t 1 = 20 °С сопротивление нити R 1 = 36 Ом. Температурный коэффициент сопротивления вольфрама a = 4,8×10 –3 1/°С.

Ответ :

СТОП! Решите самостоятельно: В10–В12, С4, с6, С8.

Сверхпроводимость

Рис. 18.3

В 1911 г. голландский ученый Камерлинг-Оннес обнаружил, что при темпе­ратурах, близких к абсолютному нулю, сопротивление неко­торых веществ скачком падает до нуля (рис. 18.3). Это яв­ление назвали сверхпроводимостью. Ток, возбужденный в кольце из сверхпроводника, может продолжаться месяцы и годы, не затухая после того, как источник убрали.

Примерно половина чистых металлов может переходить в сверхпроводящее состояние, а всего в настоящее время известно более тысячи сверхпроводников. Из чистых метал­лов наибольшей температурой перехода обладает ниобий (9,3 К), а у сплавов «ре­кордсменом» является со­единение ниобия с герма­нием (23,2 К).

В сильном магнитном поле сверхпроводимость ис­чезает. Чем дальше отстоит температура сверхпровод­ника от точки перехода, тем сильнее должно быть разрушающее магнитное поле. Таким разрушающим маг­нитным полем может быть и поле самого тока в сверхпро­воднике. У некоторых сплавов удается сохранять сверхпро­водимость при токе в несколько тысяч ампер.

До сих пор неизвестно, можно ли создать сверхпро­водящие материалы при температурах, близких к комнат­ным. Создание таких материалов позволило бы передавать электроэнергию на любые расстояния без потерь. Однако уже теперь электромагниты со сверхпроводящими обмотка­ми, охлажденными жидким гелием (температура кипения 4,2 К), часто используют в ускорителях элементарных час­тиц, в мощных генераторах тока и в некоторых других уст­ройствах. Большое практическое значение имело бы созда­ние материалов, способных сохранять сверхпроводящее со­стояние при температуре кипения легко доступного и деше­вого жидкого азота 77 К.

Сопротивление проводника (R) (удельное сопротивление) () зависит от температуры. Эту зависимость при незначительных изменениях температуры () представляют в виде функции:

где — удельное сопротивление проводника при температуре равной 0 o C; — температурный коэффициент сопротивления.

ОПРЕДЕЛЕНИЕ

Температурным коэффициентом электрического сопротивления () называют физическую величину, равную относительному приращению (R) участка цепи (или удельного сопротивления среды ()), которое происходит при нагревании проводника на 1 o С. Математически определение температурного коэффициента сопротивления можно представить как:

Величина служит характеристикой связи электросопротивления с температурой.

При температурах, принадлежащих диапазону , у большинства металлов рассматриваемый коэффициент остается постоянным. Для чистых металлов температурный коэффициент сопротивления часто принимают равным

Иногда говорят о среднем температурном коэффициенте сопротивления, определяя его как:

где — средняя величина температурного коэффициента в заданном интервале температур ().

Температурный коэффициент сопротивления для разных веществ

Большая часть металлов имеет температурный коэффициент сопротивления больше нуля. Это означает, что сопротивление металлов с ростом температуры возрастает. Это происходит как результат рассеяния электронов на кристаллической решетке, которая усиливает тепловые колебания.

При температурах близких к абсолютному нулю (-273 o С) сопротивление большого числа металлов резко падает до нуля. Говорят, что металлы переходят в сверхпроводящее состояние.

Полупроводники, не имеющие примесей, обладают отрицательным температурным коэффициентом сопротивления. Их сопротивление при увеличении температуры уменьшается. Это происходит вследствие того, что увеличивается количество электронов, которые переходят в зону проводимости, значит, при этом увеличивается число дырок в единице объема полупроводника.

Растворы электролитов имеют . Сопротивление электролитов при увеличении температуры уменьшается. Это происходит потому, что рост количества свободных ионов в результате диссоциации молекул превышает увеличение рассеивания ионов в результате столкновений с молекулами растворителя. Надо сказать, что температурный коэффициент сопротивления для электролитов является постоянной величиной только в малом диапазоне температур.

Единицы измерения

Основной единицей измерения температурного коэффициента сопротивления в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Лампа накаливания, имеющая спираль из вольфрама включена в сеть с напряжением B, по ней идет ток А. Какой будет температура спирали, если при температуре o С она имеет сопротивление Ом? Температурный коэффициент сопротивления вольфрама .
Решение В качестве основы для решения задачи используем формулу зависимости сопротивления от температуры вида:

где — сопротивление вольфрамовой нити при температуре 0 o C. Выразим из выражения (1.1), имеем:

По закону Ома для участка цепи имеем:

Вычислим

Запишем уравнение связывающее сопротивление и температуру:

Проведем вычисления:

Ответ K

ПРИМЕР 2

Задание При температуре сопротивление реостата равно , сопротивление амперметра равно и он показывает силу тока Реостат, сделан из железной проволоки, он последовательно соединен с амперметром (рис.1). Каким будет сила тока течь через амперметр, если реостат нагреть до температуры ? Считать температурный коэффициент сопротивления железа равным .

Про эффект сверхпроводимости знают, наверно, все. Во всяком случае, слышали о нем. Суть этого эффекта в том, что при минус 273 °С сопротивление проводника протекающему току пропадает. Уже одного этого примера достаточно для того, чтобы понять, что существует его зависимость от температуры. А описывает специальный параметр - температурный коэффициент сопротивления.

Любой проводник препятствует протекающему через него току. Это противодействие для каждого токопроводящего материла разное, определяется оно многими факторами, присущими конкретному материалу, но речь дальше будет не об этом. Интерес в данный момент представляет его зависимость от температуры и характер этой зависимости.

Проводниками электрического тока обычно выступают металлы, у них при повышении температуры сопротивление растет, при понижении оно уменьшается. Величина такого изменения, приходящаяся на 1 °С, и называется температурный коэффициент сопротивления, или сокращённо ТКС.

Значение ТКС может быть положительным и отрицательным. Если он положительный, то при увеличении температуры растёт, если отрицательный, то уменьшается. Для большинства металлов, применяющихся как проводники электрического тока, ТКС положительный. Одним из лучших проводников является медь, температурный коэффициент сопротивления меди не то чтобы лучший, но по сравнению с другими проводниками, он меньше. Надо просто помнить, что значение ТКС определяет, каким при изменении параметров окружающей среды будет значение сопротивления. Его изменение будет тем значительнее, чем этот коэффициент больше.

Такая температурная зависимость сопротивления должна быть учтена при проектировании радиоэлектронной аппаратуры. Дело в том, что аппаратура должна работать при любых условиях окружающей среды, те же автомобили эксплуатируются от минус 40 °С до плюс 80 °С. А электроники в автомобиле много, и если не учесть влияние окружающей среды на работу элементов схемы, то можно столкнуться с ситуацией, когда электронный блок отлично работает при нормальных условиях, но отказывается работать при воздействии пониженной или повышенной температуры.

Вот эту зависимость от условий внешней среды и учитывают разработчики аппаратуры при ее проектировании, используя для этого при расчётах параметров схемы температурный коэффициент сопротивления. Существуют таблицы с данными ТКС для применяемых материалов и формулы расчетов, по которым, зная ТКС, можно определить значение сопротивления в любых условиях и учесть в режимах работы схемы возможное его изменение. Но для понимания того, ТКС, сейчас ни формулы, ни таблицы не нужны.

Надо отметить, что существуют металлы с очень маленьким значением ТКС, и именно они используются при изготовлении резисторов, параметры которых от изменений окружающей среды зависят слабо.

Температурный коэффициент сопротивления можно использовать не только для учета влияния колебаний параметров окружающей среды, но и для Для чего достаточно Зная материал, который подвергался воздействию, по таблицам можно определить, какой температуре соответствует измеренное сопротивление. В качестве такого измерителя может использоваться обычный медный провод , правда, придётся его использовать много и намотать в виде, например, катушки.

Всё вышеописанное не охватывает полностью всех вопросов использования температурного коэффициента сопротивления. Есть очень интересные возможности применения, связанные с этим коэффициентом в полупроводниках, в электролитах, но и того, что изложено, достаточно для понимания понятия ТКС.

Сопротивление проводника (R) (удельное сопротивление) () зависит от температуры. Эту зависимость при незначительных изменениях температуры () представляют в виде функции:

где - удельное сопротивление проводника при температуре равной 0 o C; - температурный коэффициент сопротивления.

ОПРЕДЕЛЕНИЕ

Температурным коэффициентом электрического сопротивления () называют физическую величину, равную относительному приращению (R) участка цепи (или удельного сопротивления среды ()), которое происходит при нагревании проводника на 1 o С. Математически определение температурного коэффициента сопротивления можно представить как:

Величина служит характеристикой связи электросопротивления с температурой.

При температурах, принадлежащих диапазону, у большинства металлов рассматриваемый коэффициент остается постоянным. Для чистых металлов температурный коэффициент сопротивления часто принимают равным

Иногда говорят о среднем температурном коэффициенте сопротивления, определяя его как:

где - средняя величина температурного коэффициента в заданном интервале температур ().

Температурный коэффициент сопротивления для разных веществ

Большая часть металлов имеет температурный коэффициент сопротивления больше нуля. Это означает, что сопротивление металлов с ростом температуры возрастает. Это происходит как результат рассеяния электронов на кристаллической решетке, которая усиливает тепловые колебания.

При температурах близких к абсолютному нулю (-273 o С) сопротивление большого числа металлов резко падает до нуля. Говорят, что металлы переходят в сверхпроводящее состояние.

Полупроводники, не имеющие примесей, обладают отрицательным температурным коэффициентом сопротивления. Их сопротивление при увеличении температуры уменьшается. Это происходит вследствие того, что увеличивается количество электронов, которые переходят в зону проводимости, значит, при этом увеличивается число дырок в единице объема полупроводника.

Растворы электролитов имеют. Сопротивление электролитов при увеличении температуры уменьшается. Это происходит потому, что рост количества свободных ионов в результате диссоциации молекул превышает увеличение рассеивания ионов в результате столкновений с молекулами растворителя. Надо сказать, что температурный коэффициент сопротивления для электролитов является постоянной величиной только в малом диапазоне температур.

Единицы измерения

Основной единицей измерения температурного коэффициента сопротивления в системе СИ является:

Примеры решения задач

Задание Лампа накаливания, имеющая спираль из вольфрама включена в сеть с напряжением B, по ней идет ток А. Какой будет температура спирали, если при температуре o С она имеет сопротивление Ом? Температурный коэффициент сопротивления вольфрама .
Решение В качестве основы для решения задачи используем формулу зависимости сопротивления от температуры вида:

где - сопротивление вольфрамовой нити при температуре 0 o C. Выразим из выражения (1.1), имеем:

По закону Ома для участка цепи имеем:

Вычислим

Запишем уравнение связывающее сопротивление и температуру:

Проведем вычисления:

Ответ K

Металл

Удельное сопротивление ρ при 20 ºС, Ом*мм²/м

Температурный коэффициент сопротивления α, ºС -1

Алюминий

Железо (сталь)

Константан

Манганин

Температурный коэффициент сопротивления α показывает на сколько увеличивается сопротивление проводника в 1 Ом при увеличении температуры (нагревании проводника) на 1 ºС.

Сопротивление проводника при температуре t рассчитывается по формуле:

r t = r 20 + α* r 20 *(t - 20 ºС)

где r 20 – сопротивление проводника при температуре 20 ºС, r t – сопротивление проводника при температуре t.

Плотность тока

Через медный проводник с площадью поперечного сечения S = 4 мм² протекает ток I = 10 А. Какова плотность тока?

Плотность тока J = I/S = 10 А/4 мм² = 2.5 А/мм².

[По площади поперечного сечения 1 мм² протекает ток I = 2.5 А; по всему поперечному сечению S протекает ток I = 10 А].

По шине распределительного устройства прямоугольного поперечного сечения (20х80) мм² проходит ток I = 1000 А. Какова плотность тока в шине?

Площадь поперечного сечения шины S = 20х80 = 1600 мм². Плотность тока

J = I/S = 1000 A/1600 мм² = 0.625 А/мм².

У катушки провод имеет круглое сечение диаметром 0.8 мм и допускает плотность тока 2.5 А/мм². Какой допустимый ток можно пропустить по проводу (нагрев не должен превысить допустимый)?

Площадь поперечного сечения провода S = π * d²/4 = 3/14*0.8²/4 ≈ 0.5 мм².

Допустимый ток I = J*S = 2.5 А/мм² * 0.5 мм² = 1.25 А.

Допустимая плотность тока для обмотки трансформатора J = 2.5 А/мм². Через обмотку проходит ток I = 4 А. Каким должно быть поперечное сечение (диаметр) круглого сечения проводника, чтобы обмотка не перегревалась?

Площадь поперечного сечения S = I/J = (4 А) / (2.5 А/мм²) = 1.6 мм²

Этому сечению соответствует диаметр провода 1.42 мм.

По изолированному медному проводу сечением 4 мм² проходит максимально допустимый ток 38 А (см. таблицу). Какова допустимая плотность тока? Чему равны допустимые плотности тока для медных проводов сечением 1, 10 и 16 мм²?

1). Допустимая плотность тока

J = I/S = 38 А / 4мм² = 9.5 А/мм².

2). Для сечения 1 мм² допустимая плотность тока (см. табл.)

J = I/S = 16 А / 1 мм² = 16 А/мм².

3). Для сечения 10 мм² допустимая плотность тока

J = 70 A / 10 мм² = 7.0 А/мм²

4). Для сечения 16 мм² допустимая плотность тока

J = I/S = 85 А / 16 мм² = 5.3 А/мм².

Допустимая плотность тока с увеличением сечения падает. Табл. действительна для электрических проводов с изоляцией класса В.

Задачи для самостоятельного решения

    Через обмотку трансформатора должен протекать ток I = 4 А. Какое должно быть сечение обмоточного провода при допустимой плотности тока J = 2.5 А/мм²? (S = 1.6 мм²)

    По проводу диаметром 0.3 мм проходит ток 100 мА. Какова плотность тока? (J = 1.415 А/мм²)

    По обмотке электромагнита из изолированного провода диаметром

d = 2.26 мм (без учёта изоляции) проходит ток 10 А. Какова плотность

тока? (J = 2.5 А/мм²).

4. Обмотка трансформатора допускает плотность тока 2.5 А/мм². Ток в обмотке равен 15 А. Какое наименьшее сечение и диаметр может иметь круглый провод (без учёта изоляции)? (в мм²; 2.76 мм).

Cтраница 1


Отрицательный температурный коэффициент сопротивления в собственных материалах используется в термисторах для превращения изменения температуры в электрический сигнал. Применяемые при этом материалы чаще всего являются спрессованными порошками окислов никеля, меди, марганца и цинка. Также возможно применение германия или других полупроводников в качестве низкотемпературного термометра.  

Отрицательный температурный коэффициент сопротивления таких полупроводников наблюдается в областях температур, когда не все примеси ионизированы или имеет место собственная электропроводность. И в том, и в другом случае зависимость удельного сопротивления полупроводника определяется в основном изменением концентрации носителей заряда, так как относительно слабым изменением их подвижности в данном случае можно пренебречь.  

Отрицательный температурный коэффициент сопротивления керметных пленок (- 200 - 10 - б град 1) свидетельствует о том, что в них металлический механизм электропроводности не является преобладающим. Электросопротивление керметной пленки зависит от рецептурного состава и рассеяния при испарении, однако легко поддается подгонке при варьировании температурой и временем выдержки при заключительном отжиге. В результате отжига изменяется не только сопротивление, но и его температурный коэффициент.  


Полупроводники имеют отрицательный температурный коэффициент сопротивления, который по абсолютной величине в 10 - 20 раз больше, чем у металлов. Это свойство полупроводников используется в технике для различных целей, например для изготовления терморезисторов, сопротивление которых резко меняется при незначительных изменениях температуры.  

Полупроводники имеют отрицательный температурный коэффициент сопротивления, который по абсолютной величине в 10 - 20 раз больше, чем у металлов. Это свойство полупроводников используется в технике для различных целей, например для изготовления терморезисторов, величина сопротивления ко - торых резко меняется при незначительных изменениях температуры.  

Полупроводники имеют отрицательный температурный коэффициент сопротивления, который по абсолютному значению в 10 - 20 раз больше, чем у металлов. Это свойство полупроводников используется в технике для различных целей, например для изготовления терморезисторов, сопротивление которых резко меняется при незначительных изменениях температуры.  

Терморезисторы имеют отрицательный температурный коэффициент сопротивления.  

Полупроводники имеют отрицательный температурный коэффициент сопротивления, который по абсолютной величине в 10 - 20 раз больше, чем у металлов. Это свойство полупроводников используется в технике для различных целей, например, для изготовления термосопротивлений (терморезисторов), величина которых резко - меняется при незначительных изменениях температуры.  

Варисторы имеют отрицательный температурный коэффициент сопротивления. При комнатной температуре значение этого коэффициента колеблется от - 0 3 до - 0 5 % X град-1. С уменьшением температуры оно увеличивается, с повышением температуры - уменьшается. Коэффициент нелинейности р с температурой изменяется мало.  

Терморезистор имеет большой отрицательный температурный коэффициент сопротивления, поэтому включение его в цепь из металлических резисторов, имеющую положительный температурный коэффициент (см. рис. 8.8), может сделать характеристики цепи почти не зависящими от температуры. Таким образом, с помощью терморезисторов легко обеспечить температурную компенсацию ряда элементов электрической цепи , тепловой контроль различных механизмов, пожарную сигнализацию.  

Терморезистор имеет большой отрицательный температурный коэффициент сопротивления, поэтому включение его в цепь из металлизированных резисторов, имеющих положительный температурный коэффициент (см. рис. 8.8), может сделать характеристики цепи почти не зависящими от температуры. Таким образом, с помощью терморезисторов легко обеспечить температурную компенсацию ряда элементов электрической цепи, тепловой контроль различных механизмов, пожарную сигнализацию.  

На результаты измерений удельного сопротивления сильно влияют усадочные раковины, газовые пузыри, включения и другие дефекты. Более того, рис. 155 показывает, что малые количества примеси, входящей в твердый раствор, также оказывают большое влияние на измеренную проводимость. Поэтому для измерений электросопротивления изготовить удовлетворительные образцы значительно труднее, чем для

дилатометричеокого исследования. Это привело к другому методу построения диаграмм состояния, в котором измеряется температурный коэффициент сопротивления.

Температурный коэффициент сопротивления

Электросопротивление при температуре

Маттиссен установил, что увеличение сопротивления металла вследствие присутствия малого количества второго компонента в твердом растворе не зависит от температуры; отсюда следует, что для такого твердого раствора значение не зависит от концентрации. Это значит, что температурный коэффициент сопротивления пропорционален т. е. проводимости, и график коэффициента а в зависимости от состава подобен графику проводимости твердого раствора. Известно много исключений из этого правила, особенно для переходных металлов, но для большинства случаев оно приблизительно верно.

Температурный коэффициент сопротивления промежуточных фаз - обычно величина того же порядка, что и для чистых металлов, даже в тех случаях, когда само соединение имеет высокое сопротивление . Есть, однако, промежуточные фазы, температурный коэффициент которых в некотором интервале температур равен нулю или отрицателен.

Правило Маттиссена применимо, строго говоря, только к твердым растворам, но известно много случаев когда оно, повидимому, верно также для двухфазных сплавов. Если нанести температурный коэффициент сопротивления в зависимости от состава, кривая обычно имеет ту же форму, что и кривая проводимости, так что фазовое превращение можно обнаружить тем же путем. Этот метод удобно применять, когда из-за хрупкости или по другим причинам нельзя изготовить образцы, пригодные для измерений проводимости.

На практике средней температурный коэффициент между двумя температурами определяется измерением электросопротивления сплава при этих температурах. Если в рассматриваемом интервале температур не происходит фазового превращения, то коэффициент определяемый по формуле:

будет иметь такое же значение, как если интервал невелик. Для закаленных сплавов в качестве температур и

Удобно взять соответственно 0° и 100° и измерения дадут области фаз при температуре закалки. Однако, если измерения проводят при высоких температурах, интервал должен быть намного меньше, чем 100°, если граница фаз может находиться где-то между температурами

Рис. 158. (см. скан) Электропроводность и температурный коэффициент электросопротивления в системе серебро-магиий (Тамман)

Большое преимущество этого метода заключается в том, что коэффициент а зависит от относительного сопротивления образца при двух температурах, и таким образом на него не влияют раковины и другие металлургические дефекты образца. Кривые проводимости и температурного коэффициента

сопротивления в некоторых системах сплавов повторяют одна другую. Рис. 158 взят из ранней работы Таммана (кривые относятся к сплавам серебра с магнием); более поздняя работа показала, что область -твердого раствора уменьшается с понижением температуры и в районе фазы существует сверхструктура. Некоторые другие границы фаз в последнее время также претерпели изменения, так что диаграмма, представленная на рис. 158, имеет лишь исторический интерес и не может быть использована для точных измерений.

Металл

Удельное сопротивление ρ при 20 ºС, Ом*мм²/м

Температурный коэффициент сопротивления α, ºС -1

Алюминий

Железо (сталь)

Константан

Манганин

Температурный коэффициент сопротивления α показывает на сколько увеличивается сопротивление проводника в 1 Ом при увеличении температуры (нагревании проводника) на 1 ºС.

Сопротивление проводника при температуре t рассчитывается по формуле:

r t = r 20 + α* r 20 *(t - 20 ºС)

r t = r 20 *,

где r 20 – сопротивление проводника при температуре 20 ºС, r t – сопротивление проводника при температуре t.

Плотность тока

Через медный проводник с площадью поперечного сечения S = 4 мм² протекает ток I = 10 А. Какова плотность тока?

Плотность тока J = I/S = 10 А/4 мм² = 2.5 А/мм².

[По площади поперечного сечения 1 мм² протекает ток I = 2.5 А; по всему поперечному сечению S протекает ток I = 10 А].

По шине распределительного устройства прямоугольного поперечного сечения (20х80) мм² проходит ток I = 1000 А. Какова плотность тока в шине?

Площадь поперечного сечения шины S = 20х80 = 1600 мм². Плотность тока

J = I/S = 1000 A/1600 мм² = 0.625 А/мм².

У катушки провод имеет круглое сечение диаметром 0.8 мм и допускает плотность тока 2.5 А/мм². Какой допустимый ток можно пропустить по проводу (нагрев не должен превысить допустимый)?

Площадь поперечного сечения провода S = π * d²/4 = 3/14*0.8²/4 ≈ 0.5 мм².

Допустимый ток I = J*S = 2.5 А/мм² * 0.5 мм² = 1.25 А.

Допустимая плотность тока для обмотки трансформатора J = 2.5 А/мм². Через обмотку проходит ток I = 4 А. Каким должно быть поперечное сечение (диаметр) круглого сечения проводника, чтобы обмотка не перегревалась?

Площадь поперечного сечения S = I/J = (4 А) / (2.5 А/мм²) = 1.6 мм²

Этому сечению соответствует диаметр провода 1.42 мм.

По изолированному медному проводу сечением 4 мм² проходит максимально допустимый ток 38 А (см. таблицу). Какова допустимая плотность тока? Чему равны допустимые плотности тока для медных проводов сечением 1, 10 и 16 мм²?

1). Допустимая плотность тока

J = I/S = 38 А / 4мм² = 9.5 А/мм².

2). Для сечения 1 мм² допустимая плотность тока (см. табл.)

J = I/S = 16 А / 1 мм² = 16 А/мм².

3). Для сечения 10 мм² допустимая плотность тока

J = 70 A / 10 мм² = 7.0 А/мм²

4). Для сечения 16 мм² допустимая плотность тока

J = I/S = 85 А / 16 мм² = 5.3 А/мм².

Допустимая плотность тока с увеличением сечения падает. Табл. действительна для электрических проводов с изоляцией класса В.

Задачи для самостоятельного решения

    Через обмотку трансформатора должен протекать ток I = 4 А. Какое должно быть сечение обмоточного провода при допустимой плотности тока J = 2.5 А/мм²? (S = 1.6 мм²)

    По проводу диаметром 0.3 мм проходит ток 100 мА. Какова плотность тока? (J = 1.415 А/мм²)

    По обмотке электромагнита из изолированного провода диаметром

d = 2.26 мм (без учёта изоляции) проходит ток 10 А. Какова плотность

тока? (J = 2.5 А/мм²).

4. Обмотка трансформатора допускает плотность тока 2.5 А/мм². Ток в обмотке равен 15 А. Какое наименьшее сечение и диаметр может иметь круглый провод (без учёта изоляции)? (в мм²; 2.76 мм).



Поделиться