Рао энергетические системы. Рао энергетические системы востока

Казалось бы, где масло, а где электроприборы? Тем более трансформаторы, внутри которых блуждают огромные токи, и формируется высокое напряжение. Тем не менее подобные электрические установки работают с применением технических жидкостей, и это отнюдь не антифриз и не дистиллированная вода.

Наверное, все видели огромные трансформаторы на подстанциях, и энергоблоках промышленных предприятий. Все они снабжены расширительными емкостями в верхней части.

Именно в эти бочонки заливается трансформаторное масло. Выглядит это вполне привычно для обывателя: корпус электрической установки (по аналогии картера двигателя автомобиля), внутри расположены рабочие узлы. И все это богатство залито маслом до самого верха. Как мы понимаем, о смазке деталей речь не идет: в трансформаторе нет движущихся частей.

Область применения трансформаторного масла

Для начала, развеем некоторые стереотипы. Существует устойчивое заблуждение, что все жидкости являются проводниками. На самом деле далеко не все, и не так явно, как металлы.

Важное свойство трансформаторного масла – высокое сопротивление электрическому току. Настолько высокое, что жидкость фактически является диэлектриком (в разумных пределах, разумеется).

Такая характеристика, как смазывающая способность, в электрике интересна в последнюю очередь. А вот теплопроводность напротив, очень важна.

О свойствах поговорим отдельно, они вытекают из двух областей применения:


Эксплуатационные показатели подобных устройств поражают воображение: напряжение несколько сотен тысяч вольт, и сила тока до 50 тысяч ампер.

Масло в этих устройствах имеет две функции. Разумеется, изоляционные свойства, как и в трансформаторах. Но главное назначение – эффективное гашение электрической дуги.

При размыкании (замыкании) контактов на электрических коммутационных устройствах с такими параметрами, возникает электрическая дуга, способная разрушить контактную группу за несколько циклов.

Электрическая дуга при размыкании контактов (происшествие на подстанции) — видео

Однако проблемы возникают лишь в воздушной среде. Если внутренняя полость заполнена трансформаторным маслом – искрения и дуги не возникнет.

К сведению

Объективности ради, заметим: существует и другое решение. Помимо масляных, активно применяются вакуумные выключатели. Правда, они качественно выполняют лишь одну функцию: гашение дуги. Диэлектрические свойства вакуума сопоставимы с обычным воздухом.

Однако, это тема другой статьи.

Технические характеристики трансформаторного масла

Так же, как и минеральное моторное, трансформаторное масло производится путем перегонки подготовленной сырой нефти (очищенной), методом кипячения сырья. После возгонки при температуре 300°C — 400°C, остается так называемый соляровый дистиллят.

Собственно, эта субстанция является основой для получения трансформаторного масла. Во время очистки, снижается насыщенность ароматическими углеродами и не углеродными соединениями. В результате повышается стабильность продукта.

При возгонке и выделении дистиллята, можно управлять физическими и химическими процессами. Манипулируя базовым сырьем и технологией, можно менять свойства трансформаторного масла. Они определяются полученным соотношением компонентов:

Интересно, что этот продукт экологически чист. При его производстве, использовании и утилизации, воздействие на природу не выше, чем у исходного сырья (сырой нефти). В состав не включаются добавки, синтезированные искусственным путем.

Как и нефть, масло для трансформаторов и выключателей не токсично (насколько это можно сказать о нефтепродуктах), не разрушает озоновый слой, и бесследно разлагается в природной среде.

Одна из важных характеристик – плотность трансформаторного масла. Типичная величина лежит в диапазоне 0,82 – 0,89 * 10³ кг/м³. Цифры зависят от температуры: рабочий диапазон в пределах 0°C – 120°C.

При нагреве она уменьшается, этот фактор принимается во внимание при проектировании радиаторной системы охлаждения трансформаторов.

Поскольку масла относительно универсальны, эта характеристика может варьироваться в зависимости от потребностей заказчика. Трансформаторные подстанции располагаются в различных климатических зонах, зачастую в условиях крайнего Севера и Сибири.

Не только плотность меняется в зависимости от температуры

Вязкость трансформаторного масла может радикально изменить общие показатели электроустановки.

Показатели ТКп Масло селективной очистки Т-1500У гк вг АГК МВТ
Кинематическая вязкость, им2/с* при температуре
50°С 9 9 - 9 9 5 -
40°С - - 11 - - - 3,5
20°С - 28 - - - - -
-30°С 1500 1300 1300 1200 1200 - -
-40°С - - - - - 800 150
Кислотное число, мг КОН/г, не более 0,02 0,02 0,01 0,01 0,01 0,01 0,02
Температура, °С
Вспышки в закрытом тигле, не ниже 135 150 135 135 135 125 95
Застывания, не выше -45 -45 -45 -45 -45 -60 -65
Этот параметр – порождение компромисса. Для обеспечения электрической прочности масла, вязкость должна быть высокой. Практически, как твердый диэлектрик. Но изоляция проводников, это не единственное предназначение рассматриваемой жидкости.

Принцип работы масляного трансформатора — видео

  • Теплоотвод – возможен при достаточно жидком теплоносителе. То есть, для нормального охлаждения электроустановки вязкость должна быть как можно более низкой.
  • Гашение электрической дуги. Как это работает? В обычной воздушной среде, при размыкании (замыкании) контактов под высокой нагрузкой, возникает дуга, подобная сварочной.

Густое масло, механически не сможет быстро заполнить пространство при движении контактов. Образовавшиеся воздушные полости станут поводом для дугообразования. И напротив, достаточно жидкий наполнитель постоянно будет поддерживать среду без пузырьков.

Вспышка и воспламенение

Интересный с точки зрения физики процесса, такой параметр, как температура вспышки трансформаторного масла. Для любых нефтепродуктов, это температура воспламенения жидкой среды, при контакте с открытым источником пламени.

Однако внутри трансформатора не создаются условия для горения, по причине отсутствия достаточного количества кислорода. А вот открытое пламя теоретически возможно: если при размыкании контактов образуется кратковременная дуга.

Поэтому в свойства масел закладывается увеличение температуры вспышки. Это значение постепенно уменьшается, по причине дефектов трансформаторного оборудования. При нормальной работе, температура вспышки напротив, увеличивается. Допустимое значение – более 155°C.

Электрическая дуга или как горят трансформаторы — видео

Для понимания механизма – температура вспышки связана с испаряемостью масла. То есть, оно должно быть достаточно жидким, но при этом не переходить в газообразное состояние при нормальных условиях эксплуатации.

Кроме традиционного параметра, есть такое понятие, как температура самовоспламенения, характерное именно для трансформаторов. В нашем случае эта величина составляет 350°C – 400°C.

Если обмотки нагреются до такой температуры – возникает неконтролируемое горение и взрыв трансформатора. К счастью, подобные случаи происходят крайне редко. Разумеется, при условии соблюдения условий эксплуатации.

Поэтому, вместе с подбором качественного масла, необходимо постоянно следить за состоянием электроустановок. При проведении тестовых отборов жидкости, можно понять, какие проблемы есть в самом трансформаторе или высоковольтном выключателе.

После проведенных исследований, оцениваются такие показатели, как преломление вязкости, плотность, диэлектрические свойства, и пр. Результаты сравниваются с табличными значениями, установленными стандартом применения масел.

В таблице показаны основные показатели трансформаторного масла:

Температура t,
°С
Плотность р,
кг/м3
Cp, кДж/(кгК) λ, Вт/(м"К) а-10**8, м2/с μ-10**4, Пас v-10**6, м2/с ß-10**4, К"1 Рг
0 892,5 1,549 0,1123 8,14 629,8 70:5 6,80 866
10 886.4 1,620 0,1115 7,83 335,5 37,9 6.85 484
20 880,3 1,666 0,1106 7,56 198,2 22,5 6,90 298
30 874,2 1,729 0,1008 7,28 128,5 14.7 6.95 202
40 868,2 1,788 0,1090 7,03 89.4 10,3 7,00 146
50 862,1 1,846 0,1082 6,80 65.3 7,58 7,05 111
60 856,0 1,905 0,1072 6,58 49,5 5,78 7,10 87,8
70 850,0 1,964 0,1064 6,36 38.6 4,54 7,15 71.3
80 843,9 2,026 0,1056 6,17 30.8 3,66 7,20 59,3
90 837.8 2.085 0,1047 6,00 25,4 3,03 7,25 50,5
100 831,8 2,144 0,1038 5,83 21.3 2,56 7,30 43.9
110 825,7 2,202 0,1030 5,67 18.1 2,20 7,35 38,8
120 819,6 2,261 0,1022 5,50 15.7 1,92 7,40 34,9
  • cp — удельная массовая теплоемкость, без изменения рабочего давления;
  • λ – теплопроводность: общий коэффициент;
  • a – температурная проводимость: общий коэффициент;
  • μ — динамический коэффициент вязкости;
  • ν — кинематический коэффициент вязкости;
  • β — объемное расширение: общий коэффициент;
  • Pr — критерий Прандтля.

Технические жидкости для обеспечения работы трансформаторных подстанций закупаются в огромных объемах, это достаточно затратно. Каждая партия тестируется перед использованием, и в процессе работы.

Испытание трансформаторного масла на пробой — видео

Ежегодно, техническая жидкость требует масштабной очистки. Этим занимаются специальные службы. А каждые 5-6 лет, требуется регенерация (практически полная замена масла в электроустановке). Процедура недешевая, но без ее выполнения эксплуатация трансформатора станет небезопасной.

В качестве компромисса, широко применяется восстановление свойств. Отработка сдается на нефтехимическое предприятие, где масло приобретает первоначальные свойства. Стоимость добавленных присадок многократно ниже, в сравнение с полной заменой материала.

Второстепенные характеристики трансформаторного масла

Устойчивость масла к окислению – это не что иное, как противодействие старению. Есть две негативные стороны этого явления:

  1. Связывание молекулами кислорода активных добавок, которые обеспечивают базовые параметры жидкости.
  2. Отложение продуктов окисления на поверхностях деталей трансформатора: обмотках, проводниках, контактных группах. Это приводит к снижению теплоотвода, с последующим закипанием масла в точках соприкосновения.
  3. Зольность – наличие посторонних примесей и причина их появления. После промывки нового масла, в его составе остаются химические моющие средства (это касается и регенерации старой жидкости).

Если их не удалить – образуются зольные фракции, которые оседают на рабочих частях трансформаторов и выключателей. Для борьбы с этим явлением, в масло добавляются присадки, нейтрализующие солевые и мыльные отложения.

Температура текучести (застывания) характеризует превращение жидкости в консистентную смазку. Этот показатель (от — 35°C до — 50°C) применим лишь при холодном пуске электроустановки. Работающий трансформатор сам является источником тепла, и поддерживает жидкость в рабочем состоянии.


6. Ограничение срока действия снято по протоколу N 2-92 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2-93)

7. ИЗДАНИЕ (июнь 2011 г.) с Изменениями N 1, 2, 3, утвержденными в марте 1982 г., марте 1985 г., марте 1989 г. (ИУС 7-82, 6-85, 6-88), Поправкой (ИУС 6-2005)


Настоящий стандарт распространяется на трансформаторные масла сернокислотной и селективной очисток, вырабатываемые из малосернистых нефтей и применяемые для заливки трансформаторов, масляных выключателей и другой высоковольтной аппаратуры в качестве основного электроизоляционного материала.



1. МАРКИ

1. МАРКИ

Устанавливаются следующие марки трансформаторных масел:

ТК - без присадки (изготовляют по специальным заказам для общетехнических целей), применять для заливки трансформаторов не допускается;

Т-750 - с добавлением (0,4±0,1)% антиокислительной присадки 2,6 дитретичный бутилпаракрезол;

Т-1500 - с добавлением не менее 0,4% антиокислительной присадки 2,6 дитретичный бутилпаракрезол;

ПТ - перспективное масло.

(Измененная редакция, Изм. N 1, 3).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Трансформаторные масла должны изготовляться в соответствии с требованиями настоящего стандарта, из сырья и по технологии, которые применялись при изготовлении образцов масел, прошедших испытания с положительными результатами и допущенных к применению в установленном порядке.


2.2. По физико-химическим показателям трансформаторные масла должны соответствовать требованиям и нормам, указанным в таблице.

Наименование показателя

Норма для марки

Метод испытания

ТК ОКП
02 5376 0101

Т-750 ОКП
02 5376 0104

Т-1500 ОКП
02 5376 0105

1. Вязкость кинематическая, м/с (сСт), не более:

при 50 °С

при минус 30 °С

1200·10(1200)

2. Кислотное число, мг KОН на 1 г масла, не более

3. Температура вспышки, определяемая в закрытом тигле, °С, не ниже

Отсутствие

6. Температура застывания, °C, не выше

7. Натровая проба, оптическая плотность, не более

10. Цвет на колориметре ЦНТ, единицы ЦНТ, не более

11. Стабильность против окисления, не более:

______________
* Вероятно ошибка оригинала. Следует читать ГОСТ 6581. - Примечание изготовителя базы данных.

Примечания:

1. Для трансформаторного масла марки ТК, вырабатываемого из эмбенских нефтей и их смеси с анастасьевской нефтью, при испытании на стабильность против окисления по ГОСТ 981 допускается масса летучих низкомолекулярных кислот 0,012 мг КОН на 1 г масла, кислотное число окисленного масла - не более 0,5 мг КОН на 1 г масла.

2. При выработке трансформаторных масел из бакинских парафинистых нефтей допускается применение карбамидной депарафинизации.

3. (Исключен, Изм. N 2).


(Измененная редакция, Изм. N 2, 3, Поправка).

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. Трансформаторные масла являются малоопасными продуктами и по степени воздействия на организм человека относятся к 4-му классу опасности в соответствии с ГОСТ 12.1.007 .

3.2. Трансформаторные масла представляют собой в соответствии с ГОСТ 12.1.044 горючие жидкости с температурой вспышки 135 °C.

3.3. Помещение, в котором производятся работы с маслом, должно быть оборудовано приточно-вытяжной вентиляцией.

3.4. Предельно допустимая концентрация паров углеводородов масел в воздухе рабочей зоны 300 мг/м в соответствии с ГОСТ 12.1.005 .

3.5. При работе с трансформаторными маслами должны применяться индивидуальные средства защиты согласно типовым правилам, утвержденным в установленном порядке.

3.6. При загорании масел используют следующие средства пожаротушения: распыленную воду, пену; при объемном тушении - углекислый газ, состав СЖБ, состав 3,5, пар.

Разд.3. (Измененная редакция, Изм. N 3).

4. ПРАВИЛА ПРИЕМКИ

4.1. Трансформаторное масло принимают партиями. Партией считают любое количество масла, изготовленного в ходе технологического процесса, однородного по показателям качества, сопровождаемого одним документом о качестве, содержащим данные по ГОСТ 1510 .

(Измененная редакция, Изм. N 3).

4.2. Объем выборок - по ГОСТ 2517 .

4.3. При получении неудовлетворительных результатов испытания хотя бы по одному из показателей проводят повторные испытания вновь отобранной пробы из той же выборки.

Результаты повторных испытаний распространяются на всю партию.

(Измененная редакция, Изм. N 3).

5. МЕТОДЫ ИСПЫТАНИЙ

5.1. Пробы трансформаторных масел отбирают по ГОСТ 2517 .

Для объединенной пробы берут по 3 дм масла каждой марки.

(Измененная редакция, Изм. N 1).

5.2. Натровую пробу для масел марок Т-750 и Т-1500 определяют в кювете 20 мм, для масла марки ТК - в кювете 10 мм.

5.3. Прозрачность трансформаторных масел определяют в стеклянной пробирке диаметром 30-40 мм. Масло при температуре 5 °C должно быть прозрачным в проходящем свете.

5.4. Показатель осадка и кислотное число для масла марки ТК определяют по ГОСТ 981 при следующих условиях:

температура - 120 °С,



расход кислорода - 200 см/мин,

длительность окисления при определении осадка и кислотного числа - 14 ч.

Показатель низкомолекулярных летучих кислот допускается определять при условиях:

температура - 120 °С,

катализатор - шарики диаметром (5±1) мм, один из низкоуглеродистой стали, один из меди марки М0к или М1к по ГОСТ 859 ;

расход воздуха - 50 см/мин;

длительность окисления - 6 ч.

Стабильность против окисления масел марок Т-750 и Т-1500 определяют по ГОСТ 981 при следующих условиях:

температура для масла марки Т-750 - 130 °С, для масла марки Т-1500 - 135 °С,

катализатор - медная пластинка,

расход кислорода - 50 см/мин,



Стабильность против окисления перспективного масла гидрокрекинга определяют по ГОСТ 981 при следующих условиях:

температура - 145 °С,

катализатор - медная пластинка;

расход кислорода - 50 см/мин;

длительность окисления - 30 ч.

(Измененная редакция, Изм. N 1, 2, 3).

5.5. Тангенс угла диэлектрических потерь трансформаторных масел определяют без подготовки или после подготовки одним из следующих способов:

а) 100 см масла выдерживают 30 мин при 50 °С при остаточном давлении 666,6 Па (5 мм рт.ст.) в сосуде со свободной поверхностью, равной 100 см;

б) масло выдерживают в кристаллизаторе, помещенном в эксикатор с прокаленным хлористым кальцием, не менее 12 ч при толщине слоя не более 10 мм.

При разногласиях, возникающих при оценке качества продукции, подготовку масла перед определением тангенса угла диэлектрических потерь проводят по подпункту а.

Для определения тангенса угла диэлектрических потерь применяют электроды, изготовленные из нержавеющей стали марки 12Х18Н9Т или 12Х18Н10Т по ГОСТ 5632 . При изготовлении электродов из меди по ГОСТ 859 и латуни по ГОСТ 17711 рабочие поверхности электродов должны покрываться никелем, хромом или серебром. Определение проводят при напряженности электрического поля 1 кВ/мм.

6. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Упаковка, маркировка, транспортирование и хранение трансформаторных масел - по ГОСТ 1510 .

6.2. На документе, удостоверяющем качество трансформаторного масла марок Т-750 и Т-1500 высшей категории, и на таре должен быть изображен государственный Знак качества.



7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

7.1. Изготовитель гарантирует соответствие качества трансформаторного масла требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

7.2. Гарантийный срок хранения трансформаторных масел - пять лет со дня изготовления.

(Измененная редакция, Изм. N 2).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
Нефть и нефтепродукты. Масла.

Технические условия. Сборник ГОСТов. -

М.: Стандартинформ, 2011

Характеристики трансформаторного масла.

В связи с тем, что характеристики трансформаторного масла в процессе эксплуатации ухудшаются, его качество приходится периодически проверять. Такие проверки осуществляют обычно один раз в три года, делая сокращенный анализ масла.

Основными характеристиками трансформаторного масла являются:

  • Кислотное число , определяет количество едкого калия (в миллиграммах), которое требуется для нейтрализации всех свободных кислот. Кислотное число характеризует степень старения (окисления) трансформаторного масла.
  • Реакция водной вытяжки , характеризует наличие в масле нерастворимых кислот и щелочей. В годном для эксплуатации трансформаторе реакция водной вытяжки должна быть нейтральна. Кислоты оказывают разрушительное действие на материалы, из которых изготовлен трансформатор (вызывают коррозию металла трансформатора, разрушают изоляцию его обмоток).
  • Температура вспышки масла не должна быть ниже установленных значений во избежание воспламенения масла при повышении температуры, вызванном перегрузкой трансформатора. Для обычных трансформаторных масел значение температуры вспышки лежит в диапазоне 130-150 °С.
  • Содержание механических примесей . Примеси появляются в результате растворения красок, лаков и изоляции; в виде угля который образуется при электрической дуге. Механические примеси в масле могут содержаться в виде осадка или в взвешенном состоянии и вызывают перекрытие между изолированными друг от друга элементами, понижают электрическую прочность масла.
  • Электрическая прочность определяется пробивным напряжением трансформаторного масла. Пробивное напряжение свежего сухого масла должно быть не ниже 30 кВ. Снижение значения пробивного напряжения говорит о наличии примесей в масле (волокна, воздух, вода и т.д.)
  • Тангенс угла диэлектрических потерь характеризует изоляционные свойства трансформаторного масла (показывает насколько масло хороший диэлектрик). Загрязнение и старение трансформаторного масла в процессе его эксплуатации ведет к повышению диэлектрических потерь в масле.
  • Влагосодержание в трансформаторном масле характеризует интенсивность старения изоляции под воздействием значительных температур (т.е. говорит о систематических перегрузках трансформатора), а также свидетельствует о нарушении герметичности трансформатора.
  • Вязкость характеризует подвижность масла и должна быть небольшой, для того чтобы масло хорошо циркулировало и отводило тепло.
  • Температура застывания масла . При низкой температуре окружающей среды повышается вязкость масла и ухудшается его циркуляция, что приводит к перегреву и ускорению старения изоляции, а также может привести к повреждению подвижных элементов конструкции трансформатора (РПН, масляный насос). По нормам температура застывания масла трансформаторов должна быть не выше – 45° С.
  • Цвет . Свежее масло имеет обычно светло-желтый цвет. В процессе эксплуатации масло темнеет и приобретает темно-коричневую окраску. Изменение цвета масла происходит под влиянием его нагрева и загрязнения смолами и осадками.
  • Кроме перечисленных существуют и другие характеристики трансформаторных масел: плотность, газосодержание, стабильность, температура самовоспламенения и т.д.

Пересчитать, узнать объемный вес: физические свойства. Величины. Количество кг в 1 литре, кг/литр. Для расчетов использовались справочные данные из: Теперь вы можете узнать сколько весит при помощи такого инструмента, как: Погрешность измерений. -
Сколько кг вес 1 литра трансформаторного масла - литровая банка. Используем справочные данные по плотности и удельному весу, рассчитывая по формуле получаем объемный вес. 0.89 - 0.90 Справочник физических свойств, ГОСТ, ТУ. Литровая банка. до 5% -
Замечания, интересные пояснения к вопросу "сколько кг весит литровый объем" и некоторая дополнительная информация к справочным данным по физическим свойствам.

Достаточно часто на практике мы сталкиваемся с ситуациями, когда нам нужно узнать какой вес 1 литра трансформаторного масла. Обычно, такая информация используется для пересчетов массы на другие объемы, для тех емкостей, литраж которых известен заранее: банки (0.5, 1, 2, 3 л), бутылки (250 мм, 0.5 мл, 0.75, 1, 1.5, 2, 5 л), стаканы (200 мл, 250 мл), канистры (5, 10, 15, 20, 25 л), фляжки (0.25, 0.5, 0.75, 0.8, 1л) ведра (3, 5, 7, 8, 10, 12, 15, 18, 20, 25, 30 л), фляги и бидоны (3, 5, 10, 22, 25, 30, 40, 45, 50, 51, 200 л), бочки (30, 50, 60, 65, 75, 127, 160, 200, 205, 227, 900 л), баки, баллоны, цистерны (0.8 м3, 25.2, 26, 28.9, 30.24, 32.68, 32.7, 38.5, 38.7, 40, 44.54, 44.8, 46, 46.11, 46.86, 50, 54, 54.4, 54.07, 55.2, 61, 61.17, 62.39, 63.7, 65.2, 73, 73.1, 73.17, 75.5, 62.36, 88.6 м3, 99.2, 101.57, 140, 159, 161.5 м3). В принципе, даже кастрюли и котелки можно оценить по массе, если известно, сколько весит один литр трансформаторного масла. Для бытового применения и каких-то самостоятельных работ, вопрос может задаваться иначе, когда спрашивают не вес 1 литра трансформаторного масла, а сколько весит литровая банка (баночка). Обычно интересует, сколько грамм или килограмм в литровой банке. Найти такие данные: сколько весит, в интернете не так просто, как кажется. Дело в том, что общепринятый формат подачи материала в любых справочниках, таблицах, ТУ и ГОСТе, сводится к приведению только плотности и удельного веса трансформаторного масла. При этом указанными единицами измерения являются один м3, куб, кубометр или кубический метр. Реже 1 см3. А нас интересует, сколько весит литровый объем. Что приводит к необходимости дополнительного пересчета кубических метров (м3) в литры. Это неудобно, хотя и возможно сделать правильный пересчет кубов в количество литров самостоятельно. Пользуясь соотношением: 1 м3 = 1000 л. Для удобства посетителей сайта, мы самостоятельно сделали перерасчеты и указали, сколько весит один литр трансформаторного масла в таблице 1. Зная вес 1 литра трансформаторного масла, вы не только определяете массу литровой банки, но и легко можете рассчитать, сколько весит любая другая емкость, для которой известен литраж. При этом, нужно понимать нежелательность и невозможность точных оценок сделанных на основании подобных пересчетов для больших емкостей со значительным объемом литража. Дело в том, что при таких методиках расчета возникает большая погрешность, приемлемая только в смысле приблизительной оценки массы. Поэтому, профессионалы пользуются специальными таблицами, в которых указано, сколько весит, например автомобильная или железнодорожная цистерна, бочка. С другой стороны, для прикладных и бытовых целей, для домашних условий, метод расчета исходя из литрового объема, вполне пригоден и может применяться на практике. В тех случаях, когда нам нужны более точные данные, например: при лабораторных исследованиях, для проведения экспертизы, для отладки производственного процесса, наладки оборудования и так далее. Вес 1 литра трансформаторного масла лучше определять экспериментальным путем, через взвешивание на точных весах, по специальной методике, а не пользоваться справочными, теоретическими, табличными средними данными о плотности и его удельном весе.



Поделиться