Сети телекоммуникационных операторов: иерархия поставщиков телекоммуникационных, широко-территориальные опорные сети. Интернет: как это работает? Магистральная сеть компании ОАО «Ростелеком»

План лекции:

1.1.Internet как иерархия сетей

1.2.Протоколы Интернет

1.3.Адресация в Интернет

1.4.Доменные имена

1.5.Варианты доступа в Интернет

1.6.Система адресации URL

1.7.Сервисы Интернет

1.8.Поиск в Интернете

    1. Internetкак иерархия сетей

Слово Internet происходит от выражения interconnected networks (связанные сети). Это глобальное сообщество малых и больших се­тей. В широком смысле – это глобальное информационное простран­ство, хранящее огромное количество информации на миллионах ком­пьютеров, которые обмениваются данными.

К концу 1969 г. в США был завершен проект ARPAnet подклю­чением в одну компьютерную сеть 4 исследовательских центров: University of California Los Angeles, Stanford Research Institute, University of California at Santa Barbara, University of Utah. Проект также предусматривал проведение экспериментов в области компь­ютерных коммуникаций, изучение способов поддержания связи в ус­ловиях ядерного нападения и разработку концепции децентрализо­ванного управления военными и гражданскими объектами в период ведения войн. В 1972 г. Минобороны США начало разработку но­вой программы Internetting Project с целью изучения методов соеди­нения сетей между собой. Выдвигались требования максимальной на­дежности передачи данных при заведомо низком качестве коммуникаций, средств связи и оборудования и возможности пере­дачи больших объемов информации. В 1974 г. была поставлена зада­ча разработки универсального протокола передачи данных, которая была решена созданием протокола передачи данных и объединения сетей – Transmission Control Protocol/Internet Protocol (TCP/IP). В 1983 г. был осуществлен перевод ARPAnet на TCP/IP. В 1989 г. в Европейской лаборатории физики элементарных частиц (CERN, Швейцария, Женева) Тим Бернерс-Ли разработал технологию гипер­текстовых документов – World Wide Web , позволяющую пользовате­лям иметь доступ к любой информации, находящейся в сети Интер­нет на компьютерах по всему миру. К 1995 г. темпы роста сети показали, что регулирование вопросов подключения и финансиро­вания не может находиться в руках одного Национального научного фонда США, и в этом же году произошла передача региональным сетям оплаты за подсоединение многочисленных частных сетей к на­циональной магистрали.

Рассмотрим схему подключения компьютера к Интернет и про­следим, по каким каналам передается информация, посылаемая в Сеть и принимаемая из Сети. Подключение к Интернету домашнего компьютера выполняется, как правило, с помощью модема (рис. 1). При этом чаще всего осуществляется так называемое сеансовое со­единение с провайдером по телефонной линии. Набирается один из телефонных номеров, предоставленных провайдером, для соединения с одним из его модемов. У провайдера имеется набор модемов, так называемый модемный пул. После того, как вы соединились с ISP (Internet Service Provider), ваш компьютер становится частью сети данного ISP. Каждый провайдер имеет свою магистральную линию или backbone .

Рис. 1. Схема подключения компьютера к Internet

ISP-провайдеры имеют так называемые точки присутствия POP (Point of Presence), где происходит подключение локальных пользо­вателей. Провайдер может иметь точки присутствия POP в несколь­ких городах. В каждом городе находятся аналогичные модемные пулы, на которые звонят локальные клиенты этого провайдера в дан­ном городе. Провайдер обычно арендует волоконно-оптические линии у телефонной компании для соединения всех своих точек при­сутствия. Крупные коммуникационные компании имеют собствен­ные высокопропускные каналы.

Пусть имеются опорные сети двух Интернет-провайдеров. Оче­видно, что все клиенты провайдера А могут взаимодействовать меж­ду собой по собственной сети, а все клиенты провайдера В - по сво­ей, но при отсутствии связи между сетями А и В клиенты разных провайдеров не могут связаться друг с другом. Для реализации та­кой услуги провайдеры А и В подключаются к так называемым точ­кам доступа NAP (Network Access Points) в разных городах, и трафик между двумя сетями течет через NAP. Аналогично организуется под­ключение к другим магистральным сетям, в результате чего образу­ется объединение множества сетей высокого уровня. В Интернете действуют сотни крупных провайдеров, их магистральные сети свя­заны через NAP в различных городах, и миллиарды байтов данных текут по разным сетям через NAP -узлы.

В офисе компьютеры, скорее всего, подключены к локальной сети. В этом случае рассмотренная схема видоизменяется. Варианты подключения к провайдеру могут быть различными, хотя чаще всего это выделенная линия.

На сегодняшний день существует множество компаний, имею­щих собственные опорные сети (бэкбоуны), которые связываются с помощью NAP с сетями других компаний по всему миру. Благодаря этому каждый, кто находится в Интернете, имеет доступ к любому его узлу, независимо от того, где он расположен территориально.

Скорость передачи информации на различных участках Интер­нета существенно различается. Магистральные линии - это высоко­скоростные каналы, построенные на основе волоконно-оптических кабелей. Кабели обозначаются ОС (optical carrier), например ОС-3, ОС-12 или ОС-48. Так, линия ОС-3 может передавать 155 Мбит/с, а ОС-48 - 2488 Мбит/с (2,488 Гбит/с). Но максимальная скорость по­лучения информации на домашний компьютер с модемным подклю­чением не превышает 56 Кбит/с.

Как же происходит передача информации по всем этим много­численным каналам? Доставка информации по нужному адресу вы­полняется с помощью маршрутизаторов, определяющих, по какому маршруту передавать информацию. Маршрутизатор - это устрой­ство, которое работает с несколькими каналами, направляя в выб­ранный канал очередной блок данных. Выбор канала осуществляет­ся по адресу, указанному в заголовке поступившего сообщения.

Таким образом, маршрутизатор выполняет две взаимосвязанные функции. Во-первых, он направляет информацию по свободным ка­налам, предотвращая закупорку узких мест в Сети; во-вторых, про­веряет, что информация следует в нужном направлении. При объе­динении двух сетей маршрутизатор включается в обе сети, пропуская информацию из одной в другую. В некоторых случаях он осуществ­ляет перевод данных из одного протокола в другой, при этом защи­щая сети от лишнего трафика. Эту функцию маршрутизаторов мож­но сравнить с работой службы ГИБДД, которая ведет наблюдение за автомобильным движением с вертолета и сообщает водителям опти­мальный маршрут.

Самой знаменитой глобальной сетью является Интернет, представляющий собой набор взаимосвязанных сетей, функционирующих как одна сеть. Основным каналом связи Интернета является последовательность сетей, организованных правительством США для взаимосвязи суперкомпьютеров ключевых научно-исследовательских лабораторий. Этот канал называется опорной сетью (backbone) и поддерживается Национальным научным фондом США (National Science Foundation).

Со времен организации первоначальной опорной сети, доступ к которой имели лишь ограниченное количество специальных пользователей, Интернет разросся в сеть, охватывающую весь мир и предоставляющую доступ миллионам простых пользователей.
Для передачи по Интернету информация разбивается протоколом TCP/IP на пакеты необходимого размера. На пути к пункту назначения пакеты проходят через различные сети разных уровней. В зависимости от применяемой схемы маршрутизации отдельные пакеты могут передаваться в Интернете по разным маршрутам, а потом собираться в первоначальную последовательность по прибытию в пункт назначения.

В процессе перемещения пакета от источника к назначению он может пройти через несколько локальных сетей, региональных сетей, маршрутизаторов, повторителей, хабов, мостов и шлюзов. Региональные сети (midlevel network) - это просто сети, которые могут обмениваться информацией между собой без подключения к Интернету.

Повторитель (repeater) предотвращает затухание сигналов, усиливая и передавая дальше полученную информацию. Хабы соединяют компьютеры в сетевой сегмент, позволяя им взаимодействовать друг с другом. Мосты соединяют различные сети, позволяя выполнять межсетевую трансляцию данных. Специальный тип моста, называющийся шлюзом, преобразует сообщения для обмена между сетями разных типов (например, между сетям Windows и сетями Apple).

Поставщики интернет-услуг.

Доступ к Интернету отдельным пользователям и сетям предоставляется компаниями - поставщиками интернет-услуг (ISP, Internet Service Provide). Эти компании владеют блоками адресов Интернета, которые они могут назначать своим клиентам. Когда пользователь подключается к поставщику интернет-услуг, он подключается к его серверу, который в свою очередь подключен к Интернету посредством устройств, называющихся маршрутизаторами. Маршрутизатор представляет собой устройство, которое получает сетевые пакеты от узлов сети и определяет их адрес назначения в Интернете и самый лучший маршрут для доставки пакета по этому адресу. Маршрутизация осуществляется на основе известных каналов в Интернете и объема трафика на разных сегментах. После этого маршрутизатор передает пакет в точку доступа к сети (Network Access Point, NAP).

Сервисы, предоставляемые поставщиком интернет-услуг своим клиентам, включают в себя:

Средство интернет-идентификации в виде IP-адреса;

Услуги электронной почты через серверы POP3 и SMTP;

Службы новостей через серверы Usenet;

Маршрутизацию через серверы DNS.

IP-адрес.

Поставщики интернет-услуг предоставляют своим клиентам адреса для доступа в Интернет, которые называются адресами протокола IP или IP-адресами. IP-адрес однозначно идентифицирует пользователя в Интернете, позволяя ему получать различного рода информацию. Сейчас используются две версии адресации в Интернете: протокол IPv4 и протокол IPv6.

До 2000 года преобладающей версией является версия IPv4. В этой версии протокола IP каждому узлу сети выделяется числовой адрес в виде XXX.YYY.ZZZ.AAA, где каждая группа букв представляет трехзначное число в десятичном формате (или 8-битовое в двоичном). Этот формат называется десятичным представлением с разделительными точками (dotted decimal notation), а сама группа - октетом. Десятичные числа каждого октета получаются из двоичных чисел, с которыми работает аппаратное обеспечение. Например, сетевому адресу 10000111. 10001011. 01001001. 00110110 в двоичном формате соответствует адрес 135. 139. 073. 054 в десятичном формате.

IP-адрес состоит из адреса сети и адреса узла. Адрес сети идентифицирует всю сеть, а адрес узла - отдельный узел в этой сети: маршрутизатор, сервер или рабочую станцию. Локальные сети разбиваются на 3 класса: A, B, C. Принадлежность сети к определенному классу определяется сетевой частью IP-адреса.

Адреса сетей А зарезервированы для крупных сетей. Для сетевой части адреса применяются первые 8 битов (слева), а для адреса узла - последние 24 бита IP-адреса. Первый (старший) бит первого октета сетевого адреса равен 0, а за ним следует любая комбинация остальных 7 битов. Соответственно, IP-адреса класса А занимают диапазон 001.х.х.х - 126.х.х.х, что позволяет адресацию 126 отдельных сетей, в каждой из которых будет около 17 млн. узлов.

Диапазон адресов 1 27.х.х.х зарезервирован для тестирования сетевых систем. Некоторые из этих адресов принадлежат правительству США для тестирования опорной сети Интернета. Адрес 127.0.0.1 зарезервирован для тестирования шины локальной системы.

Адреса класса В назначаются сетям среднего размера. Значение первых двух октетов лежит в числовом диапазоне 128.x.x.x - 191.254.0.0. Это позволяет адресовать до 16384 разных сетей, каждая из них может иметь 65 534 узлов.

Адреса класса С применяются для сетей, где количество узлов сравнительно невелико. Сетевая часть адреса указывается первыми тремя октетами, а адрес сети - последним. Значение первых трех октетов, определяющих сетевой адрес, может быть в диапазоне 192.x.x.x - 223.254.254.0. Таким образом, адреса класса С позволяют адресацию приблизительно 2 млн. сетей, каждая из них может иметь до 254 узлов.

Версия IPv6 протокола IP была разработана с целью решения ожидаемой проблемы нехватки адресов, поддерживаемых версией IPv4. Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт, что позволяет поддерживать громадное количество IP-адресов. Протокол IPv6 также предусматривает проверку подлинности отправителя пакета, а также шифрование содержимого пакета. Поддержка протокола IPv6 встроена в Windows 7 и во многие дистрибутивы Linux; и в последние годы этот протокол применяется все чаще. Протокол IPv6 обеспечивает поддержку мобильных телефонов, бортовых компьютеров автомобилей и широкий круг других подключенных к Интернету персональных устройств.

Адреса IPv6 записываются в виде восьми групп четырехзначных шестнадцатеричных чисел, разделенных двоеточием: 2001: 0db8: 00a7: 0051: 4dc1: 635b: 0000: 2ffe. Нулевые группы могут представляться двойным двоеточием. Но адрес не может содержать больше двух последовательных двоеточий. Для удобства ведущие нули могут опускаться. При использовании в качестве URL-адреса IPv6-адрес необходимо заключать в квадратные скобки - http://.

Подсети.

Узлы секций сети можно сгруппировать в подсети с общим диапазоном IP-адресов. Эти группы называются интрасетями. Каждый сегмент интрасети должен быть оснащен защитным шлюзом, играющим роль точки входа и выхода сегмента. Обычно роль шлюза играет устройство, называющееся маршрутизатором. Маршрутизатор - это интеллектуальное устройство, которое пересылает полученные данные на IP-адрес получателя.

В некоторых сетях в качестве внешнего шлюза применяется сетевой экран или, по-другому, брандмауэр (firewall). Обычный брандмауэр представляет собой комбинацию аппаратных и программных компонентов, создающих защитный барьер между сетями с разными уровнями безопасности. Администратор может настроить брандмауэр так, что он будет пропускать данные только на указанные IP-адреса и порты.

Для создания подсети маскируется сетевая часть IP-адреса узлов, которые нужно включить в данную подсеть. В связи с этим, мобильность данных ограничивается узлами подсети, так как эти узлы могут распознавать адреса только в пределах замаскированного диапазона. Для создания подсети существуют три основные причины.

  • Чтобы изолировать разные сегменты сети друг от друга. Возьмем, например, сеть из 1 000 компьютеров. Без применения сегментации данные каждого из этих 1 000 компьютеров будут проходить через все остальные компьютеры. Представьте себе нагрузку на канал связи. Кроме этого, каждый пользователь сети будут иметь доступ к данным всех других ее членов.
  • Чтобы эффективно использовать IP-адреса. Применение 32-битового представления IP-адреса допускает ограниченное количество адресов. Хотя 126 сетей, каждая с 17 млн. узлов, может казаться большим числом, в мировом сетевом масштабе этого количества адресов далеко не достаточно.
  • Чтобы позволить повторное использование одного IP-адреса сети. Например, разделение адресов класса С между двумя расположенными в разных местах подсетями позволяет выделить каждой подсети половину имеющихся адресов. Таким образом, обе подсети могут использовать один адрес сети класса С.

Чтобы создать подсеть, нужно заблокировать числами какие-либо или все биты октета IP-адреса. Например, маска со значением 255 блокирует весь октет, а маска со значением 254 блокирует всё, кроме одного адреса октета. Для сетей класса А обычно применяется маска 255. 0. 0. 0, для сетей класса В - маска 255 .255.0 .0, а для сетей класса С - маска 255. 255. 255. 0. Чтобы узнать адрес сети, нужно выполнить побитовую операцию логического «И» с IP-адресом и маской. В Windows 2000/XP значение по умолчанию маски сети вводится автоматически при вводе IP-адреса.


Вконтакте

different types of сarriers in the US: Сети телеком операторов развились в США. К 1885 году в США существовало более 300 лицензированных телефонных компаний, а телефону было всего лишь девять лет. Начиная с этого времени и по 1907 год людям часто приходилось иметь два телефона: один для связи с абонентами Bell Telephone Company , а второй – для связи с людьми, жившими в городе, который обслуживала другая телефонная компания. Независимые телефонные компании и компания Bell не «разговаривали» друг с другом, между ними отсутствовало какое-либо взаимодействие. В 1910 году компания AT&T выдвинула стратегию взаимосвязанной телефонной связи, из которой выросла телефонная сеть общего пользования. В обмен на предоставление компанией AT&T такого универсального обслуживания Федеральное правительство США предоставило ей монополию на телефонную связь, которую затем неоднократно отбирало.

Bell Operating Companies долгое время была монополией, затем была демонополизирована.

Long Lines was renamed AT&T Communications in 1984 since it no longer consisted of the majority of the "lines", or the Bell Operating Companies. AT&T Communications became one of the three core sales units of AT&T after reorganization of remaining assets of the former Bell System.

AT&T divided AT&T Communications up into operating companies, serving the regions of each Bell Operating Company. Following the Telecommunications Act of 1996, AT&T Communications began reselling Bell Operating Company-provided telephone service at lower prices to compete with the Baby Bells. Such services were done through AT&T Consumer, a new sales unit created to incorporate local and long-distance services provided by AT&T Communications.

The (RBOC ) are the result of United States v. AT&T, the U.S. Department of Justice antitrust suit against the former American Telephone & Telegraph Company (later known as AT&T Corp.). On January 8, 1982, AT&T Corp. settled the suit and agreed to divest ("spin off") its local exchange service operating companies. Effective January 1, 1984, AT&T Corp."s local operations were split into seven independent Regional Bell Operating Companies known as "Baby Bells." RBOCs were originally known asRegional Holding Companies (RHCs).

Традиционные местные поставщики: An ILEC , short for incumbentlocal exchangecarrier, is a local telephone company in the United States that was in existence at the time of the break up of AT&T into the Regional Bell Operating Companies (RBOCs), also known as the "Baby Bells." The ILEC is the former Bell System or Independent Telephone Company responsible for providing local telephone exchange services in a specified geographic area. GTE was the second largest ILEC after the Bells, but it has since been absorbed into Verizon, an RBOC. ILECs compete with Competitive Local Exchange Carriers (CLEC). When referring to the technical communities ILEC is often used just to mean a telephone provider.

Конкурирующие местные поставщики услуг: A competitive local exchange carrier (CLEC ), in the United States, is a telecommunications provider company (sometimes called a "carrier") that competes with other, already established carriers (generally the incumbent local exchange carrier (ILEC))

Региональные: An Interexchange Carrier (IXC ) is a U.S. legal and regulatory term for a telecommunications company, commonly called a long-distance telephone company , such as MCI (before its absorption by Verizon), Sprint and the former AT&T (before its merger with SBC in 2005) in the United States.



широко-территориальные опорные сети: Разработана специальная технг-я для создания так называемых первичных, или опорных, сетей . Такие сети не предоставляют услуг кон пользователям, они являются фундаментом, на котором строятся скоростные цифровые каналы «точка-точка», соединяющие оборудование др, наложенных сетей, которые уже работают на кон пользователя.

" телекоммуникационная сеть состоит из:

· терминального оборудования пользователей

· Сеть доступа назначение- концентрация информационных потоков, поступающих по многочисленным каналам связи от оборудования клиентов

· Магистральная сеть объединяет отдельные сети доступа, обеспечивая транзит трафика между ними по высокоскоростным каналам.

· Информационные центры, или центры управления сервисами (Services ContControl Point (SCP)). реализуют информационные услуги сети. В таких центрах может храниться инфа двух типов:

· пользовательская инфа , то есть инфа, которая непосредственно интересует конечных пользователей сети; (веб-порталы, на которых расположена разнообразная справочная и новостная инфа, инфа электронных магазинов)

· вспомогательная служебная инфа , помогающая поставщику услуг предоставлять услуги пользователям. (системы аутентификации и авторизации системы биллинга, БД учетной инфы пользователей, хранящие имена и пароли, а также перечни услуг, на которые подписан каждый пользователь.)

Специализированное предприятие которое создает телекомуникационую сеть для оказания общедоступ услуг владеет этой сетью и поддерживает ее работу= оператор связи. ® Сети операторов связи =Сети телекоммуникационных операторов предоставляют публичные услуги.

Услуги - транспортные (Телефонный разговор) -и информационные . (справочные услуги телефонной сети или веб-сайтов)..

Услуги по степени их интерактивности. телефонные сети оказывают интерактивные услуги + компные сети, пользователи которых могут активно участвовать в просмотре содержания веб-сайта, отвечая на вопросы анкеты или играя в игры НО, радиосети и телевизионные сети оказывают широковещательные услуги , при этом инфа распространяется только в одну сторону - из сети к абонентам, по схеме «один ко многим».



операторы делятся на:

Локальный оператор работает на территории города или сельского района.

Региональные и национальные операторы оказывают услуги на большой территории, располагая соответствующей транспортной инфраструктурой. выполняют транзитную передачу телефонного трафика между телефонными станциями локальных операторов, имея в своем распоряжении крупные транзитные АТС, связанные высокоскоростными физическими каналами связи. Это операторы операторов, их клиентами являются, как правило, локальные операторы или крупные предприятия, имеющие отделения и филиалы в различных городах региона или страны.

Транснациональные операторы (пример,Cable & Wireless, Global One, Infonet) Часто такие операторы тесно сотрудничают с национальными операторами, используя их сети доступа для доставки инфы клиентам.

22. Компьютерные сети, основанных на коммутации пакетов: основные принципы построения сетей PS, свойства и примеры таких сетей.

Коммутация пакетов - это техника коммутации абонентов, которая была специально разработана для эффективной передачи компьютерного трафика. Эксперименты по созданию первых компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Суть проблемы заключается в пульсирующем характере трафика, который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать.

При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения. Пакеты транспортируются в сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения. Пакеты одного сообщения могут ходить разными путями.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов (по сравнению с коммутацией каналов), так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее. Однако общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока она не завершит свое выполнение. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.

Т.е. Сети с коммутацией пакетов эффективно работают в том отношении, что объем передаваемых данных от всех абонентов сети в единицу времени больше, чем при использовании сети с коммутацией каналов. Однако для каждой пары абонентов пропускная способность сети может оказаться ниже, чем у сети с коммутацией каналов, за счет очередей пакетов в коммутаторах.

Размер пакета существенно влияет на производительность сети. Обычно пакеты в сетях имеют максимальный размер в 1-4 Кбайт. Слишком большой – приближает к технике коммутации каналов, а также создает пробки, а слишком маленький – куча лишней служебной информации в сумме, а также может не распознаться ошибка.

Описанный выше режим передачи пакетов между двумя конечными узлами сети предполагает независимую маршрутизацию каждого пакета. Такой режим работы сети называется дейтаграммным, и при его использовании коммутатор может изменить маршрут какого-либо пакета в зависимости от состояния сети - работоспособности каналов и других коммутаторов, длины очередей пакетов в соседних коммутаторах и т. п.

Существует и другой режим работы сети - передача пакетов по виртуальному каналу (virtual circuit или virtual channel). В этом случае перед тем, как начать передачу данных между двумя конечными узлами, должен быть установлен виртуальный канал, который представляет собой единственный маршрут, соединяющий эти конечные узлы. Виртуальный канал может быть динамическим или постоянным. Динамический виртуальный канал устанавливается при передаче в сеть специального пакета - запроса на установление соединения. Этот пакет проходит через коммутаторы и «прокладывает» виртуальный канал. Это означает, что коммутаторы запоминают маршрут для данного соединения и при поступлении последующих пакетов данного соединения отправляют их всегда по проложенному маршруту. Постоянные виртуальные каналы создаются администраторами сети путем ручной настройки коммутаторов.

У пакета: заголовок, данные, footer (где может быть контрольная сумма).

По ISO каждый пакет называется PDU – protocol data unit.

Механизм маршрутизации – на каждом этапе решается вопрос «куда дальше», какому коммутатору => задержки.

Маршрутизаторы принимают умные решения, а switch’и передают просто «на лету». Лучше работает в LAN.

Каждый этап пути пакета – HOP. Трасса прокладывается не обязательно по наименьшему числу хопов. Иногда по оптимальному по качеству или без пробок который.

23. Два типа компьютерных сетей с коммутацией пакетов, характеризуемые их способностью/не способностью поддерживать соединение: сети CONS и CLNS, их сопоставление.

CONS - connection oriented network service

CLNS - connectionless network service

Соединение можно установить на одном из любых семи слоёв модели ISO/OSI

на ур. среды - соединение кабелем точки А и точки Б. А можем не устанавливать! Вуухуу!

на физ . ур. - передача сигнала там типа йоу

на канальном ур. - локальная сеть или связь точка-точка. в точка-точка, само собой, есть связь, а вот в локальной сети - это зависит от сети. В сети Ethernet соединение не устанавливается!!11

межсетевой слой - в сетях Х.25, созданные телфонистами, всегда есть соединение. Как работает: call-pocket пробегает до точки назначения, как бы создавая «лыжню», остальные пакеты побегут по пути колл-пакета. Но маршрутизаторам надо запоминать - скорость медленне, но всё надежно.

В интернете каждый пакет независим и идёт своим путём, никакого соединения там нет. и маршрутизаторы ничего не помнят.

транспортный - работает на конечных станциях. В инете - по протоколу UDP (user datagram protocol). Соединения нет же. А вот TCP устанавливает соединие, исп-ся тогда, когда нужна надежная связь. Например, я файл качаю.

сеансовый - ну тут нужно соединение. Видеозвонок в скайпе там.

прикладной (уровень приложения) - когда на других уровнях соединения не было, а оно нужно.

При споре CONS vs CLNS речь идет только о межсетевом слое .

Datagram - пакет, самодостаточный для доставки. DeskEfford - сеть, которая старается доставить.

CONS - дорого, управляем траффиком, качество, надежность, качество сервиса QoS (quality of service),

CLNS - дешево, плохое качество сервиса

Примеры CONS и CLNS:

СONS - железная дорога, телефон, компьютерные ести на основе телефонии (ISDN), сети ATM, FR (frame relay), SNAC (IBM), X.25

CLNS - а\м, почта, ethernet, ip(v4,v6) - интернет, decnet, novel

24. Эталонная модель ISO/OSI : ее смысл, применение, основные концепции, иерархическая структура, протоколы и интерфейсы слоев.

Как использовать ISO/OSI

Как ты уже понял, все эти протоколы вкладываются один в другой, как матрешка. Например, HTTP инкапсулируется в TCP, TCP в IP, IP в Ethernet. Ethernet кадр преобразуется в электрический сигнал и передается по кабелю, а на другом конце все распаковывается в обратной последовательности.

Как ты заметил, далеко не все протоколы точно соответствуют определенным уровням модели OSI. Это и не нужно, главное - они умеют инкапсулироваться (упаковываться) друг в друга.

Модель ISO/OSI позволяет объединить все сети мира в одну. Ведь в IP можно инкапсулировать X.25. А в X.25 можно инкапсулировать IP. То есть мы можем инкапсулировать все что угодно во все что угодно, практически на любом уровне OSI. Это называется туннелированием, то есть в сети X.25 мы прокладываем IP-туннель. Или внутри сети IP мы прокладываем телефонный туннель - IP-телефонии. Или внутри телефонной сети мы прокладываем туннель V.90 модемного соединения, который несет в себе IP-трафик.

Штука эта очень полезная, а хакеры, как всегда, используют ее во вред. Например, для обхода файрволла, на котором закрыто все, кроме почты, через почтовый протокол SMTP можно проложить туннель IP и сидеть в Интернете на халяву.

К современным файрволлам администраторы прикручивают анализаторы пакетов, которые, кроме сетевых и транспортных пакетов, тормошат пакеты прикладного уровня, пытаясь найти скрытые туннели, вирусы, порнографию.

Однако против хитрого хакера, который знает много протоколов и хорошо представляет их взаимодействие в виде модели ISO/OSI, бороться практически бесполезно. Хакер всегда выиграет, воспользовавшись тонкостями реализации очередного протокола!

25. Уровни иерархии ISO/OSI и обмен пакетами : упаковка и распаковка информации, заголовки протоколов, мультиплексирование и демультиплексирование пакетов.

Модель взаимодействия открытых систем (Open System Interconnection, OSI)В модели OSI взаимодействие делится на семь уровней. Каждый уровень имеет дело с одним аспектом взаимодействия. Проблема взаимодействия декомпозирована на 7 частных проблем, каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями. Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам. Приложение может взять на себя функции некоторых верхних уровней модели OSI, в таком случае, при необходимости межсетевого обмена оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI. Приложение обращается с запросом к прикладному уровню, например к файловому сервису. Программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Это сообщение направляется представительному уровню, который добавляет к сообщению свой заголовок и передает результат вниз и т.д. Может быть не только заголовк, но и концевик. Физический уровень передает сообщение по линиям связи. Когда сообщение по сети поступает на другую машину, оно последовательно перемещается вверх с уровня на уровень с последовательным удалением заголовков. В стандартах ISO, кроме термина "сообщение" (message) для протоколов любого уровня используется такой термин как "протокольный блок данных" - Protocol Data Unit (PDU). Кроме этого, часто используются названия кадр (frame), пакет (packet), дейтаграмма (datagram). Мультиплексирование (англ. Multiplexing ) - уплотнение канала, т. е. передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу, при помощи мультиплексора. В связи мультиплексирование подразумевает передачу нескольких логических каналов данных одному физическому каналу (медному или оптическому кабелью, радиоканалу).

26. Среды передачи данных в эталонной модели ISO/OSI : примеры используемых физических сред передачи, электромагнитный спектр и частотные диапазоны телекоммуникационных каналов.

Уровень 0 (ур.среды передачи данных) - на самом деле не включается в схему, но полезен для понимания. Он представляет посредников, соединяющих конечные устройства: кабели, радиолинии и т. д. и только указывает на среду.

Радиоканал, инфракрасные лучи . Среда передачи. Сигналы со скоростью света. A speed in a cable ~ 200 000 km/sec.

Медная витая пара является самым дешевым видом кабелей. Неэкранированная витая пара (Unshielded Twisted Pair, UTP), как правило, используется в офисных локальных сетях, расположенных в одном здании. Скорость передачи данных в такой среде варьируется от 10 Мбит/с до 1 Гбит/с и определяется толщиной провода и расстоянием между обменивающимися сторонами. Кабель подключается к сетевым устройствам при помощи соединителя 8P8C. (8 Position 8 Contact) - это унифицированный разъём, который используется в телекоммуникациях и имеет 8 контактов и защёлку, немного бо́льшим, чем телефонный соединитель.

Коаксиальный кабель , как и витая пара , состоит из двух медных проводников , однако эти проводники, в отличие от витой пары, расположены не параллельно , а концентрически (коаксиально). С применением особых видов изоляции и экранирования коаксиальный кабель позволяет добиться более высоких скоростей передачи данных, чем витая пара.

Оптоволоконная среда передачи представляет собой тонкий и гибкий кабель , внутри которого распространяются световые импульсы , несущие информацию о передаваемых битах. Даже простой оптоволоконный кабель способен передавать данные на огромных скоростях в десятки и даже сотни гигабит в секунду. Оптоволоконные линии не подвержены электрическим наводкам, имеют очень низкий уровень ослабления сигнала на единицу протяженности и обладают значительной устойчивостью к механическим воздействиям. Передача информации на большие расстояния, особенно для международных и межконтинентальных коммуникаций .

Малое затухание сигнала позволяет передавать информацию на значительно большее расстояние без использования усилителей. Усилители в ВОЛП могут ставиться через 40, 80 и 120 километров, в зависимости от класса оконечного оборудования.

Относительная хрупкость оптического волокна. При сильном изгибании кабеля (особенно, если в качестве силового элемента используется стеклопластиковый пруток) возможна поломка волокон или их замутнение из-за возникновения микротрещин.

27. Физический уровень эталонной модели ISO/OSI : смысл физического уровня, сетевые элементы, действующие на физическом уровне (преобразователи, повторители, концентраторы, мультиплексоры, демультиплексоры).

Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включаютя:

· Тип кабелей и разъемов

· Разводку контактов в разъемах

· Схему кодирования сигналов для значений 0 и 1

К числу наиболее распространенных спецификаций физического уровня относятся:

· EIA-RS-232-C, CCITT V.24/V.28 - механические/электрические характеристики несбалансированного последовательного интерфейса.

· EIA-RS-422/449, CCITT V.10 - механические, электрические и оптические характеристики сбалансированного последовательного интерфейса.

· IEEE 802.3 -- Ethernet

· IEEE 802.5 -- Token ring

определяет стандарт на связь между ЭВМ и сетевыми коммутаторами (X.21), а также на процедуры обмена пакетами между ЭВМ. X.21 характеризует некоторые аспекты построения общественных сетей передачи данных. Следует учитывать, что стандарт X.25 появился раньше рекомендаций ITU-T и опыт его применения был учтен при составлении новейших рекомендаций. На физическом уровне могут использоваться также протоколы X.21bis, RS232 или V.35.

Правильнее называть этот уровень механически-электрическим. На этом уровне живут типы проводов, типы разъемов, уровни напряжения, сигналы, модуляции. На практике ты идешь покупать себе внешний модем. Модем нужно выбрать с евророзеткой под телефонный кабель, с разъемом под компорт на 25 штырьков или на 9 штырьков, либо USB или PCI. Ты подбираешь параметры физического уровня ISO/OSI. Дальше ты должен выбрать модем с хорошим набором физических протоколов, например, V.34, V.90, V.95, K56flex. Эти протоколы отвечают за сигналы, чем круче закодированы сигналы, тем быстрее модем передает инфу. Кроме обычного телефонного модема, бывают модемы кабельные, спутниковые, радиомодемы и модемы выделенных линий, все это особенности физического уровня.

Допустим, тебя достал твой модем, и ты решил строить домашнюю сеть. Что ты выберешь: коаксиальный кабель, витую пару или, может быть, оптоволокно? Или все вместе? Мы опять выбираем оборудование физического уровня: кабели, разъемы, повторители, концентраторы. От выбора физического оборудования зависит пропускная способность твоей сети: 10 мегабит в секунду, 100 мбит/сек или 1 Гигабит.

Один из способов обхода файрволла - подсоединение к чужому кабелю или подключение своего модема к одному из компов вражеской сети. Для этого хакеру нужно знать, что творится на физическом уровне!

28. Канальный уровень эталонной модели ISO/OS : MTU , величины MTU в различных сетях., канальный уровень для связей “точка-точка”, примеры протоколов P2P .

пакеты канального уровня, сетевые элементы, действующие на канальном уровне, понятие MTU , величины MTU в различных сетях. Канальный уровень для связей “точка-точка”, примеры протоколов P2P .

Канальный уровень определяет то, как информация передается от ЭВМ к пакетному коммутатору (HDLC - high data link communication, бит-ориентированная процедура управления), на этом уровне исправляются ошибки, возникающие на физическом уровне.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.x делят канальный уровень на два подуровня: управление логическим каналом (LLC) и управление доступом к среде (MAC). LLC обеспечивает обслуживание сетевого уровня, а подуровень MAC регулирует доступ к разделяемой физической среде.

Наиболее часто используемые на уровне 2 протоколы включают:

· HDLC для последовательных соединений

· IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x

Канальный уровень отвечает за связь между двумя устройствами, подключенными к одной физической среде, фактически к одному шнуру. Канальный уровень должен с помощью последовательности электрических сигналов физического уровня доставить информацию.

Допустим, на одном коаксиальном кабеле у тебя висят три компа, у каждого по сетевой карте. Каждая сетевая карта имеет свой адрес доступа к среде (MAC - Media Access Control). Этот адрес для многих карт прошивают на заводе, а для некоторых можно запрограммировать самостоятельно. По этому адресу карточки, подключенные к одному шнуру (к одной среде), могут обнаружить друг друга. Кроме того, чтобы нормально обмениваться данными, им нужно исправлять ошибки и запрашивать недошедшие данные. Эти задачи и решает протокол канального уровня.

Если ты строишь локальную сеть, то частично за адресацию и контроль ошибок отвечает сам стандарт твоей сети. Стандарты Ethernet, Token Ring, Fast Ethernet, Gigabit Ethernet и другие включают в себя описание физического и канального уровней.

Чтобы устройства могли общаться на канальном уровне, нужно, чтобы все они были подключены к одному кабелю и использовали один стандарт!

Что же делать, если у тебя в локальной сети сотня компов? Они же будут мешать друг другу! Если один компьютер занял провод, то остальные передавать не могут! А если пытаются, то начинаются глюки и передавать не может никто! Для того чтобы разбить провод на сегменты, используют коммутаторы и мосты. Они пропускают сквозь себя только те кадры, адрес которых лежит в другом сегменте. Поэтому компьютер при передаче информации занимает не весь шнур, а только один сегмент. Коммутатор (switch - переключатель) это мост с большим количеством портов. Мост (bridge) - это коммутатор с двумя портами. Один мост делит сеть только на два сегмента, а коммутатор на несколько, вот и все различия.

Если провод один, а по нему хотят передавать компьютерные данные, к нему же хотят подсоединить телефон, сигнализацию, систему видеонаблюдения и телевизор, то используют мультиплексор. Мультиплексор может упаковать несколько разных протоколов в один протокол канального уровня.

У современных модемов тоже есть некоторые свойства канального уровня, это протоколы коррекции ошибок и сжатия данных, такие как V.42, V.42bis, MNP.

Даже если ты подключишь два компа через COM-порты напрямую, то они будут использовать протокол канального уровня для коррекции ошибок и управления скоростью связи.

29. Подуровни канального уровня : LLC , управление доступом к среде MAC , локальные (MAC) адреса, общие принципы метода доступа CSMA/CD.

подуровень управления доступом к среде (MAC) , локальные (MAC) адреса, общие принципы метода CSMA/CD.

Почти все протоколы канального уровня основаны на SDLC (стандартный канальный протокол ISO), есть много модификаций и разновидностей: HDLC, Frame Relay, Lap-B, LLC.

Хакеры хорошо разбираются в тонкостях канального уровня. Если хакеру удалось подключиться к одному сегменту с администратором, то можно подслушать его пароли и MAC-адрес, чтобы ломануть сервер. Ведь компьютеры принимают всю инфу, которая идет по проводу, и только после этого выбирают адресованные им кадры по MAC-адресу. Так что есть возможность читать чужие сообщения и отправлять их от чужого имени!

Современные файрволлы умеют работать с MAC-адресами. Поэтому, если хакер занимается вредительством в локальной сети, IP-адрес подделать недостаточно! Ведь вредителя могут найти по MAC-адресу его сетевой карты. Даже если негодник украл пароль администратора, то правильно настроенный файрволл не пустит его на сервер с неправильным MAC-адресом.

MAC (media access contról) - подуровень управления доступом к среде. MAC-адреса обычно всегда содержат 6 байтов (это важно помнить!). зачем так много? большая половина адреса уходит на идентификатор фирмы-производителя. Заголовок - 14 байтов. Это то, как конкретный комп может передавать свои кадры.

Сontrol - это управление, а не контроль.

LLC - локальный адрес (802.2 - общие вопросы для всех LAN)

CSMA/CD - идет прослушивание. Если свободно - пакет передается. Если нет - backoff, ели снова нет, то *2.

Сетевые элементы канального уровня:

Bridges – фильтры. Пропускают либо не пропускают кадры. У каждого моста есть своя таблица адресов. Если в списке есть адрес, то пропускает кадр дальше. Bridge двусторонний.

Switches - усовершенствованный Bridge. (=коммутатор, свич, переключатель). Многопортовый. На лету пересылает пакет. Большая скорость работы.

P2P comm devices

NICs (Network interface card) - работает на конкретном компе. Сетевая карта - на 2-ух каналах: канальном и физическом. Сетевая карта частично аппаратная, частично программная(драйвер)

Но это лишь маленькие игрушки гиков, которые мечтают покрыть связью всю планету. Их амбициозные сервисы станут крохотным дополнением к мощной базовой инфраструктуре Всемирной сети - разветвлённой сети наземных и подводных магистральных каналов. Вот где настоящая кровеносная система современной цивилизации. Именно здесь бьётся её пульс.

Крупнейшие хабы

На физическом уровне интернет представляет сеть хабов (точек обмена трафиком), связанных магистральными каналами. В точках обмена трафиком концентрируется не только трафик, но и сетевая инфраструктура (дата-центры, хостинг и т.д). Крупнейшие точки обмена находятся во Франкфурте, Амстердаме, Лондоне и Париже. В каком-то смысле эти города можно считать столицами мирового интернета. По крайней мере, точно крупнейшими сетевыми узлами, вместе с Нью-Йорком, который тоже входит в пятёрку основных хабов.

По данным на 2014 год , по дну океана проложено 285 кабелей связи, из них 22 не использовались, это так называемые «тёмные кабели» («тёмное оптоловокно») - такие неиспользуемые кабели в большом количестве есть и на суше. Например, та же компания Google скупает тёмное оптоволокно для связи между дата-центрами. Когда по тёмному оптоволокну пускают сигнал, говорят, что его «зажгли», как лампу.

Расчётный срок службы оптоволокна составляет 25 лет - это чисто теоретическая величина. Предполагается, что в течение такого времени коммерческая эксплуатация канала будет иметь смысл. Соответственно, исходя из такого срока экономисты рассчитывают окупаемость инвестиций. Например, для компании Google выгоднее проложить собственный кабель через Тихий океан, чем 25 лет арендовать чужой.

По мере роста трафика в интернете (он растёт примерно на 37% в год) операторы производят апгрейд оптоволокна - «уплотняют» его, чтобы передавать данные одновременно в нескольких спектральных каналах за счёт спектрального уплотнения . Кроме того, внедряются более эффективные техники фазовой модуляции и устанавливается более современное оконечное оборудование. Соответственно, пропускная способность магистрального канала увеличивается пропорционально полосе частот, на которых передаются данные.

Хорошей иллюстрацией является трансатлантическая информационная магистраль. В 2003-2014 годы здесь не было проложено ни одного (!) нового кабеля, зато пропускная способность действующих каналов увеличилась в 2,4 раза исключительно за счёт уплотнения каналов и апгрейда оборудования. И у этих кабелей ещё остался большой запас на будущее.


Увеличение пропускной способности трансатлантических каналов связи в 2003-2014 годы

Прокладка нового кабеля и ввод его в эксплуатацию - длительная процедура, которая продолжается несколько лет, и довольно дорогостоящая, поэтому несколько корпораций обычно сообща финансируют такие проекты, а потом делят между собой оптоволоконные пары в кабеле. Например, 29 июня 2016 года компания Google с партнёрами (China Mobile International, China Telecom Global, Global Transit, KDDI, Singtel) объявили о вводе в эксплуатацию крупнейшего подводного кабеля в мире - транстихоокеанского кабеля FASTER на 60 Тбит/с . Кабель длиной 9000 км связал Японию и США (здесь Япония выполняет роль хаба между США и Китаем).


FASTER

Этот конкретный кабель состоит из 6 оптоволоконных пар. Каждая пара способна передавать сигнал в 100 диапазонах длины волны по 100 Гбит/с на каждую длину (10 Тбит/с на каждую оптоволоконную пару). Это соответствует 60 Тбит/с максимальной пропускной способности для каждого кабеля - это не теоретическая, а реальная максимальная пропускная способность, продемонстрированная в тестах.

Но в первое время пропускная способность даже близко не приблизится к этому пределу. На первом этапе будут задействованы всего лишь от 2 до 10 каналов, то есть 2-10% максимальной пропускной способности кабеля. В течение 25-летнего срока эксплуатации Google с партнёрами будут постепенно увеличивать его пропускную способность, по мере необходимости.

Google принадлежит один или два из шести оптоволоконных пар в кабеле, точная информация держится в секрете. Хотя стоимость прокладки магистрали FASTER составила $300 млн, для интернет-компании это действительно дешевле, чем арендовать такие же каналы у других. Кроме того, так Google получает больший контроль над линиями связи, которые связывают её дата-центры.

Кстати, Microsoft и Facebook по примеру Google сейчас тоже формируют консорциум для прокладки своего трансатлантического кабеля MAREA.

Сети в Европе


Если магистральные каналы связи сравнить с кровеносной системой современной цивилизации, то Европа - её сердце.

Карта магистральных каналов в Европе с каждым годом немного изменяется. Между крупнейшими узлами сети иногда прокладываются новые каналы с большей пропускной способностью и/или меньшей задержкой (то есть по более оптимальному маршруту). В некоторых случаях каналы могут вообще «пропадать», то есть их перестают использовать, если оператор по какой-то причине решит перенаправить линк от одного города к другому. В начале 2000-х крупнейшим международным каналом связи в мире был трансатлантический маршрут Нью-Йорк–Лондон, но в 2009 году проложили более толстый канал Амстердам–Лондон, а затем и этот рекорд был побит новым «чемпионом» - трассой Франкфурт–Париж.

Примерно в это время сформировалась окончательная структура сетевых магистралей в Европе с четырьмя крупнейшими в мире точками обмена трафиком.

  1. Франкфурт
  2. Лондон
  3. Париж
  4. Амстердам
По мировой статистике , всего лишь около 25% самых популярных сайтов каждой страны размещаются у себя на родине (в среднем). Доля национального хостинга заметно выше в Китае, Иране, Турции и России, по понятным причинам.


Физическое местоположение серверов 100 самых популярных сайтов в некоторых странах, апрель 2015 год.



Поделиться