Статическая и динамическая устойчивость генератора. Понятие о статической устойчивости

Физические основы устойчивости электроэнергетических систем Статическая устойчивость энергосистемы – это устойчивость при малых возмущениях режима. Из рассмотрения простейших механических систем следует, что есть состояния (режимы), в которых система после случайного возмущения стремится восстановить исходный или близкий к нему режим. В других режимах случайное возмущение уводит систему от исходного состояния. В первом случае система является устойчивой, во втором – неустойчивой.

Физические основы устойчивости электроэнергетических систем В установившемся режиме между энергией источника, поступающей в систему, и энергией, расходуемой в нагрузке и на покрытие потерь, имеется баланс. При каком–либо возмущении, проявляющемся в изменении параметра режима на, этот баланс нарушается. Если система обладает такими свойствами, что энергия после возмущения расходуется более интенсивно, чем вырабатывается электростанциями, то новый режим, возникший в результате возмущения, не может быть обеспечен энергией и в системе должен восстановиться прежний установившийся или близкий к нему режим. Такая система устойчива.

Физические основы устойчивости электроэнергетических систем Из определения устойчивости следует, что условием сохранения устойчивости системы (критерием устойчивости) является соотношение, или в дифференциальной форме. Величину называют избыточной энергией. Эта энергия положительна, если дополнительная генерируемая энергия, появившаяся при возмущении, возрастет интенсивнее, чем нагрузка системы с учётом потерь в ней.

Физические основы устойчивости электроэнергетических систем При этом условии критерий устойчивости запишется в виде, т. е. режим устойчив, если производная от избыточной энергии по определяющему параметру отрицательна.

Физические основы устойчивости электроэнергетических систем Для обеспечения устойчивости системы существенное значение имеет запас её статической устойчивости, который характеризуется углами сдвига роторов генераторов и векторов напряжений в узловых точках системы. Большое значение имеет запас статической устойчивости в послеаварийном режиме – по мощности электрической передачи он должен составлять 5 – 10 %, в нормальном же режиме 15 – 20 %. Однако эти цифры строго не лимитируются.

Физические основы устойчивости электроэнергетических систем Чтобы проверить статическую устойчивость системы, необходимо составить дифференциальные уравнения малых колебаний для всех его элементов и регулирующих устройств, а затем исследовать корни характеристического уравнения на устойчивость. Поскольку строгое решение такой задачи очень сложно, в инженерных расчётах применяются приближённые методы исследования устойчивости, которые основываются на использовании практических критериев устойчивости.

Статическая устойчивость системы «эквивалентный генератор - шины постоянного напряжения» Система в которой одиночная удалённая электростанция связана с шинами (системой) постоянного по величине напряжения, называется простейшей (рис. 11. 1, а). Считается, что суммарная мощность электрических станций системы значительно превышает мощность рассматриваемой станции. Это позволяет считать напряжение на шинах системы неизменным при любых режимах её работы. Простейшей система называется ещё одномашинной моделью энергосистемы или модель «машина – шины» .

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Анализируемая электростанция связана через трансформаторные связи и линию электропередачи с генераторами мощной концентрированной энергосистемы, настолько мощной, что её приёмные шины обозначают как шины бесконечной мощности (ШБМ). Отличительными признаками ШБМ являются неизменное по модулю напряжение и неизменная частота этого напряжения. При использовании ШБМ, соответствующие им энергосистемы в электрических схемах, как правило, не изображаются. В схемах замещения шины бесконечной мощности используются как элемент, изображающий мощную систему.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ На рис. 11. 1, б представлены два основных агрегата тепловой электрической станции: турбина и генератор. Вращающий момент турбины зависит от количества подводимого энергоносителя: для паровой турбины – это пар, для гидротурбины – вода. В нормальном режиме основные параметры энергоносителя стабильны, поэтому вращающий момент постоянный. Мощность, выдаваемая генератором в систему, определяется несколькими параметрами, влияние которых зависит от характеристики мощности генератора.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Для получения характеристики мощности генератора построена векторная диаграмма электропередачи (рис. 11. 1, в). Здесь полный вектор тока разложен на его действительную и мнимую составляющие, а сопротивление получено из схемы замещения системы, представленной на рис. 11. 1, г:

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Из векторной диаграммы следует, что, где – активная составляющая тока, – угол сдвига вектора ЭДС относительно вектора напряжения. Умножая обе части равенства на, получим, (11. 1) где – активная мощность, выдаваемая генератором (принята в относительных единицах).

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Зависимость (11. 1) имеет синусоидальный характер и называется характеристикой мощности генератора. При постоянных ЭДС генератора и напряжения угол поворота ротора генератора определяется только его активной мощностью, которая в свою очередь определяется мощностью турбины. Мощность турбины зависит от количества энергоносителя, и в координатах, изображается прямой линией.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ При определённых значениях ЭДС генератора и напряжения приёмной стороны характеристика мощности имеет максимум, который вычисляется по формуле. (11. 2) Величину называют также «идеальным» пределом мощности электрической системы. Каждому значению мощности турбины соответствуют две точки пересечения характеристики а и b (рис. 11. 2, а), в которых мощности генератора и турбины равны между собой.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Рассмотрим режим работы в точке а. Если мощность генератора увеличить на величину, то и угол, следуя синусоидальной зависимости, изменится на величину. Из рис. 11. 2, а следует, что в точке а положительному приращению мощности, соответствует положительное приращение угла. При изменении мощности генератора равновесие моментов турбины и генератора нарушается. При увеличении мощности генератора на валу ротора, связывающего с турбиной возникает тормозящий момент, превышающий вращающий момент турбины. Тормозящий момент вызывает замедление ротора генератора, что вызывает перемещение ротора и связанного с ним вектора ЭДС в сторону уменьшения угла (рис. 11. 2, б).

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Необходимо подчеркнуть, что перемещение ротора под действием избыточного момента накладывается на его движение в положительном направлении с синхронной скоростью, которая во много раз превышает скорость этого перемещения. В итоге в точке а восстанавливается исходный режим работы и, как следует из определения статической устойчивости, этот режим является устойчивым. Такой же вывод можно получить и при уменьшении мощности генератора в точке а.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Если уменьшить мощность генератора в точке b, то на валу ротора генератора возникает ускоряющий избыточный момент, который увеличивает угол. С ростом угла мощность генератора ещё уменьшается, это приводит к дополнительному увеличению ускоряющего момента, таким образом, возникает лавинообразный процесс, который называют выпадением из синхронизма. Процесс выпадения из синхронизма и асинхронный режим, в котором в итоге оказывается генератор, характеризуется непрерывным перемещением вектора ЭДС относительно напряжения приёмной системы.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Если в точке b мощность генератора увеличить, то возникнет избыточный тормозной момент, который вызовет перемещение рабочей точки системы турбина–генератор в точку а. Таким образом, точка а характеристики мощности является точкой устойчивого равновесия моментов турбины и генератора, точка b – точкой неустойчивого равновесия. Аналогично все точки, лежащие на возрастающей части характеристики мощности, являются точками устойчивой работы системы, а точки, лежащие на падающей части характеристики, – точками неустойчивой работы. Границей зон устойчивой и неустойчивой работы является максимум характеристики мощности.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Таким образом, признаком статической устойчивости электрической системы является знак приращения мощности к приращению угла. Если, то система устойчива, если это отношение отрицательно, то неустойчива. Переходя к пределу, получим критерий устойчивости простейшей системы: . Увеличение мощности турбины от значения до (рис. 11. 2, а) приводит к возрастанию угла ротора от значения до значения и к снижению статической устойчивости.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Очевидно, что в условиях эксплуатации генератор не следует загружать до предельной мощности, так как любое незначительное отклонение параметров режима может привести к потере синхронизма и переходу генератора в асинхронный режим. На случай появления непредвиденных возмущений предусматривается запас по загрузке генератора, характеризуемый коэффициентом запаса статической устойчивости. (11. 3)

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ Руководящими указаниями по устойчивости энергосистем предписано, что в нормальных режимах энергосистем должен обеспечиваться запас устойчивости электропередачи, связывающей станцию с шинами энергосистемы не менее 20% в нормальном режиме и 8% в кратковременном послеаварийном. В наиболее тяжёлых режимах, при которых увеличение перетоков мощности по линиям позволяет уменьшить ограничения потребителей или потери гидроресурсов, допускается снижение запаса по устойчивости до 8%. Под кратковременными понимаются послеаварийные режимы длительностью до 40 минут, в течение которых диспетчер должен восстановить нормальный запас по статической устойчивости.

Характеристика мощности явнополюсного генератора Для характеристики мощности явнополюсной машины запишем выражение активной мощности, выдаваемой в систему Учитывая, что перепишем в виде, выражение для мощности

Характеристика мощности явнополюсного генератора Из последнего выражения следует, что характеристика мощности явнополюсного генератора кроме основной синусоидальной составляющей содержит вторую составляющую – вторую гармоническую составляющую, амплитуда которой пропорциональна разности индуктивных сопротивлений и. Вторая гармоника смещает максимум характеристики мощности в сторону уменьшения угла (рис. 11. 3). Первая, основная часть зависит от величины ЭДС, что говорит о том, что генератор должен быть возбуждён. Вторая составляющая не зависит от возбуждения генератора, она показывает, что явнополюсный генератор может выдавать активную мощность без его возбуждения за счёт реактивного момента, но эта активная мощность зависит от синуса двойного угла.

Характеристика мощности явнополюсного генератора Амплитуда характеристики мощности возрастает по сравнению с характеристикой неявнополюсной машины. Но это увеличение проявляется только при малых значениях ЭДС (когда первая и вторая составляющие имеют одинаковый порядок). В обычных условиях амплитуда второй гармоники составляет 10 – 15% основной гармоники и не оказывает заметного влияния на характеристику мощности.

Характеристика мощности генератора с АРВ Предположим, что у генератора на рис. 11. 1 отключена система регулирования напряжения. Построим векторную диаграмму рассматриваемой системы, выделив в ней напряжение на шинах генератора (рис. 11. 4, а). Оно зависит от падения напряжения на внешнем сопротивлении системы: где – системы. внешнее сопротивление

Характеристика мощности генератора с АРВ Вектор напряжения на шинах генератора делит вектор падения напряжения на две части, пропорциональные индуктивным сопротивлениям и. Увеличим передаваемую активную мощность на и тем самым угол на. Это вызовет изменение реактивной мощности, передаваемой в систему. Для получения зависимости реактивной мощности от угла запишем выражение, следующее из векторной диаграммы, показанной на рис. 11. 1, в

Характеристика мощности генератора с АРВ Умножая левую и правую части последнего равенства на, получим. Выразив, из последнего соотношения, получим выражение для реактивной мощности, выдаваемой генератором от угла: .

Характеристика мощности генератора с АРВ Из диаграммы следует, что увеличение угла вызывает уменьшение напряжения на шинах генератора. Предположим, что автоматический регулятор возбуждения включён и контролирует напряжение. При понижении этого напряжения регулятор увеличивает ток возбуждения, а вместе с ним и ЭДС до тех пор пока не восстановится прежнее значение напряжения. Рассматривая установившиеся режимы работы генератора с АРВ при различных значениях угла, часто исходят из постоянства напряжения. На рис. 11. 4, б показано семейство характеристик, построенных для различных значений ЭДС.

Характеристика мощности генератора с АРВ Если принять за исходную точку нормального режима точку а, то для увеличения мощности (сопровождающемся увеличением угла) точки новых установившихся режимов будут определяться переходом с одной характеристики на другую в соответствии с векторной диаграммой (рис. 11. 4, а). Соединив между собой точки установившихся при различных уровнях возбуждения, получим внешнюю характеристику генератора. Она возрастает даже в

Характеристика мощности генератора с АРВ Регуляторы пропорционального типа (РПТ) при коэффициентах усиления 50… 100 позволяют поддерживать напряжение на шинах генератора практически постоянным. Коэффициент усиления определяется как отношение чисел единиц возбуждения и единиц напряжения генератора. Но предельная мощность передачи такого генератора, снабжённого АРВ с таким коэффициентом усиления, незначительно выше предельной мощности нерегулируемого генератора.

Характеристика мощности генератора с АРВ Это связано с тем, что при увеличении мощности в некоторой точке характеристики мощности (точка 3 на рис. 11. 5, а) начинается самораскачивание генератора, т. е. периодические колебания ротора с увеличивающейся амплитудой приводят к выпадению генератора из синхронизма. Поэтому регуляторами пропорционального типа не стараются поддержать, допуская его некоторое снижение с ростом нагрузки. В этом случае предельная мощность, которой удаётся достигнуть, значительно выше мощности (рис. 11. 5, б).

Характеристика мощности генератора с АРВ Характеристика мощности при коэффициентах усиления порядка 20… 40 имеет примерно такой же максимум, что и характеристика генератора при. Следовательно, генератор, снабжённый регулятором пропорционального типа, может быть представлен в схемах замещения переходными ЭДС и сопротивлением.

Характеристика мощности генератора с АРВ Характеристика мощности генератора, замещаемого ЭДС, может быть получена так же, как и характеристика явнополюсного генератора

Характеристика мощности генератора с АРВ Если РПТ имеет зону нечувствительности, критическим считается режим при о, т. е. предельная мощность достигается в точке в

Характеристика мощности генератора с АРВ Регулятор начинает работать лишь после того, как отклонение напряжения в ту или иную сторону достигнет определённого значения. При меньших отклонениях, лежащих в зоне нечувствительности, регулятор не работает. Границам зоны нечувствительности соответствуют две внешние характеристики (рис. 11. 6).

Характеристика мощности генератора с АРВ Пусть исходному режиму соответствует точка а. При небольшом возмущении, вызывающем увеличение угла, уменьшается напряжение на шинах генератора, но регулятор не работает до тех пор, пока отклонение угла лежит в зоне нечувствительности. При увеличении угла на валу генератора возникает ускоряющий избыточный момент, вызывающий его дальнейшее увеличение. Когда угол движения пересекает границу зоны нечувствительности (точка b), регулятор начинает работать.

Характеристика мощности генератора с АРВ Увеличение тока возбуждения, а, следовательно, и ЭДС генератора, замедляет снижение мощности, перемещая рабочую точку на характеристике мощности, соответствующие большим ЭДС (точки с, d). В точке е избыток мощности становится равным нулю, но вследствие инерции ротора продолжается увеличение угла. В точке f угол становится максимальным, после чего начинает уменьшаться.

Характеристика мощности генератора с АРВ После того как будет пройдена точка g, лежащая на внешней характеристике, регулятор начнёт уменьшать напряжение возбудителя и кривая изменения мощности пересечёт внутренние характеристики мощности в обратном направлении. Таким образом, в силу внутренней неустойчивости возникают незатухающие колебания ротора генератора (колебания угла). Амплитуда этих колебаний зависит от ширины зоны нечувствительности регулятора. Вместе с углом колеблются напряжение, мощность и ток генератора. Такие колебания затрудняют контроль работы генератора и вызывают необходимость отказаться от его эксплуатации в подобных режимах.

Характеристика мощности генератора с АРВ о, Обеспечить устойчивую работу генератора при возможно при использовании более сложных регуляторов возбуждения, которые реагируют не только на изменение величины напряжения, но и на скорость и даже ускорение изменения величины напряжения. Такие регуляторы называются регуляторами сильного действия. Регуляторы сильного действия обеспечивают постоянное напряжение на выводах генератора (без самораскачивания), поэтому генератор, снабжённый таким регулятором, при расчёте статической устойчивости на схеме замещения может быть представлен источником постоянного напряжения с нулевым сопротивлением.

Одним из главных условий надёжной работы ЭЭС является её устойчивость, т.е. способность ЭЭС восстанавливать исходный или близкий к исходному установившийся режим после его нарушения и после соответствующего переходного режима. Иными словами, устойчивость - это способность ЭЭС сохранять синхронную работу.

Различают два вида неустойчивости:

  • 1. «Самораскачивание», которое проявляется в нарастающих колебаниях параметров режима, так называемая колебательная неустойчивость.
  • 2. «Сползание» - апериодический уход от положения равновесия, так называемая апериодическая неустойчивость.

Причины раскачивания (колебательной неустойчивости): Э4

  • · Неправильная настройка АРВ СГ, когда регулирование возбуждения вместо демпфирования раскачивает режим.
  • · Неудачный выбор параметров системы регулирования мощности турбин.
  • · Работа генераторов на сеть с большой емкостью: линии с высокой степенью УПК, протяженные линии в режимах холостого хода или малых нагрузок.

Основной причиной апериодической неустойчивости является перегрузка электропередач.

Различают следующие три вида устойчивости:

  • · Статическая устойчивость (СУ) - это способность ЭЭС сохранять синхронную работу после малого возмущения режима.
  • · Динамическая устойчивость (ДУ) - это способность ЭЭС сохранять синхронную работу после большого возмущения режима. В тех случаях, как правило, когда возникает небаланс активных мощностей на валу хотя бы одного из генераторов.
  • · Результирующая устойчивость (РУ) - это способность ЭЭС восстанавливать синхронную работу после кратковременного её нарушения (после кратковременного, допустимого по условиям эксплуатации асинхронного режима).

Исследование статической устойчивости имеет обычно целью определение параметров предельного по устойчивости режима. Зная эти параметры и параметры исходного (планируемого) режима, легко можно определить запас статической устойчивости.

Характер нарушения апериодической СУ и ее обеспечения определяется с помощью характеристик генератора и турбины (рис. В.3).

д -Угол нагрузки

Рис.

Как отмечалось, устойчивы только те режимы, рабочие точки которых находятся на восходящей ветви характеристики генератора (точка «а»).

Наоборот, в точке «в» работа невозможна, режим неустойчив. Например, при малом увеличении угла д на валу ротора появляется ускоряющий небаланс. Под его действием ротор еще больше ускоряется, угол продолжает увеличиваться и т.д., процесс необратим. При уменьшении угла также возвращение в исходную точку не происходит, а угол продолжает уменьшаться.

Таким образом, падающая ветвь характеристики генератора является зоной апериодической неустойчивости.

Действительно, при этом малое увеличение угла Дд (точка а1) приведет к увеличению тормозящей электрической мощности. На валу генератора появляется тормозящий небаланс мощности. Под его действием скорость вращения уменьшится и угол уменьшится (т.е. исходный режим восстановится). Аналогично происходит при уменьшении угла.

В установившемся режиме работы генератора механический момент M 1 на валу первичного двигателя (паровая или гидротурбина) равен электромагнитному моменту M, развиваемому генератором (рис. 17.3). Момент М 1 не зависит от угла поворота ротора и поэтому изображен горизонтальной прямой, которая пересекается с характеристикой M = f(и) в точках 1 и 2 .

В этих точках М 1 = М. Это необходимое условие для установившегося движения, но не всегда для устойчивого. Устойчивая работа будет только в точке 1 потому, что если ротор по какой-то причине повернется на угол больший чем и 1 и станет и 1 + Ди (точка 1 "), то электромагнитный момент возрастает до значения M+ДM, что будет больше чем момент у первичного двигателя (M+ДM)> M 1 , это заставит ротор затормозиться и вернуться в положение 1 с углом и 1 . Если при работе в точке 1 угол и в результате случайного возмущения уменьшится, то при прекращении действия этого возмущения генератор также вернется в режим работы в точку 1 .

В точке 2 работа будет неустойчивой. Если при работе в точке 2 угол и увеличится на Ди (точка 2 ”), то момент генератора уменьшится и станет меньше момента первичного двигателя (M-ДM) < M 1 , ротор будет ускоряться, угол и еще больше возрастет и т. д. В результате генератор выйдет из синхронизма, перейдет в двигательный режим и т. д. Если же при работе в точке 2 угол и уменьшится, то вследствие нарушения баланса моментов будет уменьшаться и далее, пока этот баланс M = M 1 не восстановится в точке 1 .

Таким образом, работа неявнополюсного генератора устойчива в области 0 < и < 90° и неустойчива в области 90 < и < 180°. Поэтому угол

и = 90° является критическим углом, и кр = ±90°.

Расчеты устойчивости ЭЭС имеют следующие основные цели:

  • 1. Определение уровня устойчивости ЭЭС и сопоставление его с желаемым. При этом выявляется та область исходных режимов и те повреждения, при которых требуется противоаварийное управление.
  • 2. Обеспечить и повысить устойчивость ЭЭС можно путём воздействия на переходные режимы за счёт так называемых управляющих воздействий (УВ), исходящих от устройств автоматики: 1.релейной защиты, автоматического повторного включения (АПВ), АВР, 2.противоаварийной автоматики (ПАА) или 3.персонала.

Системы релейной защиты и АПВ обеспечивают простейшие УВ: отключение повреждённых элементов системы, различные виды повторных включений. Однако в современных сложных ЭЭС лишь эти простейшие УВ часто не обеспечивают устойчивость, поэтому приходится использовать более сложные УВ, обеспечиваемые системой ПАА, такие, как отключение генераторов, отключение нагрузки и другие, которые будут рассмотрены далее.

Характер протекания переходных режимов непосредственно влияет на условия работы ЭЭС, определяя надёжность её работы, устойчивость и живучесть. При отсутствии надлежащего управления или неправильном управлении переходными режимами в ЭЭС развивается системная авария, являющаяся самой тяжёлой, поскольку приводит к нарушению электроснабжения большого числа потребителей, погашению электростанций.

Установившийся режим работы энергосистемы является квазиустановившемся, так как характеризуется малыми изменениями перетоков активной и реактивной мощности, значений напряжений и частоты. Таким образом, в энергосистеме постоянно один установившийся режим работы переходит к другому установившемуся режиму работы. Малые изменения режима работы энергосистемы возникают вследствие увеличения или снижения потребления электроустановок потребителя. Малые возмущения, вызывают реакцию системы в виде колебаний скорости вращения роторов генераторов, которые могут быть нарастающими или затухающими, колебательными или апериодическими. Характер получаемых колебаний определяет статическую устойчивость данной системы. Статическая устойчивость проверяется при перспективном и рабочем проектировании, разработке специальных устройств автоматического регулирования (расчеты и эксперименты), вводе в эксплуатацию новых элементов системы, изменении условий эксплуатации (объединение систем, ввод новых электростанций, промежуточных подстанций, линий электропередачи).

Под понятием статической устойчивости понимают способность энергосистемы восстанавливать исходный или близкий к исходному режим работы энергосистемы после малого возмущения или медленных изменениях параметров режима.

Статическая устойчивость является необходимым условием существования установившегося режима работы системы, но не предопределяет способность системы продолжать работу при возникновении конечных возмущений, например, коротких замыканий, включения или отключения линий электропередачи.

Различают два вида нарушений статической устойчивости: апериодическое (сползание) и колебательное (самораскачивание).

Статическая апериодическая (сползание) устойчивость связана с изменением баланса активной мощности в энергосистеме (изменение разности между электрической и механической мощностями), что приводит к росту угла δ, в результате может произойти выпадение машины из синхронизма (нарушение устойчивости). Угол δ изменяется без колебаний (апериодически), сначала медленно, а затем всё быстрее, как бы сползая (см. рис. 1,а).

Статическая периодическая (колебательная) устойчивость связана с настройками автоматических регуляторов возбуждения (АРВ) генераторов. АРВ должны быть настроены таким образом, чтобы исключить возможность самораскачивания системы в широком диапазоне режимов работы. Однако, при некоторых сочетаниях ремонтов (схемно-режимной ситуации) и настройках регуляторов возбуждения могут возникнуть колебания в системе регулирования, вызывающие нарастающие колебания угла δ вплоть до выпадения машины из синхронизма. Это явление и называется самораскачиванием (см. рис. 1,б).

Рис.1. Характер изменения угла δ при нарушении статической устойчивости в виде сползания (а) и самораскачивания (б)

Статическая апериодическая (сползание) устойчивость

Первый этап исследования статической устойчивости – это исследование статической апериодической устойчивости. При исследовании статической апериодической устойчивости предполагается, что вероятность колебательного нарушения устойчивости при увеличении перетока по межсистемным связям очень мала и можно пренебречь самораскачиванием. Для определения области апериодической устойчивости энергосистемы производят утяжеление режима работы энергосистемы. Метод утяжеления заключается в последовательном изменении параметров узлов или ветвей, или их групп заданными шагами с последующим расчетом нового установившегося режима на каждом шаге изменения и выполняется до тех пор, пока обеспечивается возможность расчета.

Рассмотрим простейшую схему сети, которая состоит из генератора, силового трансформатора, линии электропередачи и шин бесконечной мощности (см. рис.2).

Рис.2. Схема замещения расчетной цепи

В рассматриваемом простейшем случае электромагнитная мощность, которую можно передать от генератора к шинам бесконечной мощности, описывается следующим выражением:

В записанном выражении переменная представляет собой модуль линейного напряжения на шинах станции, приведенный к стороне ВН, а переменная - модуль линейного напряжения в точке шин бесконечной мощности.

Рис.3. Векторная диаграмма напряжений

Взаимный угол между вектором напряжения и вектором напряжения обозначается через переменную - , для которого в качестве положительного направления принимается направление против часовой стрелки от вектора напряжения .

Следует отметить, что формула для электромагнитной мощности написана в предположении, что генератор снабжен автоматическим регулятором возбуждения, который контролирует напряжение на стороне генераторного напряжения (), а также для простоты выкладок пренебрегли активным сопротивлением в элементах расчетной схемы.

Анализируя формулу для электромагнитной мощности можно сделать вывод, что величина передаваемой мощности в энергосистему зависит от угла между напряжениями. Данная зависимость получила название угловой характеристикой мощности электропередачи (см. рис.4).

Рис.4. Угловая характеристика мощности

Установившийся (синхронный) режим работы генератора определяется равенством двух моментов, действующих на вал турбогенератора (считаем, что можно пренебречь моментом сопротивления, обусловленным трением в подшипниках и сопротивлением охлаждающей среды): момент турбины Мт , вращающий ротор генератора и стремящийся ускорить его вращение, и синхронный электромагнитный момент Мэм , противодействующий вращению ротора.

Допустим, что в турбину генератора поступает пар, который создает крутящий момент на валу турбины (при некотором приближении он равен внешнему моменту Мвн , передаваемому от первичного двигателя). Установившийся режим работы генератора может быть в двух точках: А и Б, так как в данных точках соблюдается баланс между моментом турбины и электромагнитным моментом с учетом потерь.

точке А увеличение/уменьшение мощности турбины на величину ΔP приведет к увеличению/уменьшению угла d, соответственно. Таким образом, сохраняется равновесие моментов, действующих на вал ротора (равенство момента турбины и электромагнитного момента с учетом потерь), и тем самым нарушение синхронной машины с сетью не происходит.

При работе синхронной машины в точке В увеличение/уменьшение мощности турбины на величину ΔP приведет к уменьшению/ увеличению угла d, соответственно. Таким образом, равновесие моментов, действующих на вал ротора, нарушается. В результате либо генератор выпадает из синхронизма (т. е. ротор начинает вращаться с частотой, отличающейся от частоты вращения магнитного поля статора), либо синхронная машина переходит в точку устойчивой работы (точка А).

Таким образом, из рассмотренного примера видно, что простейшим критерием сохранения статической устойчивости является положительный знак у выражения, которое определяет отношение приращения мощности к приращению угла:

Таким образом, область устойчивой работы определяется диапазоном углов от 0 до 90 градусов, а в области углов от 90 до 180 градусов, устойчивая параллельная работа невозможна.

Максимальное значение мощности, которая может быть передана в энергосистему, называется пределом статической устойчивости, и соответствует значению мощности при взаимном угле 90 градусов:

Работа на предельной мощности, соответствующей углу 90 градусов, не производится, так как малые возмущения, всегда имеющиеся в энергосистеме (например, колебания нагрузки), могут вызвать переход в неустойчивую область и нарушение синхронизма. Максимальное допустимое значение передаваемой мощности принимается меньшим предела статической устойчивости на величину коэффициента запаса статической апериодической устойчивости по активной мощности.

Запас статической устойчивости для электропередачи в нормальном режиме должен составлять не менее 20%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Запас статической устойчивости для электропередачи в послеаварийном режиме должен составлять не менее 8%. Значение допустимого перетока активной мощности в контролируемом сечении по данному критерию определяется по формуле:

Статическая периодическая (колебательная) устойчивость

Неправильно выбранный закон управления или неправильная настройка параметров автоматического регулятора возбуждения (АРВ) может привести к нарушению колебательной устойчивости. При этом нарушение колебательной устойчивости может происходить в режимах не превышающих предельного режима по апериодической устойчивости, что неоднократно наблюдалось в действующих электроэнергетических системах.

Исследование колебательной статической устойчивости сводится к следующим этапам:

1. Составление системы дифференциальных уравнений, которая описывает рассматриваемую электроэнергетическую систему.

2. Выбор независимых переменных и выполнение линеаризации записанных уравнений с целью формирования системы линейных уравнений.

3. Составление характеристического уравнения и определение области статической устойчивости в пространстве регулируемых (независимых) параметров настройки АРВ.

Об устойчивости нелинейной системы судят по затуханию переходного процесса, который определяется корнями характеристического уравнения системы. Для обеспечения устойчивости необходимо и достаточно, чтобы корни характеристического уравнения имели отрицательные вещественные части.

Для оценки устойчивости применяют различные методы анализа характеристического уравнения:

1. алгебраические методы (метод Рауса, метод Гурвица), основанные на анализе коэффициентов характеристического уравнения.

2. частотные методы (метод Михайлова, Найквиста, D-разбиения), основанные на анализе частотных характеристик.

Мероприятия по повышению предела статической устойчивости

Мероприятия по повышению предела статической устойчивости определяются при анализе формулы для определения электромагнитной мощности (формула записана в предположении, что генератор снабжен автоматическим регулятором возбуждения):

1. Применение АРВ сильного действия на генерирующем оборудовании.

Одним из эффективных средств повышения статической устойчивости является применение АРВ генераторов сильного действия. При использовании устройств АРВ генераторов сильного действия угловая характеристика видоизменяется: максимум характеристики смещается в область значений углов больших 90° (с учетом относительного угла генератора).

2. Поддержание напряжения в точках сети с помощью устройств компенсации реактивной мощности.

Установка устройств компенсации реактивной мощности (СК, УШР, СТК и т.п.) для поддержания напряжения в точках сети (устройства поперечной компенсации). Устройства позволяют поддерживать напряжения в точках сети, что благоприятно сказывается на пределе статической устойчивости.

3. Установка устройств продольной компенсации (УПК).

При увеличении длины линии соответственно возрастает ее реактивное сопротивление и вследствие этого существенно ограничивается предел передаваемой мощности (ухудшается устойчивость параллельной работы). Уменьшение реактивного сопротивления длинной линии электропередачи повышает ее пропускную способность. Для уменьшения индуктивного сопротивления линии электропередачи в рассечку линии устанавливают устройство продольной компенсации (УПК), которое представляет собой батарею статических конденсаторов. Таким образом результирующее сопротивление линии уменьшается, тем самым увеличивается пропускная способность.

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ

электроэнергетической системы - способность электроэнергетической системы восстанавливать исходное состояние (режим) после малых его возмущений. Нарушение С. у. может возникать при передаче больших мощностей через ЛЭП (как правило, протяжённые), при снижении напряжения в узлах нагрузки вследствие дефицита реактивной мощности, при работе генераторов электростанций в режиме недовозбуждения. Осн. меры обеспечения С. у.: увеличение номин. напряжения ЛЭП и снижение их индуктивного сопротивления; автоматическое регулирование возбуждения крупных синхронных машин, применение синхронных компенсаторов, синхронных электродвигателей и статич. компенсаторов реактивной мощности в узлах нагрузки. С. у. может быть повышена также при использовании в энергосистемах генераторов с регулированием возбуждения в продольной и поперечной обмотках ротора.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ" в других словарях:

    Характеристика устойчивости летательного аппарата, определяющая его тенденцию к возвращению без вмешательства лётчика в исходное положение равновесия под действием аэродинамического момента (см. Аэродинамические силы и моменты), вызываемого… … Энциклопедия техники

    статическая устойчивость - электрической системы; статическая устойчивость Способность электрической системы возвращаться к исходному режиму (или весьма близкому к нему) после малых возмущений режима …

    статическая устойчивость - statinis stabilumas statusas T sritis automatika atitikmenys: angl. static stability; steady state stability vok. statische Stabilität, f rus. статическая устойчивость, f pranc. stabilité statique, f … Automatikos terminų žodynas

    статическая устойчивость - statinis stabilumas statusas T sritis fizika atitikmenys: angl. static stability vok. statische Stabilität, f rus. статическая устойчивость, f pranc. stabilité statique, f … Fizikos terminų žodynas

    статическая устойчивость Энциклопедия «Авиация»

    статическая устойчивость - статическая устойчивость — характеристика устойчивости летательного аппарата, определяющая его тенденцию к возвращению без вмешательства лётчика в исходное положение равновесия под действием аэродинамического момента (см. Аэродинамические… … Энциклопедия «Авиация»

    статическая устойчивость электрической системы - статическая устойчивость электрической системы; статическая устойчивость Способность электрической системы возвращаться к исходному режиму (или весьма близкому к нему) после малых возмущений режима … Политехнический терминологический толковый словарь

    статическая устойчивость ТКК - статическая устойчивость ТКК: Угол наклона испытательной плоскости, при котором происходит подъем какого либо колеса ТКК над этой плоскостью. Источник: ГОСТ Р 52286 2004: Кресла каталки транспортные реабилитационные. Основные параметры.… …

    Статическая устойчивость энергосистемы - 48. Статическая устойчивость энергосистемы Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений. Примечание. Под малым возмущением режима энергосистемы понимают такое, при котором изменения параметров… … Словарь-справочник терминов нормативно-технической документации

    English: Energetic system static (resistance) stability Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений (по ГОСТ 21027 75) Источник: Термины и определения в электроэнергетике. Справочник … Строительный словарь

Книги

  • , В. Пышнов. Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство`ОНТИ…
  • Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость , Пышнов В.С. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость…

Для выяснения принципиальных положений анализа динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей линии электропередачи одномашинной энергосистемы (рис. 2.1, а).

Рис. 2.1. Одномашинная энергосистема (а) и ее схемы замещения: для нормального режима (б) и режима с отключенной цепью (в)

Взаимное реактивное сопротивление схемы замещения (рис. 2.1, б), равное

определяет максимум fj M угловой характеристики мощности генератора Р ] (б) в исходном режиме:

После отключения одной из цепей линии электропередачи (рис. 2.1,) будет получено новое, большее по значению, сопротивление

Максимум новой угловой характеристики /J|(5) составит, соответственно, меньшую величину (рис. 2.2):

Рис. 2.2.

Точке пересечения а характеристики мощности турбины /т(5) = const и угловой характеристики генератора /j(5) = Ры sin 6 в нормальном режиме соответствуют угол 6 0 , мощность Р () и скорость (частота) Ь. В результате нарушается баланс мощностей (моментов) на валу ротора генератора и турбины за счет уменьшения тормозящего момента, обусловленного электрической нагрузкой. Угол 8 0 и относительная скорость

сохраняют свои значения в момент отключения цепи в силу инерции ротора генератора. В дальнейшем под действием избыточного ускоряющего момента относительная скорость и нарастает и при значении угла 8 С становится наибольшей.

Рис. 2.3.

В точке с ускоряющий и тормозящий моменты уравновешиваются, но ротор по инерции, за счет дополнительной кинетической энергии, накопленной на участке Ьс, будет продолжать относительное движение. Однако это движение будет происходить с замедлением, поскольку справа от точки с ускоряющий момент турбины меньше, чем тормозящий электромагнитный момент генератора. Увеличение угла прекратится при значении 8,„, когда дополнительная кинетическая энергия, приобретенная ротором на участке Ьс, компенсируется равной по величине потенциальной энергией на участке cm. Очевидно, что при значении угла 6,„ режим не установится, поскольку в этом состоянии тормозящий момент генератора выше ускоряющего момента турбины. Под действием избыточного тормозящего момента от точки т ротор будет возвращаться к углу 8 С и снова по инерции его пройдет. Однако к начальному углу 6 0 ротор нс возвратится вследствие потерь на трение и действия демпфирующих моментов. Амплитуда изменения угла при дальнейших качаниях ротора будет уменьшаться (рис. 2.2, б), и окончательно режим системы установится в новой точке устойчивого равновесия - точке с.

Однако возможен и другой исход процесса. Если угол достигнет критической величины 8 кр, соответствующей точке/(рис. 2.3, а), прежде, чем относительная скорость и примет нулевое значение, то избыточный момент на валу ротора генератора становится вновь ускоряющим. Относительная скорость и ротора опять начинает возрастать до выпадения генератора из синхронизма. Такой характер нарушения устойчивости называется динамическим.

Основной причиной динамических нарушений устойчивости энергосистем являются короткие замыкания, приводящие к резким изменениям электромагнитных моментов синхронных машин.



Поделиться