Способы получения передачи и использования электрической энергии. Производство, передача и потребление электрической энергии

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

Видеоурок 2: Задачи на переменный ток

Лекция: Переменный ток. Производство, передача и потребление электрической энергии

Переменный ток

Переменный ток - это колебания, которые могут происходить в цепи в результате подключения её к источнику переменного напряжения.

Всех нас окружает именно переменный ток - он имеется во всех цепях в квартирах, передача по проводам происходит именно тока переменного напряжения. Однако, практически все электроприборы работают от постоянно электричества. Именно поэтому на выходе из розетки ток выпрямляется и в виде постоянного переходит к бытовой технике.


Именно переменный ток проще всего получить и передать на любое расстояние.


При изучении переменного тока мы воспользуемся цепью, в которую будем подключать резистор, катушку и конденсатор. В данной цепи напряжение определяется по закону :

Как мы знаем, синус может быть отрицательным и положительным. Именно поэтому значение напряжения может принимать различное направление. При положительном направлении течения тока (против часовой стрелки) напряжение больше нуля, при отрицательном направлении - меньше нуля.


Резистор в цепи


Итак, давайте рассмотрим случай, когда в цепь с переменным током подключен только резистор. Сопротивление резистора называется активным. Будем рассматривать ток, который течет по цепи против часовой стрелки. В таком случае и ток, и напряжение будут иметь положительное значение.


Для определения силы тока в цепи используют следующую формулу из закона Ома :


В этих формулах I 0 и U 0 - максимальные значения тока и напряжения. Отсюда можно сделать вывод, что максимальное значение тока равно отношению максимального напряжения к активному сопротивлению:

Эти две величины изменяются в одинаковой фазе, поэтому графики величин имеют одинаковый вид, но разные амплитуды.


Конденсатор в цепи


Запомните! Невозможно получить постоянный ток в той цепи, где есть конденсатор. Он является местом для разрыва протекания тока и изменение его амплитуды. При этом переменный ток отлично течет по такой цепи, изменяя полярность конденсатора.


При рассматривании такой цепи будем предполагать, что в ней имеется исключительно конденсатор. Ток течет против часовой стрелки, то есть является положительным.


Как нам уже известно, напряжение на конденсаторе связано с его возможностью накопления заряда, то есть его величиной и ёмкостью.

Так как ток является первой производной от заряда, то можно определить, по какой формуле его можно вычислить, найдя производную с последней формулы:

Как можно заметить, в данном случае сила тока описывается законом косинуса в то время, как значение напряжения и заряда можно описать законом синуса. Это значит, что функции находятся в противоположной фазе и имеют аналогичный вид на графике.


Все мы знаем, что функции косинуса и синуса одинакового аргумента отличаются на 90 градусов друг от друга, поэтому можно получить следующие выражения:

Отсюда максимальное значение силы тока можно определить по формуле:

Величина в знаменателе - это и есть сопротивление на конденсаторе. Данное сопротивление называется емкостным. Находится и обозначается оно следующим образом:


При увеличении емкостного сопротивления, амплитудное значение тока падает.


Обратите внимание, в данной цепи использование закона Ома уместно только в том случае, когда необходимо определить максимальное значение тока, определить ток в любой момент времени по данному закону нельзя из-за разности фаз напряжения и силы тока.


Катушка в цепи


Рассмотрим цепь, в которой имеется катушка. Представим, что она не имеет активного сопротивления. В таком случае, казалось бы, ничего не должно препятствовать движению тока. Однако это не так. Все дело в том, что при прохождении тока через катушку начинает возникать вихревое поле, которое препятствует прохождению тока в результате образования тока самоиндукции.


Сила тока принимает следующее значение:

Снова можно заметить, что ток изменяется по закону косинуса, поэтому для данной цепи справедлив сдвиг фаз, который можно заметить и на графике:


Отсюда максимальное значение тока:

В знаменателе можем увидеть формулу, по которой определяется индуктивное сопротивление цепи.

Чем больше индуктивное сопротивление, тем меньшее значение имеет амплитуда тока.


Катушка, сопротивление и конденсатор в цепи.


Если в цепи одновременно присутствуют все виды сопротивлений, то определить значение величины тока можно следующим образом, преобразив закон Ома :

Знаменатель называется полным сопротивлением. Он состоит из суммы квадратов активного (R) и реактивного сопротивления, состоящего из емкостного и индуктивного. Полное сопротивление носит название "Импеданс".


Электроэнергия


Нельзя представить современную жизнь без использования электрических приборов, которые работают за счет энергии, которую происходит электрический ток. Весь технический прогресс основывается на электричестве.


Получение энергии из электрического тока имеет огромный ряд преимуществ:


1. Электрический ток достаточно просто производится, поскольку во всем мире существуют миллиарды электростанций, генераторов и прочих приспособлений для образования электроэнергии.


2. Передать электроэнергию можно на огромные расстояния за короткие сроки и без значительных потерь.


3. Имеется возможность преобразовывать электрическую энергию в механическую, световую, внутреннюю и другие виды.




по физике

на тему «Производство, передача и использование электроэнергии»

ученицы 11 класса А

МОУ школы № 85

Екатерины.

План реферата.

Введение.

1. Производство электроэнергии.

1. типы электростанций.

2. альтернативные источники энергии.

2. Передача электроэнергии.

    трансформаторы.

3. Использование электроэнергии.

Введение.

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.

Производство электроэнергии.

Типы электростанций.

Тепловая электростанция (ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС - основной вид элек­трической станций.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловые электрические стан­ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро­станций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рисунке. Уголь подается в топливный бункер 1, а из него - в дробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением 3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсацион­ные электростанции име­ют невысокий кпд (30- 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значи­тельном расстоянии от стан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя­тий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей - про­мышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Значительно меньшее распространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с темпера­турой 750-900 ºС поступают в газо­вую турбину, вращающую электрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическая энергия струй пара пере­дается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС - весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятков дисков с рабочими лопат­ками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики из­вестно, что КПД тепловых двига­телей увеличивается с ростом на­чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Напор ГЭС создается концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и дери­вацией совместно. Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления - пульт оператора-диспетчера или автооператор гидро­электростанции. Повышающая транс­форматорная подстанция размещается как внутри здания ГЭС, так и в отдельных зда­ниях или на открытых площадках. Рас­пределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтаж­ная площадка для сборки и ремонта раз­личного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в МВт) различают ГЭС мощные (св. 250), сред­ние (до 25) и малые (до 5). Мощность ГЭС зависит от напора (разности уровней верхнего и нижнего бьефа), расхода воды, используемого в гидротурбинах, и кпд гидроагрегата. По ряду причин (вследствие, например, сезонных изменений уровня воды в во­доёмах, непостоянства нагрузки энерго­системы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а, кроме того, меняется расход при регули­ровании мощности ГЭС. Различают го­дичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напо­ру ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко пре­вышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью дерива­ции - до 1500 м. Подразделение ГЭС по используемому напору имеет при­близительный, условный характер.

По схеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­но подразделяют на русловые , приплотинные , деривационные с напорной и без­напорной деривацией, смешанные, гидроаккумулирующие и приливные .

В русловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. Русловые и приплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах. Для русловых ГЭС характерны напоры до 30-40 м.

При более высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за пло­тиной, примыкает к нижнему бьефу.

Другой вид компоновки приплотинная ГЭС соответствует горным усло­виям при сравнительно малых рас­ходах реки.

Страница 1

Введение.

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.

Производство электроэнергии.

Типы электростанций.

Тепловая электростанция(ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС - основной вид элек­трической станций.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловые электрические стан­ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро­станций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рисунке. Уголь подается в топливный бункер 1, а из него - в дробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением 3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсацион­ные электростанции име­ют невысокий кпд (30- 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значи­тельном расстоянии от стан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя­тий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей - про­мышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Значительно меньшее распространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с темпера­турой 750-900 ºС поступают в газо­вую турбину, вращающую электрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическая энергия струй пара пере­дается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС - весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятков дисков с рабочими лопат­ками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики из­вестно, что КПД тепловых двига­телей увеличивается с ростом на­чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОЭНЕРГИИ В РАЗЛИЧНЫХ ОБЛАСТЯХ НАУКИ
И ВЛИЯНИЕ НАУКИ НА ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОЭНЕРГИИ В ЖИЗНИ

ХХ век стал веком, когда наука вторгается во все сферы жизни общества: экономику, политику, культуру, образование и т.д. Естественно, что наука непосредственно влияет на развитие энергетики и сферу применения электроэнергии. С одной стороны наука способствует расширению сферы применения электрической энергии и тем самым увеличивает ее потребление, но с другой стороны в эпоху, когда неограниченное использование невозобновляемых энергетических ресурсов несет опасность для будущих поколений, актуальными задачами науки становятся задачи разработки энергосберегающих технологий и внедрение их в жизнь.

Рассмотрим эти вопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валового продукта) развитых стран достигается за счет технических инноваций, основная часть которых связана с использованием электроэнергии. Все новое в промышленность, сельское хозяйство и быт приходит к нам благодаря новым разработкам в различных отраслях науки.

Большая часть научных разработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчеты производились с помощью пера и бумаги, то в век НТР (научно-технической революции) все теоретические расчеты, отбор и анализ научных данных и даже лингвистический разбор литературных произведений делаются с помощью ЭВМ (электронно-вычислительных машин), которые работают на электрической энергии, наиболее удобной для передачи ее на расстояние и использования. Но если первоначально ЭВМ использовались для научных расчетов, то теперь из науки компьютеры пришли в жизнь.

Сейчас они используются во всех сферах деятельности человека: для записи и хранения информации, создания архивов, подготовки и редактирования текстов, выполнения чертежных и графических работ, автоматизации производства и сельского хозяйства. Электронизация и автоматизация производства - важнейшие последствия «второй промышленной» или «микроэлектронной» революции в экономике развитых стран. С микроэлектроникой непосредственно связано и развитие комплексной автоматизации, качественно новый этап которой начался после изобретения в 1971 году микропроцессора - микроэлектронного логического устройства, встраиваемого в различные устройства для управления их работой.

Микропроцессоры ускорили рост робототехники. Большинство применяемых ныне роботов относится к так называемому первому поколению и применяются при сварке, резании, прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второго поколения оборудованы устройствами для распознавания окружающей среды. А роботы-«интеллектуалы» третьего поколения будут «видеть», «чувствовать», «слышать». Ученые и инженеры среди наиболее приоритетных сфер применения роботов называют атомную энергетику, освоение космического пространства, транспорта, торговлю, складское хозяйство, медицинское обслуживание, переработку отходов, освоение богатств океанического дна. Основная часть роботов работают на электрической энергии, но увеличение потребления электроэнергии роботами компенсируется снижением энергозатрат во многих энергоемких производственных процессах за счет внедрения более рациональных методов и новых энергосберегающих технологических процессов.

Но вернемся к науке. Все новые теоретические разработки после расчетов на ЭВМ проверяются экспериментально. И, как правило, на этом этапе исследования проводятся с помощью физических измерений, химических анализов и т.д. Здесь инструменты научных исследований многообразны - многочисленные измерительные приборы, ускорители, электронные микроскопы, магниторезонансные томографы и т.д. Основная часть этих инструментов экспериментальной науки работают на электрической энергии.

Но наука не только использует электроэнергию в своей теоретической и экспериментальной областях, научные идеи постоянно возникают в традиционной области физики, связанной с получением и передачей электроэнергии. Ученые, например, пытаются создать электрические генераторы без вращающихся частей. В обычных электродвигателях к ротору приходится подводить постоянный ток, чтобы возникла «магнитная сила». К электромагниту, «работающему ротором» (скорость его вращения достигает трех тысяч оборотов в минуту) электрический ток приходится подводить через проводящие угольные щетки и кольца, которые трутся друг о друга и легко изнашиваются. У физиков родилась мысль заменить ротор струей раскаленных газов, плазменной струей, в которой много свободных электронов и ионов. Если пропустить такую струю между полюсами сильного магнита, то по закону электромагнитной индукции в ней возникнет электрический ток - ведь струя движется. Электроды, с помощью которых должен выводится ток из раскаленной струи, могут быть неподвижными, в отличие от угольных щеток обычных электрических установок. Новый тип электрической машины получил название магнитогидродинамического генератора.

В середине ХХ столетия ученые создали оригинальный электрохимический генератор, получивший название топливного элемента. К электродным пластинкам топливного элемента подводится два газа - водород и кислород. На платиновых электродах газы отдают электроны во внешнюю электрическую цепь, становятся ионами и, соединяясь, превращаются в воду. Из газового топлива получается сразу и электроэнергия и вода. Удобный, бесшумный и чистый источник тока для дальних путешествий, например в космос, где особенно нужны оба продукта топливного элемента.

Другой оригинальный способ получения электроэнергии, получивший распространение в последнее время, заключается в преобразовании солнечной энергии в электрическую «напрямую» - с помощью фотоэлектрических установок (солнечных батарей). С ними связано появление «солнечных домов», «солнечных теплиц», «солнечных ферм». Такие солнечные батареи используются и в космосе для обеспечения электроэнергией космических кораблей и станций.

Очень бурно развивается наука в области средств связи и коммуникаций. Спутниковая связь используется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, например волоконная техника, позволяют значительно снизить потери электроэнергии в процессе передачи сигналов на большие расстояния.

Не обошла наука и сферу управления. По мере развития НТР, расширения производственной и непроизводственной сфер деятельности человека, все более важную роль в повышении их эффективности начинает играть управление. Из своего рода искусства, еще недавно основывавшегося на опыте и интуиции, управление в наши дни превратилось в науку. Наука об управлении, об общих законах получения, хранения, передачи и переработки информации называется кибернетикой. Этот термин происходит от греческих слов «рулевой», «кормчий». Он встречается в трудах древнегреческих философов. Однако новое рождение его произошло фактически в 1948 году, после выхода книги американского ученого Норберта Винера «Кибернетика».

До начала «кибернетической» революции существовала только бумажная Информатика, основным средством восприятия которой оставался человеческий мозг, и которая не использовала электроэнергию. «Кибернетическая» революция породила принципиально иную - машинную информатику, соответствующую гигантски возросшим потокам информации, источником энергии для которой служит электроэнергия. Созданы совершенно новые средства получения информации, ее накопления, обработки и передачи, в совокупности образующие сложную информационную структуру. Она включает АСУ (автоматизированные системы управления), информационные банки данных, автоматизированные информационные базы, вычислительные центры, видеотерминалы, копировальные и фототелеграфные аппараты, общегосударственные информационные системы, системы спутниковой и скоростной волокнисто-оптической связи - все это неограниченно расширило сферу использования электроэнергии.

Многие ученые считают, что в данном случае речь идет о новой «информационной» цивилизации, приходящей на смену традиционной организации общества индустриального типа. Такая специализация характеризуется следующими важными признаками:

· широким распространением информационной технологии в материальном и нематериальном производстве, в области науки, образования, здравоохранения и т.д.;

· наличием широкой сети различных банков данных, в том числе общественного пользования;

· превращение информации в один из важнейших факторов экономического, национального и личного развития;

· свободной циркуляцией информации в обществе.

Такой переход от индустриального общества к «информационной цивилизации» стал возможен во многом благодаря развитию энергетики и обеспечению удобным в передаче и применении видом энергии - электрической энергией.

ЭЛЕКТРОЭНЕРГИЯ В ПРОИЗВОДСТВЕ

Современное общество невозможно представить без электрификации производственной деятельности. Уже в конце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось в виде электрической энергии. К началу следующего века эта доля может увеличиться до 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом ее потребления в промышленности. Основная часть промышленных предприятий работает на электрической энергии. Высокое потребление электроэнергии характерно для таких энергоемких отраслей, как металлургия, алюминиевая и машиностроительная промышленность.

При этом встает проблема эффективного использования этой энергии. При передаче электроэнергии на большие расстояния, от производителя до потребителя, потери на тепло вдоль линии передачи растут пропорционально квадрату тока, т.е. если ток удваивается, то тепловые потери увеличиваются в 4 раза. Поэтому, желательно, чтобы ток в линиях был мал. Для этого повышают напряжение на линии передач. Электроэнергия передается по линиям, где напряжение достигает сотен тысяч вольт. Возле городов, получающих энергию от линий передач, это напряжение с помощью понижающего трансформатора доводят до нескольких тысяч вольт. В самом же городе на подстанциях напряжение понижается до 220 вольт.

Наша страна занимает большую территорию, почти 12 часовых поясов. А это значит, что если в одних регионах потребление электроэнергии максимально, то в других уже окончен рабочий день и потребление снижается. Для рационального использования электроэнергии вырабатываемой электростанциями, они объединены в электроэнергетические системы отдельных районов: европейской части, Сибири, Урала, Дальнего Востока и др. Такое объединение позволяет эффективней использовать электроэнергию согласовывая работу отдельных электростанций. Сейчас различные энергосистемы объединены в единую энергетическую систему России.

Следующая возможность эффективного использования - снижение энергозатрат электроэнергии с помощью энергосберегающих технологий и современного оборудования, потребляющего минимальное ее количество. Таким примером может служить сталеплавильное производство. Если в 60-е годы основным методом выплавки стали был мартеновский способ (72% всей выплавки), то в 90-е годы эта технология выплавки заменена более эффективными методами: кислородно-конверторным и электросталеплавильным.

ЛИТЕРАТУРА:

1. Колтун М. Мир физики: Научно-художественная лит-ра. - М.: Дет. лит., 1984.- 271с.

2. Максаковский В.П. Географическая картина мира. Ч.1. Общая характеристика мира. - Ярославль: Верх.-Волж. кн. изд-во, 1995.- 320с.

3. Эллион Л., Уилконс У. Физика. - М.: Наука, 1967.- 808с.

4. Энциклопедический словарь юного физика /Сост. В.А. Чуянов. - М.: Педагогика, 1984.- 352с.



Поделиться