Таблица коррозионной стойкости металлов. Устойчивость металлов к коррозии

Коррозионная стойкость — способность материалов сопротивляться коррозии, определяющаяся скоростью коррозии в данных условиях.

Для оценки скорости коррозии используются как качественные, так и количественные характеристики. Изменение внешнего вида поверхности металла, изменение его микроструктуры являются примерами качественной оценки скорости коррозии.

Для количественной оценки можно использовать:

  • число коррозионных очагов, образовавшихся за определённый промежуток времени;
  • время, истекшее до появления первого коррозионного очага;
  • изменение массы металла на единице поверхности в единицу времени;
  • уменьшение толщины материала в единицу времени;
  • плотность тока, соответствующая скорости данного коррозионного процесса;
  • объём газа, выделившегося (или поглощённого) в ходе коррозии единицы поверхности за единицу времени;
  • изменение какого-либо свойства за определённое время коррозии (например, электросопротивления, отражательной способности материала, механических свойств)

Разные материалы имеют различную коррозионную стойкость, для повышения которой используются специальные методы. Повышение коррозионной стойкости возможно при помощи легирования (например, нержавеющие стали), нанесением защитных покрытий (хромирование, никелирование, алитирование, цинкование, окраска изделий), пассивацией и др. Устойчивость материалов к воздействию коррозии, характерной для морских условий, исследуется в камерах солевого тумана.

Наиболее лёгкой формой коррозионного воздействия является изменение цвета и потеря блеска, что в принципе мало заметно издалека. При помощи санации поверхности обычно можно вернуть стали прежний привлекательный вид.

Оспенная коррозия

Оспенная коррозия (питтинговая коррозия) — это вид коррозионного воздействия, вызываемого хлоридами.

Обычно сначала появляются маленькие точки тёмно-рыжего цвета и лишь в очень сложных случаях они могут разрастаться до такой степени, что коррозия переходит в новую стадию, сплошную поверхностную коррозию. Риск возникновения коррозии усиливается, если на поверхности после сваривания остаются инородные материалы (лак и т.п.), если на поверхность попадают частицы другого корродировавшего металла, если после термообработки не был удалён цвет побежалости.

Коррозионное растрескивание

Коррозионное растрескивание — это разрушение металла вследствие возникновения и развития трещин при одновременном воздействии растягивающих напряжений и коррозионной среды. Оно характеризуется почти полным отсутствием пластической деформации металла.

Такой вид коррозии появляется в средах с повышенным содержанием хлоридов, например, в бассейнах.

Щелевая коррозия

Щелевая коррозия — возникает в местах стыка, обусловленных конструктивными или эксплуатационными требованиями.

На степень коррозионного воздействия будет оказывать влияние геометрия стыка и тип соприкасающихся материалов. Наиболее опасны узкие стыки с малыми зазорами и соединение стали с пластиками. Если же избежать стыков не возможно, то рекомендуем использовать нержавеющие стали, легированные молибденом.

Межкристаллитная коррозия

Межкристаллитная коррозия — этот вид коррозии возникает в настоящее время на сталях после сенсибилизации в сочетании с использованием в кислых средах.

Во время сенсибилизации выделяются карбиды хрома, которые накапливаются по границам зёрен. Соответственно возникают области с пониженным содержанием хрома и более подверженные коррозии. Подобное происходит, например, во время сваривания в зоне теплового воздействия.

Все аустенитные стали обладают стойкостью к межкристаллитной коррозии. Их можно подвергать свариванию (лист до 6 мм, пруток до 40 мм) без риска возникновения МКК.

Биметаллическая или гальваническая коррозия

Биметаллическая коррозия — возникает при работе биметаллического коррозионного элемента, т.е. гальванического элемента, в котором электроды состоят из разных материалов.

Очень часто необходимо использовать неоднородные материалы, чьё сопряжение при определённых условиях может приводить к коррозии. При сопряжении двух металлов биметаллическая коррозия имеет гальваническое происхождение. При этом виде коррозии страдает менее легированный металл, который в обычных условиях, не находясь в контакте с более легированным металлом, не подвержен коррозии. Следствием биметаллической коррозии является как минимум изменение цвета и, например, потеря герметичности трубопроводов или отказ крепежа. В конечном итоге указанные проблемы могут приводить к резкому сокращению срока службы строения и необходимости преждевременного капитального ремонта. В случае с нержавеющими сталями биметаллической коррозии подвергается сопрягаемый с ними менее легированный металл.

Оценка коррозионной стойкости

Для характеристики коррозионных свойств материалов обычно проводят их испытания на стойкость против общей коррозии, межкристаллитной коррозии и коррозионного растрескивания .

Испытания на общую коррозию. Испытания на общую коррозию проводят на образцах с большим отношением поверхности к объему. Коррозионную среду выбирают с учетом условий эксплуатации материала. Испытания проводят в жидкости при постоянном или многократно повторяемом переменном погружении образцов, в кипящем соляном растворе, в парах или окружающей атмосфере.

Скорость коррозии металлов и сплавов характеризуется глубинным показателем коррозии h K , мм/год – табл. 2 или потерей массы g K , г/(м 2 ∙ч) – табл. 3.

Пересчет обоих показателей проводят по формуле:

h K = 8,76 g K / ρ, (1)

где h K – скорость коррозии, мм/год;

ρплотность, г/см 3 ;

g K потеря массы образца, г/(м 2 ч).

Характеристики h K и g K предполагают равномерную коррозию и обычно представляют усредненную по поверхности скорость коррозии. Вместе с тем известно, что локальные виды коррозии наиболее опасны. При сравнительно небольшой общей потере массы металла происходит сильное локальное разрушение конструкции, а это приводит к преждевременному выходу оборудования из строя.

Таблица 2

Десятибалльная шкала коррозионной стойкости металлов по глубине коррозии

Балл коррозионной стойкости Скорость коррозии h K , мм/год Группа стойкости
≤ 0,001 Совершенно стойкие
(> 0,001) – 0,005 Весьма стойкие
(> 0,005) – 0,01 Весьма стойкие
(> 0,01) – 0,05 Стойкие
(> 0,05) – 0,1 Стойкие
(> 0,1) – 0,5 Понижено стойкие
(> 0,5) – 1,0 Понижено стойкие
(> 1,0) – 5,0 Малостойкие
(> 5,0) – 10,0 Малостойкие
> 10,0 Нестойкие

Таблица 3.

Десятибалльная шкала коррозионной стойкости по скорости коррозии образца

Балл кор. стойкости Группа стойкости Потеря массы, g K , г/(м 2 ∙ч)
Черные металлы Медь и сплавы Никель и сплавы Свинец и сплавы Алюминий и сплавы Магний и сплавы
Совершенно стойкие <0,0009 <0,001 <0,001 <0,0012 <0,0003 <0,0002
Весьма стойкие 0,0009-0,0045 0,001-0,0051 0,001-0,005 0,0012-0,0065 0,0003-0,0015 0,0002-0,001
Весьма стойкие (>0,0045)-0,009 (>0,0051)-0,01 (>0,005)-0,01 (>0,0065)-0,012 (>0,0015)-0,003 (>0,001)-0,002
Стойкие 0,009-0,045 0,01-0,051 0,01-0,05 0,012-0,065 0,003-0,015 0,002-0,01
Стойкие (>0,045)-0,09 (>0,051)-0,1 (>0,05)-0,1 (>0,065)-0,12 (>0,015)-0,03 (>0,01)-0,02
Понижено стойкие (>0,09)-0,45 (>0,1)-0,5 (>0,1)-0,5 (>0,12)-0,65 (>0,03)-0,15 (>0,02)-0,1
Понижено стойкие (>0,45)-0,9 (>0,5)-1,02 (>0,5)-1,0 (>0,65)-1,2 (>0,15)-0,31 (>0,1)-0,2
Малостойкие (>0,9)-4,5 (>1,02)-5,1 (>1,0)-5,0 (>1,2)-6,5 (>0,31)-1,54 (>0,2)-1,0
Малостойкие (>4,5)-9,1 (>5,1)-10,2 (>5,0)-10,0 (>6,5)-12,0 (>1,54)-3,1 (>1,0)-2,0
Нестойкие >9,1 >10,2 >10,0 >12,0 >3,1 >2,0

Поэтому необходима проверка коррозионной стойкости материалов в конкретных условиях эксплуатации, особенно в тех случаях, когда присутствует опасность локальной коррозии.

Испытания на межкристаллитную коррозию (ГОСТ 6032-84). Основной причиной межкристаллитной коррозии коррозионностойких материалов является нагрев при обработке давлением или сварке, приводящий к электрохимической гетерогенности между приграничными участками и объемом зерен.

Температурно-временная область выделения по границам зерен коррозионностойких сталей карбидов хрома приведена на рис. 4. Внутри нее находится область сенсибилизации – повышенной чувствительности к межкристаллитной коррозии. Склонность к межкристаллитной коррозии проявляется в температурном интервале Т max –T min за минимальное время τ min , в течение которого происходит сенсибилизация.

Рис. 4. Температурно-временная область склонности

коррозионностойкой аустенитной стали к межкристаллитной коррозии (МКК), связанной с обеднением границ зерен по хрому:

Т р – температура растворения карбидов; γ – аустенит;

К – карбиды

При испытаниях на МКК хромистые стали подвергают провоцирующему нагреву при температуре 1100 °С в течение 30 ч, а хромоникелевые аустенитные – при температуре около 700 °С в течение 60 ч. После нагрева образцы выдерживают в течение длительного времени в кипящем водном растворе серной или азотной кислоты. Выбор длительности выдержки и вида коррозионной среды зависит от конкретной марки стали и ее назначения. Для контроля склонности к МКК образцы либо изгибают на оправке на угол 90°, либо подвергают травлению специальными реактивами и металлографическому исследованию. Отсутствие трещин на поверхности образца свидетельствует о его стойкости к МКК.

На рис. 5 приведены микроструктуры стали 08Х18Н10 после испытаний на межкристаллитную коррозию в разных средах.

Рис.5. Микроструктура стали 08Х18Н10

после закалки с 1050 °С в воде и отпуска при 700 °С:

а – межкристаллитная коррозия при испытании

в растворе 25 %-ной HNO 3 + 40 г/л Сr 6+ , продолжительность 200 ч;

б – то же в растворе кипящей 65 %-ной HNO 3 + Сr 6+ , × 500

Испытания на коррозионное растрескивание . Этот вид испытаний проводят при нагружении образца в коррозионной среде, соответствующей служебным условиям эксплуатации детали. Среда не должна вызывать общей коррозии и оказывать воздействие на ненагруженные образцы металла. Для аустенитных хромоникелевых сталей примером такой среды может служить кипящий раствор смеси солей MgCl 2 , NaCl и NaNO. Агрессивность сред должна быть не меньше той, в которой должны служить испытуемые материалы.

Испытания на коррозионное растрескивание могут проводиться либо в условиях, вызывающих разрушение материалов (испытания на растяжение, на вязкость разрушения и усталость), либо путем определения времени появления первой трещины. Последний вид испытаний состоит в фиксации нагруженных образцов в специальных приспособлениях или с помощью создания напряжений клином в разрезанных кольцах. Время до появления трещин характеризует стойкость материалов против коррозионного растрескивания.

Контрольные вопросы\

1. Перечислите методы защиты металлов и сплавов от коррозии.

2. Чем определяется выбор метода защиты от коррозии?

3. Что такое легирование стали?

4. Что такое биметаллы?

5. Каким методом изготавливают биметаллы?

6. Что такое ингибиторы коррозии?

7. Каков механизм защиты металлов и сплавов от коррозии с помощью анодных ингибиторов?

8. Каков механизм защиты металлов и сплавов от коррозии с помощью катодных ингибиторов?

9. Каковы преимущества использования летучих ингибиторов?

10. Какая форма изделий является предпочтительной для замедления процессов коррозии?

11. Как влияет на скорость коррозии чистота обработки деталей?

12. Чем объясняется высокая коррозионная стойкость алюминия и его сплавов?

13. Назовите наиболее коррозионностойкие черные сплавы.

14. Назовите наиболее коррозионностойкие цветные сплавы.

15. Чем определяется выбор вида коррозионной защиты?

16. Какие виды коррозии исследуют при проведении испытаний на коррозионную стойкость?

17. В какой коррозионной среде проводят испытания на общую коррозию?

18. Какими показателями характеризуется скорость коррозии металлов и сплавов?

19. Какова размерность глубинного показателя коррозии?

20. Какова размерность потери массы образца при коррозии?

21. Какой скоростью коррозии характеризуются материалы, относящиеся к совершенно стойким?

22. Какой скоростью коррозии характеризуются материалы, относящиеся к весьма стойким?

23. Какой скоростью коррозии характеризуются материалы, относящиеся к стойким?

24. Какой скоростью коррозии характеризуются материалы, относящиеся к малостойким?

25. Какой скоростью коррозии характеризуются материалы, относящиеся к нестойким?

26. Какова потеря массы образца черного сплава, имеющего балл коррозионной стойкости 3?

27. Какова потеря массы образца медного сплава, имеющего балл коррозионной стойкости 7?

28. Какова потеря массы образца никелевого сплава, имеющего балл коррозионной стойкости 4?

29. Какова потеря массы образца свинцового сплава, имеющего балл коррозионной стойкости 5?

30. Какова потеря массы образца алюминиевого сплава, имеющего балл коррозионной стойкости 9?

31. Какова потеря массы образца магниевого сплава, имеющего балл коррозионной стойкости 10?

32. Что является основной причиной межкристаллитной коррозии?

33. Расшифруйте марку сплава 08Х18Н10.

34. В какой коррозионной среде проводят испытания на коррозионное растрескивание?

35. Как проводятся испытания на коррозионное растрескивание?

1. Основные понятия, термины и определения

Коррозионная стойкость - способность материала противостоять действию агрессивных сред (коррозии).

Коррозия (дт лат, corrosio - разъедание) - разрушение материалов вследствие химического или электрохимического взаимодействия со средой.

Строительные материалы, и в первую очередь их поверхности, в течение длительной эксплуатации разрушаются в основном в результате двух видов воздействия: коррозионного, связанного с влиянием на материал внешней, агрессивной среды и эрозионного, вызываемого механическим воздействием.

Эрозионное разрушение интенсивно протекает при относительно быст­
ром перемещении среды или материала. Особенно большой величины эрозия достигает при контакте материала с расплавами металлов и шлаков, а также с газообразными окислителями и пр.

Явления коррозии и эрозии часто сопутствуют друг другу, и поэтому их не всегда удается разделить. В строительном материаловедении эти явления рассматривают раздельно. Эрозионные процессы рассматриваются при изуче­нии эксплуатационных свойств покрытий полов, дорожных покрытии и пр.

2. Виды коррозии строительных материалов

Коррозия строительных материалов различается, по виду коррозионной среды, характеру разрушения и процессам, происходящим в них:

Коррозионная среда:

Газовая

Инертный газ;

Химически активный газ;

Жидкостная:

Кислотная;

Солевая;

Щелочная;

Морская;

в расплаве:

металлов;

силикатов;

2) характер разрушения:

Равномерное;

Неравномерное:

Избирательное;

Поверхностное;

Растрескивание;

Местное;

Межкристаллитное;

3) виды воздействий (процессов);

Химические;

Электрохимические;

Биологические;

Органогенные.

Виды коррозионной среды:

Газовая коррозия представляет собой коррозию в газовой среде при пол­ном отсутствии конденсации влаги на поверхности материала. Этому виду кор­розии подвержены материалы, работающие в условиях высоких температур в среде осушенного газа (керамика).

Газовая коррозия относится к химическим процессам разрушения. Скорость ее зависит; от природы материала, его структуры и свойств новообразований на его поверхности.

Жидкостная коррозия природных и искусственных каменных материа­лов, происходящая под действием растворов электролитов и неэлектролитов, а также различных расплавов, носит в основном химический характер, хотя в за­висимости от вида и свойств жидкости отличается рядом особенностей.

Важнейшей особенностью жидкостей является наличие в них сил межмолекулярного взаимодействия. Этим обусловлены два свойства жидкого состояния: молекулярное давление и связанное с ним поверхностное натяжение.


Поверхностное натяжение жидкости оказывает большое влияние на интенсивность разрушения материала, которое определяется также смачивающи­ми свойствами жидкости.

Характер разрушения:

Равномерная коррозия возникает в результате действия агрессивной среды при достаточной толщине изделия и равномерном распределении напряжений сжатия, изгиба или растяжения. Коррозия этого вида в отличие от других в значительно меньшей степени влияет на прочностные свойства материала.

Неравномерная, или местная коррозия (пятна, язвы, разводы) происходит при различной концентрации агрессивной среды на отдельных участках или неоднородности самого материала (его состава и структуры). Так в результате неравномерного распределения кристаллической и стекловидной фаз в керамическом материале коррозионное разрушение на его отдельных участках протекает с разной скоростью. При этом в стекловидной фазе процесс развивается значительно быстрее, чем в кристаллической. Наличие в материале неод­нородной пористости также способствует образованию в материале неравно­мерной коррозии.

Избирательная коррозия характерна для материалов, в которых один из компонентов при формировании структуры образует легко растворимые соединения. В период эксплуатации эти соединения могут переходить в раствор, об­разуя на поверхности материала так называемые «высолы».

Межкристаллитная коррозия возникает в результате разрушения мате­риала по границам зерен и быстро распространяется вглубь материала, резко снижая его свойства. Этот вид коррозии присущ некоторым обжиговым мате­риалам, при спекании которых образуются новые фазы, твердые растворы и пр. и, следовательно, границы раздела.

Коррозионное воздействие в общем случае может иметь два принципи­ально различных механизма: химическое взаимодействие и растворение.

Химическое взаимодействие сводится к реакции между средой и материалом с образованием новых соединений. При наличии в агрессивных средах примесей, а в материале - добавок химические реакции могут протекать между всеми элементами взаимодействия.

Поскольку каменные материалы являются диэлектриками и взаимодейст­вие их с агрессивной средой не сопровождается возникновением электрических токов, процесс разрушения материалов называют химической коррозией.

При воздействии агрессивных сред на металлы происходит электрохими­ческий процесс передачи электронов из слоя металла с более низким электри­ческим потенциалом слою с более высоким потенциалом и восстановление электроположительных ионов с последующим разрушением поверхностного слоя. Такой процесс разрушения принято называть электрохимической коррозией.

Биологическая коррозия - разрушение материала под непосредственным воздействием растительных и животных организмов, а также микроорганизмов.

1. Высшие растительные организмы (корневая система, стебли, листья, семена и пр.) в процессе жизнедеятельности продуцируют различные виды ве­ществ, большинство из которых по отношению к строительным материалам яв­ляются агрессивными.

2.Живыеорганизмы вызывают биоповреждения материалов как непо­средственно своим механическим воздействием (грызуны, птицы и пр.), так и продуктами своей жизнедеятельности.

3. Низшие растительные организмы и микроорганизмы (водоросли, лишай­ники, мхи, грибки, бактерии и пр.) разрушают поверхностные слои бетонов и создают условия для гниения конструкций из древесины.

Коррозию, возникающую в результате воздействия на строительные ма­териалы продуктов технологической переработки органических веществ как биогенного (фрукты, овощи, растительные масла, кровь, соки, жиры и пр.), так и небиогенного происхождения (нефть, уголь, сланцы, известняки-ракушечники, выхлопные газы, копоть и пр.), принято органогенной коррозией.

Коррозионная стойкость

Коррозионная стойкость - способность материалов сопротивляться коррозии , определяющаяся скоростью коррозии в данных условиях. Для оценки скорости коррозии используются как качественные, так и количественные характеристики. Изменение внешнего вида поверхности металла, изменение его микроструктуры являются примерами качественной оценки скорости коррозии. Для количественной оценки можно использовать:

  • время, истекшее до появления первого коррозионного очага;
  • число коррозионных очагов, образовавшихся за определённый промежуток времени;
  • уменьшение толщины материала в единицу времени;
  • изменение массы металла на единице поверхности в единицу времени;
  • объём газа, выделившегося (или поглощённого) в ходе коррозии единицы поверхности за единицу времени;
  • плотность тока, соответствующая скорости данного коррозионного процесса;
  • изменение какого-либо свойства за определённое время коррозии (например, электросопротивления , отражательной способности материала, механических свойств).

Разные материалы имеют различную коррозионную стойкость, для повышения которой используются специальные методы. Так, повышение коррозионной стойкости возможно при помощи легирования (например, нержавеющие стали), нанесением защитных покрытий (хромирование , никелирование , алитирование , цинкование , окраска изделий), пассивацией и др. Устойчивость материалов к воздействию коррозии, характерной для морских условий, исследуется в камерах солевого тумана .

Источники


Wikimedia Foundation . 2010 .

Смотреть что такое "Коррозионная стойкость" в других словарях:

    Коррозионная стойкость - способность металла сопротивляться коррозионному воздействию среды. Источник: snip id 5429: Руководство по проектированию и защите от коррозии подземных металлических сооружений связи Ко … Словарь-справочник терминов нормативно-технической документации

    Способность материалов сопротивляться коррозии. У металлов и сплавов определяется скоростью коррозии, т. е. массой материала, превращенной в продукты коррозии, с единицы поверхности в единицу времени, либо толщиной разрушенного слоя в мм в год.… … Большой Энциклопедический словарь

    коррозионная стойкость - Способность материала противостоять воздействию коррозионной среды без изменения своих свойств. Для металла это может быть местное поражение поверхности — питтинг или ржавление; для органических материалов — это образование волосных… … Справочник технического переводчика

    Способность материалов сопротивляться коррозии. У металлов и сплавов определяется скоростью коррозии, то есть массой материала, превращённого в продукты коррозии, с единицы поверхности в единицу времени, либо толщиной разрушенного слоя в… … Энциклопедический словарь

    Corrosion resistance Коррозионная стойкость. Способность материала противостоять воздействию коррозионной среды без изменения своих свойств. Для металла это может быть местное поражение поверхности питтинг или ржавление; для органических… … Словарь металлургических терминов

    КОРРОЗИОННАЯ СТОЙКОСТЬ - свойство материалов противостоять коррозии. Коррозионная стойкость определяется массой материала, превращаемой в продукты коррозии в единицу времени с единицы площади изделия, находящегося во взаимодействии с агрессивной средой, а также размером… … Металлургический словарь

    коррозионная стойкость - atsparumas korozijai statusas T sritis Standartizacija ir metrologija apibrėžtis Metalo gebėjimas priešintis korozinės aplinkos poveikiui. atitikmenys: angl. corrosion resistance vok. Korrosionswiderstand, m; Rostbeständigkeit, f; Rostsicherheit … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    коррозионная стойкость - korozinis atsparumas statusas T sritis chemija apibrėžtis Metalo atsparumas aplinkos medžiagų poveikiui. atitikmenys: angl. corrosion resistance rus. коррозионная стойкость … Chemijos terminų aiškinamasis žodynas

    коррозионная стойкость - способность материала, например, металлов и сплавов, противостоять коррозии в коррозионной среде; оценивается скоростью коррозии; Смотри также: Стойкость химическая стойкость релаксационная стойкость … Энциклопедический словарь по металлургии

    Металлов, способность металла или сплава сопротивляться коррозионному воздействию среды. К. с. определяется скоростью коррозии в данных условиях. Скорость коррозии характеризуется качественными и количественными показателями. К первым… … Большая советская энциклопедия

Книги

  • Коррозионная стойкость материалов в агрессивных средах химических производств , Г. Я. Воробьева. В книге обобщены данные о свойствах и коррозионной стойкости металлических и неметаллических материалов. В ней приводятся таблицы и диаграммы коррозионной стойкости металлов и сплавов,…
  • Коррозионная стойкость и защита от коррозии металлических, порошковых и композиционных материалов , Владимир Васильев. Настоящее пособие посвящено описанию коррозионной стойкости наиболее часто используемых в современной технике и технологии конструкционных материалов: железа, сталей, чугунов, алюминия,…

Cтраница 4


Коррозионную стойкость металлов при скорости коррозии 0 5 мм / год и выше оценивают по группам стойкости, а при скорости коррозии ниже 0 5 мм / год - по баллам.  


Однако коррозионная стойкость металлов существенно зависит от их термической обработки. Наиболее приемлемой температурой термообработки стали, содержащей 17 % хрома (марка XI7) является 760 - 7.0 С.  

Мерой коррозионной стойкости металлов и сплавов служит скорость коррозии в данной среде при данных условиях.  

Оценка коррозионной стойкости металлов при скорости коррозии 0 5 мм / год и выше производится по группам стойкости - а при скорости коррозии ниже 0 5 мм / год - по баллам.  

Оценка коррозионной стойкости металлов как по потере веса, так и по проницаемости применима только для равномерной коррозии. При неравномерной и местной коррозии эти показатели характеризуют только усредненную скорость коррозии, в то время как на отдельных участках скорость отличается от этого значения. Особенно трудно оценить коррозионную стойкость металлов при меж-кристаллитной коррозии. В этих случаях прибегают к определению механической прочности образцов до и после коррозии.  

Критерием коррозионной стойкости металла при атмосферных испытаниях наиболее часто служит изменение внешнего вида образцов, изменение их веса и механических характеристик. При оценке коррозионной стойкости металла или покрытия по изменению внешнего вида сравнение ведут по отношению к исходному состоянию поверхности, поэтому состояние последней перед испытанием должно быть тщательно зафиксировано. Для этого образцы осматривают невооруженным глазом, а некоторые участки - через бинокулярную лупу. При этом особое внимание обращают на дефекты: а) на основном металле (раковины, глубокие царапины, вмятины, окалина, ее состояние и пр. Результаты наблюдений записывают или фотографируют. Для облегчения наблюдений и точного фиксирования их результатов на осматриваемый образец накладывают проволочную сетку или прозрачную бумагу с нанесенной тушью сеткой. Первоначально за образцами наблюдают ежедневно для установления первых очагов коррозии. В дальнейшем осмотр повторяют через 1, 2, 3, 6, 9, 12, 24 и 36 мес. При наблюдении обращают внимание на следующие изменения: 1) потускнение металла или покрытия и изменение цвета; 2) образование продуктов коррозии металла или покрытия, цвет продуктов коррозии, их распределение на поверхности, прочность сцепления с металлом; 3) характер и размеры очагов коррозии основного, защищаемого металла. Для однообразия в описании производимых наблюдений рекомендуется употреблять одинаковые термины: потускнение, пленка и ржавчина. Термин потускнение применяют, когда слой продуктов очень тонкий, когда происходит только легкое изменение цвета поверхности образца, термин пленка употребляется для характеристики более толстых слоев продуктов коррозии и термин ржавчина - для толстых, легко заметных слоев продуктов коррозии. Характер слоев продуктов коррозии предлагается описывать терминами: очень гладкие, гладкие, средние, грубые, очень грубые, плотные и рыхлые.  

Мерой коррозионной стойкости металла служила величина максимального объема водорода, выделившегося за 3 суток испытаний с поверхности 1 дм2 при 20 2 С.  


Повышение коррозионной стойкости металла с увеличением концентрации такого сильно агрессивного электролита, как соляная кислота, вероятно, можно объяснить хемосорбционным взаимодействием компонентов пр с элементами сплава; видимо, большое значение имеют находящиеся в пр ненасыщенные соединения.  

Оценка коррозионной стойкости металлов при скорости коррозии 0 5 мм / год и выше производится по группам стойкости, а.  


Повышение коррозионной стойкости металла с увеличением концентрации такого сильно агрессивного электролита, как соляная кислота, вероятно, можно объяснить хемосорбционным взаимодействием компонентов пр с элементами сплава; видимо, большое значение имеют находящиеся Тв пр ненасыщенные соединения.  



Поделиться