Сварка ртм 1с испытуемое давление котельного оборудования. Подробные сведения по выбору и проведению термической обработки в основных международных стандартах

Повреждения трубной системы. Существуют четыре вида повреждений системы котла:

1. Увеличение диаметра труб – диаметр кипятильных и экранных труб увеличивается в результате их перегрева при нарушении циркуляции котловой воды или отложения на их внутренней поверхности накипи или шлама. При замедлении циркуляции воды, в трубе образуется паровой мешок. Коэффициент отдачи тепла от пара к стенке значительно ниже, чем от воды к стенке. При полном прекращении циркуляции воды труба разрывается. В змеевиках пароперегревателя диаметр может увеличиваться из-за засорения, уменьшения скорости движения пара, местного повышения температуры газов перед пароперегревателем, при нарушении топочного режима, отложений накипи при забрасывании воды в пароперегреватель.

2. Износ (истирание) стенок труб. При увеличенных скоростях запыленного газового потока (особенно при сжигании твердого топлива с высокой зольностью) стенки труб подвергаются абразивному истиранию и становятся тоньше. Наибольший износ происходит в местах увеличения скорости, изменения потока газов, в местах завихрений, в которых увеличивается концентрация золы, а также более интенсивно подвергаются износу креплению труб, манжет, крючков, хомутов, трубы экранов, огибающие амбразуры (горелок), через которые выходит с большой скоростью поток угольной пыли. Стенки труб изнашиваются также от струй пара из обдувочных аппаратов. Низкотемпературные поверхности нагрева (экономайзер, воздухоподогреватель) изнашиваются от воздействия дроби (отчистки). Для определения истирания используются ультразвуковые толщеномеры.

3. Коробление и изгиб труб и змеевиков. Процессе эксплуатации экранные трубы изгибаются и выступают из общего ряда. Причиной этого является зажатие камер нижних барабанов или отдельных труб при проходе через обмуровку из-за недостаточного зазора для термического расширения. Змеевики пароперегревателя коробятся с большей степенью, чем отдельные трубы. В следствии обгорания и обрыва подвесок, выпадения дистанционных гребенок (распорок между рядами)коробление змеевиков происходит также из-за неравномерного натяга при их установке. Змеевики труб экономайзера коробятся и выступают из общего ряда в меньшей степени, чем змеевики пароперегревателя. Причинами коробления могут быть недостаточная жесткость и смещение опор, обрывы подвесок.

4. Коррозионные разъедания поверхности труб. На наружной и внутренней поверхности труб в результате коррозионных процессов появляются оспенный, язвенный, и раковинный, которые могут превратиться в свищи. Наружное разъедание обнаруживают при осмотре труб после их отчистки от шлака. Чтобы проверить коррозии на внутренней поверхности, вырезают участки труб и сдают в металлолабораторию. Свищи в сварных швах обнаруживаются во время эксплуатации. При гидравлическом испытании перед ремонтом отмечают места течи. Главными причинами образования свищей являются дефекты сварки (трещины, непроварены, шлаковые включения, смещения труб).


Изготовление трубных элементов котла.

Устройство плаза. Для изготовления труб и змеевиков пользуются чертежом, на котором приведены длины прямых участков, радиусы, углы изгибов и другие данные, которые определяют форму и размеры элемента. Однако чертеж применяют при небольшом количестве изготавливаемых элементов. При изготовлении змеевиков сложной формы и большого количества значительных габаритов, используют плаз. Он представляет собой металлический лист, на котором вычерчены натуральные величины, изготавливаемых труб и змеевиков, а также элементы котла, к которым они крепятся. На плазу также привариваю планки, ограничивающие дуги, ограничители концевые, которые служат для точного направления труб при их укладывании на плаз и ограничении габаритов, изготавливаемых элементов. Для разметки трубы под гнутье, откладывают длину прямого участка, а затем длину гнутого участка, которая определяется по формуле L=0,0175∙α∙R, где α – угол изгиба в градусах, а R – радиус гнутья в миллиметрах. Если на трубе должно быть два гнутых участка, то откладывают их длины, затем длину прямого участка между ними.

Сборка и классиферка труб и змеевиков

Перед проверкой гнутых труб по чертежам и при вычерчивании труб на плазу, убеждаются в правильности расположения элементов котла, к которым крепятся трубы. Изготовленные и обрезанные трубы укладываются на плаз, подгоняют их углы загиба и длины до точного совпадения с размеченными линиями на плазу. Далее проверяют наружные диаметры и толщину стыкуемых труб. При наличии разницы более одного миллиметра, раздают конец трубы меньшего диаметра. Трубы, диаметром до 83 мм и толщиной стенки до 6мм (экранные трубы) можно раздавать холодным способом, если нужно увеличить диаметр не более, чем на 3%. В остальных случаях нагревом до 900°С. Разность толщин труб должна быть не более 15% от средней толщины труб, а при изготовлении труб пароперегревателей не более 5%. Расстояния от шва до начала закругления трубы берут не менее 50мм для котлов с давлением до 6Мпа и 70мм для котлов свыше 6Мпа. Расстояние между соседними стыками должно быть не менее 150мм. Окончив проверку на плазу, производят прихватку труб, а затем сварку всех участков. Сваренные трубные элементы устанавливают для проверки на плаз. Смещение стенок может быть не более 0,5мм. Отклонение осей труб не более 1мм в расстоянии или на длине 200мм.

Ремонт поверхностей нагрева на месте монтажа

Работы по устранению небольших повреждений элементов поверхностей нагрева производят на месте установки без их демонтажа. Покоробленные участки трубы подбивают и рихтуют на вторых участках. В тех случаях, когда смещение или прогиб труб меняет шаг или выводит их из плоскости ряда более, чем на 10мм, небольшие смещения или прогибы возмещают без нагрева. Места искривленных или значительно деформированных труб перед правкой нагревают до 1050°С. Трубы правят в интервале температур 1050-750°. При остывании больше нижнего предела, повторно нагревают. Подгибку углеродистых труб пароперегревателей при радиусе подгибки равным трем диаметрам трубы и более, можно производить как в горячем, так и в холодном состоянии. При подгибке на больший угол и размер, нагревают участок труб до 1100-1150°С, выдерживают при этой температуре не более одной минуты, затем медленно охлаждают. Нижний предел температуры не допускается ниже 950°С при подгибке. Иногда требуется раздвижка труб, которая осуществляется с помощью винтовых приспособлений. Рихтовку труб производят также с помощью реечного домкрата. Домкрат закрепляют на трубе, которая подвешивается на соседних исправных трубах. Труба на которой закрепляется домкрат входят проушины двух скоб, которые с помощью прутка закрепляются на трубы, не требующие рихтовки. При вращении рукоятки домкрата покоробленные трубы вводятся в общий ряд.

Замена поверхностей нагрева, которые нельзя отремонтировать, удаляют и заменяют новыми или отремонтированными. Их вырезают с помощью абразивных дисков. При разметке трубы для обрезки, соблюдают следующие условия:

1. В месте реза труба не должна иметь дефектов.

2. Должна быть обеспечена возможность заварки стыка с обеих сторон.

3. Расстояние сварного шва до изгиба трубы не менее 70мм, а между соседними сварными стыками - 150мм.

Особенности ремонта мембранных поверхностей.

Замену участка труб мембранной панели производят по следующей технологии: после определения длины заменяемого участка, по его углам плавника просверливают четыре отверстия диаметром 10мм. Общая длина вырезаемых участков должна быть не менее 500мм. Плавники разрезают вдоль дефектного участка. Вставку устанавливают с зазором между концами труб с одной стороны 1,5+/-0,5мм, с другой стороны – 1+/-0,5мм и закрепляют, стык с большим зазором сваривают в первую очередь. Также приводят стыковку, прихватку и сварку. В образовавшиеся технологические окна в районе стыков вваривают подогнанные пластины.

Гидравлические испытания

После установки труб, производят их гидравлические испытания. Для этого устанавливают заглушки, трубу или змеевик заполняют водой и гидравлическим насосом создают давление. Трубы на высокое давление 10-15МПа испытывают на давление 1,25*P раб. Трубы давление до 6Мпа испытывают двойным давлением. После испытания воду из труб удаляют продувкой сжатым воздухом.

Ремонт мембранных поверхностей нагрева →
  • -выработавшие свой ресурс или имеющие повреждения и дефекты, превышающие допустимые величины и не устраняемые ремонтом на месте установки, не обеспечивающие надежную работу котла до следующего ремонта, при котором возможна замена элементов;
  • -заглушенные, закороченные и восстановленные по другим временным схемам в период проведения текущих и неплановых ремонтов.

Независимо от способа замены трубных элементов (россыпью или блочным методом) соблюдают следующие общие технические требования.

Новые трубные элементы из легированной стали, а также их опоры, подвески, хомуты и другие детали креплений из жаростойких сталей, предназначенные для работы в зоне температур, превышающих 450 °С, перед установкой на место подвергаются стилоскопированию.

Все трубные элементы с котлостроительного или ремонтного завода, а также изготовленные в условиях производственной базы ремонтного предприятия и на ремонтной площадке электростанции и хранившиеся на складе, подлежат проверке в соответствии с техническими условиями на изготовление и поставку. Перед установкой их подвергают гидропрессовке, продувке сжатым воздухом и прогонке контрольным шаром.

Демонтаж заменяемых элементов начинают после закрепления других частей поверхности нагрева с тем, чтобы последние не нарушили своего проектного положения.

Дефектные участки вырезают по предварительной разметке. Разметку наносят на неповрежденное место на расстоянии 100 мм или более от зоны повреждения и не менее 50 мм от приваренной детали.

Трубы вырезают механическим способом. Огневая резка допускается в виде исключения в труднодоступных местах при условии последующего удаления грата из оставшихся нижних трубных элементов и тщательного контроля за их чистотой.

Огневая резка допускается также при одновременном удалении нижних частей труб.

Обрезку труб следует производить от начала гиба или от наружной поверхности барабана и коллектора, а также от края опоры для котлов с давлением до 6,0 МПа на расстоянии 50 мм, для котлов с давлением выше 6,0 МПа – на расстоянии не менее 70 мм.

Трубы, приваренные к штуцерам коллекторов и барабанов, обрезают по сварному шву.

Обработку торцов труб, стыковку, сварку и термическую обработку выполняют в соответствии с техническими условиями.

Установку новых элементов поверхностей нагрева выполняют с соблюдением требований, обеспечивающих возможность свободного их теплового расширения и удлинения на величину и в направлении, указанные в чертежах. Устанавливаемые новые блоки экранов и змеевиковых поверхностей нагрева не должны иметь отклонений от проектных размеров.

Установленные блоки экранов, конвективного и ширмового пароперегревателей и переходной зоны прямоточных котлов не должны иметь отклонений от проектных размеров, превышающих приведенные в табл. 9.3.

Таблица 9.3. Допуски при монтаже блоков экранов и пароперегревателей
Замеряемая величина Допускаемое отклонение, мм
Экраны
Разность высотных отметок торцов коллекторов по гидроуровню 2
Расстояние между осями коллекторов и осями соответствующих основных колонн каркаса котла 5
Расстояние между осями труб крайних змеевиков и колонн каркаса котла 5
Расстояние между осями крайних труб соседних блоков 2
Пароперегреватели
Расстояние между коллекторами в вертикальном и горизонтальном направлениях 5
Разность высот торцов коллекторов ширм по гидроуровню 3
Расстояние между ширмами (измеряется у нижнего конца) 20
Отклонение ширм от вертикали (измеряется по отвесу у нижнего конца) 10
Расстояние между осью коллектора ширмы и осями колонн каркаса котла 5

При массовой замене труб перед их установкой проверяют взаимное положение коллекторов, их высотные отметки, горизонтальность и привязку к барабану или основным элементам каркаса, устраняют смещения, превышающие допуски.

При установке экранных труб правильное их дистанционирование обеспечивают в необходимых случаях путем установки дистанционных планок шириной до 20 мм, располагая их по высоте в два-три пояса.

Расстояние между поясами до 6 м, высота планки, мм,

h = t – d – 1 ,

где: t – шаг трубы, мм;

d – диаметр труб, мм.

В местах прохода труб через обмуровку должна быть обеспечена свобода для температурных перемещений труб в соответствии с указаниями на чертежах. Эти места уплотняются листовым или шнуровым асбестом.

Стыковка труб с необходимой соосностью и обеспечением свободной усадки шва в процессе сварки обеспечивается применением специальных центровочных приспособлений. Прихватка и приварка сборочных и центровочных приспособлений к трубам не допускаются.

Перед установкой труб на место наружную поверхность концов труб, а также поверхность барабанов и коллекторов вокруг трубных отверстий на ширине не менее 20 мм и стенки трубных отверстий на всю глубину очищают от коррозии, накипи, шлама и других загрязнений.

При сварке монтажных стыков труб, монтируемых с предварительной холодной растяжкой, компенсирующей термическое удлинение труб, растяжку на величину, предусмотренную в чертежах, обеспечивают при помощи приспособлений, состоящих из хомутов или зажимов и стяжных винтов.

Простейшие и надежные способы строповки труб, змеевиков и трубных блоков приведены на рис. 9.15–9.19.

Рис. 9.15. Строповка отдельных труб: а – петлей при подъеме в горизонтальном положении; б – задвижным штыком при подъеме в горизонтальном положении; в – при подъеме в вертикальном положении

Рис. 9.16. Строповка пучка труб: а – универсальными стропами; б – двухпетельными стропами

Рис. 9.17. Строповка змеевика экономайзера: а – двухпетлевыми стропами; б – при помощи траверсы

Рис. 9.18. Строповка змеевика пароперегревателя

Рис. 9.19. Строповка блока змеевиков

Поверхности нагрева являются основной частью любого котла как по своему весу, так и по доле трудоемкости при изготовлении его на заводе.

Под поверхностями нагрева здесь понимаются трубные элементы, работающие под давлением и образующие поверхности нагрева пароперегревателя, водяного экономайзера, топочных экранов, а также водо- и пароперепускные трубы.

Применяемые материалы

Змеевики пароперегревателя и водяного экономайзера, как правило, изготавливаются из труб диаметром 25-38 мм, трубы экранов обычно имеют диаметр 60 мм, а водо- и пароперепускные трубы – диаметр 108-133 мм.

Марка применяемой стали и толщина стенки трубы зависят от тех параметров, при которых работает данная труба. Для труб экрана и змеевиков водяного экономайзера, а также водоопускных труб в подавляющем большинстве случаев применяют сталь 20, для изготовления змеевиков пароперегревателя и пароперепускных труб служат стали марок: 20, 12ХМФ, 12Х1МФ, 15ХМ, 12Х2МФСР, Х18Н9Т, Х18Н12Т и им подобные.

Трубы диаметром от 57 до 133 мм изготовляются горячекатаными. Трубы диаметром от 10 до 108 мм холоднотянутыми, холоднокатаными и теплокатаными. Горячекатаные трубы поставляются длиной не более 12 м, холоднокатаные и теплокатаные трубы могут быть длиной до 18 м.

Трубы внутри и снаружи защищается от коррозии на время транспортировки и хранения в течение 6 месяцев. Защитное покрытие не должно содержать масел.

Если контроль труб физическими методами выполнен в достаточном объеме, то гидравлическое испытание на заводе-изготовителе можно не производить, но и в этом случае завод гарантирует, что трубы выдержат необходимое давление.

Трубы поставляются партиями. Под партией труб понимаются трубы одной марки стали, одной плавки, одного размера, прошедшие термическую обработку в одинаковых условиях. Количество труб в одной партии – не более 200 штук. На каждом конце трубы диаметром 25 мм и более, толщиной стенки не менее 3 мм на расстоянии 200-300 мм от конца клеймом наносится маркировка: марка стали и номер партии. Концы труб диаметром до 133 мм плотно закрываются пластмассовыми колпачками.

Трубы поступают на котлостроительный завод в железнодорожных вагонах без специальной упаковки, кроме труб аустенитного класса, которые упаковываются в деревянные ящики.

Подготовка труб к производству

К надежности работы поверхностей нагрева предъявляются очень жесткие требования, так как любой случай нарушения их нормальной работы ведет к останову котла, что связано с большими материальными потерями, особенно на котлах большой мощности. Поэтому к качеству металла труб следует относиться очень требовательно. К сожалению, нередки случаи, когда на котлостроительных заводах или, что еще хуже в процессе эксплуатации выявляются дефекты труб металлургического характера. В связи с этим на всех крупных котельных заводах имеются цехи входного контроля труб перед запуском их в производство.

Входной контроль начинается с внешнего осмотра труб снаружи и изнутри. Трубы визуально контролируются по наружной поверхности с целью обнаружения глубоких рисок, вмятин, трещин, закатов, расслоения и тому подобного. Осмотру подвергается каждая труба по всей поверхности, изнутри трубы диаметром более 70мм осматриваются перископом.

Затем применяются неразрушающие методы контроля, такие как УЗД и магнитная дефектоскопия. Эти методы позволяют обнаружить как внутренние, так и поверхностные дефекты металла труб. Обязательной операцией входного контроля труб является — проверка марки стали труб. Для этого проводят стилоскопирование.

К операциям подготовки труб следует также отнести такие операции, как очистка труб от ржавчины и сортировка.

Достаточно часто на котельные заводы поступают трубы, имеющие значительную коррозию снаружи и изнутри. Для нормального хода дальнейшего производства трубы необходимо очистить от ржавчины. Коррозия снаружи и изнутри может быть удалена химическим путем (промывка кислотой). Однако такой способ удаления ржавчины требует организации сложного травильного хозяйства с кислотными и щелочными ваннами, промывкой труб и т.д., поэтому на котельных заводах этот метод не нашел своего применения.

Наружная ржавчина удаляется с труб на специальных станках, представляющих собой пару круглых вращающихся металлических щеток и рольганг для подачи труб. Снятая ржавчина отсасывается в приемник пыли. Иногда такой станок дополнительно оборудуется газопламенной горелкой, которая устанавливается до щеток. При нагреве трубы часть ржавчины отлетает, т.к. чистый металл и ржавчина имеют разные коэффициенты линейного расширения. Окончательная очистка трубы осуществляется металлическими щетками.

Наружная окалина хорошо может быть удалена пескоструйной обработкой труб, поэтому этот метод очистки труб от ржавчины находит все большее применение в различных установках.

Имеются установки, производящие очистку наружной поверхности труб с помощью иглофрез. Впервые такая установка появилась на ЗИО, далее на БиКЗ, БКЗ и других.
Труднее удалить внутреннюю ржавчину из труб. Для этой цели на некоторых заводах применяют ворошители. При ворошении часть ржавчины внутри трубы опадает, и она удаляется путем продувки труб сжатым воздухом. Пыль улавливается в приемник пыли. Конечно, этот метод далеко не совершенен, но он без помех позволяет вести изготовление трубных элементов. Следует иметь ввиду, что перед эксплуатацией трубные поверхности проходят на электростанции кислотную промывку для очистки внутренних полостей поверхностей нагрева котла.

Если трубы после очистки от ржавчины по каким-либо причинам не могут быть запущены в производство, то необходимо произвести пассивацию очищенных поверхностей для предотвращения коррозии.

В последнее время часть труб с трубопрокатных заводов поступает с защитной консервацией. Для возможности выполнения последующих технологических операций требуется удалить эту консервацию. В зависимости от состава защитной смазки она удаляется или теплой водой, или уайт-спиритом, если в ее составе присутствуют масла. Такая промывка труб производится вручную. Удаление консервации может быть осуществлено путем обжига труб в печи или газовыми горелками.

Следующей операцией подготовки труб является сортировка труб по длине, диаметру и толщине стенки. Для рационального раскроя труб необходима их сортировка по длине, так как при поставке труб всегда имеется определенный процент немерных труб. Около 5% труб в партии отличаются по длине на 150-200 мм. Это дает возможность экономичного подбора труб согласно данным раскроя, так как отходы при резке в размер оказываются минимальными.

На котлостроительных заводах сортировку труб осуществляют на механизированных линиях, на которых сортировка по длинам осуществляется автоматически.

Внутри каждой партии целесообразна сортировка труб по фактическим толщинам стенок. Затраты на эту трудоемкую операцию окупаются повышением качества сварного соединения. Простейший способ сортировки такого рода основан на замерах труб контрольными калибрами.

После проведения всех подготовительных операций технолог цеха делает раскрой змеевика или трубы, т.е. определяет расположение сварных стыков на детали и в соответствии с этим количество и конфигурацию отдельных деталей, из которых в дальнейшем будет сварен змеевик или труба.

При составлении раскроя должны учитываться следующие требования:
1. Число сварных стыков должно быть наименьшим, а длина стыкуемых труб по возможности наибольшей. Поэтому желательно получить с трубопрокатных заводов трубы большей длины.
2. Запрещается располагать сварные стыки на гибах труб и в местах приварки к ним каких-либо деталей.
3. Сварные стыки должны быть доступны для ремонта на электростанциях.
4. От начала гиба до стыка должен быть прямой участок не менее 250 мм при контактной сварке и не менее 50 мм (но не менее диаметра трубы) при ручной сварке.
5. Раскрой должен обеспечить минимальные отходы труб.
6. При разработке процесса раскроя следует стремиться к возможно большему количеству одинаковых деталей (см. рис.).

Котельные заводы определяют одно или несколько значений длин труб, которые удовлетворяют перечисленным выше требованиям, и заказывают мерные трубы именно таких длин.

Технолог при определении длины заготовки детали должен иметь ввиду, что трубы при гибке удлиняются.

Развертка сложно-изогнутой трубы (змеевика) (см. рис.) подсчитывается по длине нейтральной линии, т.е. по оси трубы. Эта длина для змеевика на рис. Состоит из длин трех прямых участков l 1 +l 2 +l 3 , трех изогнутых на 180° участков и одного неполного, изогнутого на угол α участка. Длина развертки изогнутого участка равна S=(2πrα)/360, (при α=180°, S=πr). Определение развертки входит составной частью в операцию, называемую раскроем труб.

Раскрой производят следующим образом. На миллиметровой бумаге вычерчивают в виде прямой линии всю длину трубного элемента и отмечают на этой схеме положение сварных стыков, границ гибов и приварки деталей. Согласно полученной схеме раскроя определяют соответствующие длины труб и нумеруют заготовки порядковыми номерами. Длину труб назначают с учетом припуска под контактную сварку, т.е. учитывают, что в процессе оплавления труба укоротится. Длины трубных заготовок, подлежащих гибке, назначают с учетом вытяжки, тем самым учитывают, что заготовка в процессе операции гибки удлинится.

Таким образом, длина трубной заготовки отличается от длины трубы в составе трубного элемента на величину допуска под контактную сварку и на величину вытяжки при гибке. Длину трубной заготовки L з, мм, определяют по следующей формуле:
L з = L р + δ к + δ в, где L р развернутая длина по чертежу, δ к – припуск под контактную сварку; δ в – величина вытяжки.

За последние годы технология гибки труб усовершенствована настолько, что стало возможным производить их гибку без последующей обрезки концов трубы. Это позволило отказаться от операции резки гнутых труб и перейти на резку только прямых заготовок труб под гибку или контактную сварку.

Существует большое количество труборезных станков.

Оборудование для резки труб можно разделить на две большие группы:
1. Станки, при резке на которых обрезаемая труба вращается, а инструмент не имеет вращательного движения.
2. Станки, на которых труба при резке не вращается, а инструмент имеет вращательное движение с радиальной подачей.

Оборудование первой группы отличается шумом вращающейся трубы, быстрым износом при резке длинных труб даже с небольшой погнутостью, биением кривой трубы при вращении и связанной с этим опасностью для рабочего и окружающих.

Поэтому, безусловно, предпочтительнее оборудование, на котором труба при резке не вращается. Трудозатраты для второй группы станков на 3-5% меньше.

Обрезанные заготовки поступают на зачистку концов под контактную сварку в целях получения контактной поверхности, свободной от оксидов, механических и жировых загрязнений, обеспечивающей хороший электрический контакт трубы с губками сварочной машины. Длина зачистки зависит от конструкции губок контактно-сварочной машины и обычно составляет 200-250 мм.

Операция зачистки концов труб может быть выполнена несколькими способами:
1. Пескоструйной очисткой.
2. Зачисткой абразивными камнями.
3. Зачисткой иглофрезами.
4. Зачисткой непрерывной наждачной лентой.
5. Химической зачисткой.

В связи с появлением совершенных контактно-сварочных машин, оборудованных приборами для контроля качества сварки, требования к зачистке концов труб под сварку возросли: кроме зачистки снаружи на длине 250 мм, требуются зачистка внутренней поверхности трубы на длине 15-20 мм, а также зачистка торца трубы. Зачистка внутренней поверхности часто заменяется операцией зенкерования трубы.

Способы изготовления змеевиков и труб поверхностей нагрева

В котлостроении известно несколько различных способов изготовления элементов поверхностей нагрева.

Способ 1. Этот способ был преобладающим в 50-е годы. Предусматривалась резка заготовок труб, гибка всех деталей, зачистка их под сварку, сварка деталей в змеевик или трубу, плазировка, гидравлическое испытание и отделочные операции.

Гибка деталей была одной из первых операций, и все последующие операции (зачистка под сварку, сварка) производились на гнутых деталях.

Плаз представляет собой большую стальную или чугунную плиту, собранную из нескольких прямоугольных частей, соединенных на болтах. При изготовлении серии однотипных змеевиков применяют плазы, на которых вычерченный контур змеевика ограничивается по гибам и в средней части прямых участков вставленными в плаз гладкими штырями и для контроля контура целого змеевика после стыковой сварки.

Способ 2. Повышение параметров пара и применение в связи с этим высоколегированных труб для изготовления пароперегревателей вызвали необходимость разработки другого способа изготовления змеевиков, который первоначально использовался только при изготовлении змеевиков из нержавеющих сталей и стали 12Х2МФСР. При изготовлении змеевиков из этих сталей предыдущим способом, т.е. посредством контактной сварки заранее согнутых элементов, не удавалось удалить внутренний грат после сварки.

Поэтому начали сваривать между собой прямые заготовки в одну длинную плеть, и уже потом изгибать из нее змеевик, что позволило применить пневматический дорн с возвратно-поступательным движением для удаления внутреннего грата после сварки.

При такой «плетьевой» технологии операции резки, зачистки и сварки выполняют на прямых трубах, что позволяет их механизировать и даже автоматизировать (это «+»), но усложняется процесс гибки, так как приходится манипулировать с целым змеевиком и невозможна гибка с дорном («-«).

Ввиду явных преимуществ «плетьевой» технологии ее стали применять при изготовлении не только змеевиков из высоколегированных сталей, но и любых змеевиков и труб. На основе этой технологии разработаны механизированные линии изготовления змеевиков.

Изготовление змеевиков с использованием «плетьевой» технологии потребовало создания новых, специальных трубогибочных станков, исключающих кантовку змеевика при его гибке, поскольку гибка на обычных трубогибочных станках сопровождается многочисленными переворотами змеевика в процессе гибки.

Способ 3. В попытке использовать преимущества обоих рассмотренных способов был разработан третий способ изготовления змеевиков, при котором внутренний грат после сварки удаляется пневмодорном, а на гибке применяются обычные трубогибочные станки с использованием дорна и без кантовок змеевика.

В этом случае изгибают первую деталь змеевика и сваривают с прямой заготовкой, следующей по раскрою детали. Внутренний грат удаляют со стороны прямой заготовки пневмодорном. После сварки обе детали поступают на трубогибочный станок, где их изгибают с пристыкованной заготовкой.

По окончании гибки и проверки качества гибов узел вновь поступает на контактно-сварочную машину, где к нему приваривают следующую прямую заготовку. Теперь на гибку подается узел из трех сваренных деталей и производится гибка приваренной прямой заготовки. Таким образом изготовляется весь змеевик.

Минусы. Недостатком этого способа являются частые перевозки змеевика в процессе изготовления и нерациональное использование гибочного и сварочного оборудования, которое простаивает во время перевозок и выполнения операций на соседнем рабочем месте. В связи с эти производительность труда при изготовлении змеевиков данным способом ниже, чем первых двух.

Изготовление водо-пароперепускных и других труб также можно вести двумя технологическими вариантами:
1. Гибка элементов трубы и последующая их сварка в целую трубу.
2. Сварка трубы заготовки в плеть и последующая ее гибка.

В первом варианте операция гибки не представляет сложностей, поскольку гибке, как правило подвергается труба длиной 6-9 м и можно использовать дорн. На операции сварки гнутых элементов трубы следует тщательно следить за правильностью разворота ее отдельных частей.

Во втором варианте проще операция сварки, так как свариваются прямые трубы, но сложнее операция гибки, поскольку исключена гибка с дорном и приходится кантовать трубу длиной 12-16 м.

Современному уровню технологии котлостроения отвечают следующие технологические маршруты изготовления трубных элементов поверхностей нагрева и водо-пароперепускных труб:

I. Технологический маршрут изготовления змеевиков и труб из согнутых элементов

1. Входной контроль труб. Проверка сертификатов, очистка труб по всей наружной поверхности, снятие колпачков, осмотр и обмер труб, УЗД, стилоскопирование.

2. Разметка и резка труб (при резке по упору разметка не производится).

3. Подготовка концов труб под контактную сварку. Зачистка внутренней поверхности трубы на 15-20 мм от торца трубы. Зачистка наружной поверхности трубы на 250-300 мм от торца, если не производилась очистка трубы по всей наружной поверхности. Эти операции могут быть выполнены и после гибки трубы.

4. Гибка труб и контроль согнутых элементов.

5. Контактная сварка элементов змеевика или трубы. Удаление внутреннего и наружного грата после сварки.

6. Плазировка змеевика или трубы.

7. Сборка и сварка приварных деталей. Стилоскопирование.

8. Гидравлическое испытание и прогонка контрольного шара.

9. Сборка змеевиков в пакеты.

10. Окраска, маркировка и упаковка пакетов змеевиков.

II. Технологический маршрут изготовления змеевиков и труб по «плетьевой» технологии

1. Входной контроль труб.
2. Разметка и резка труб.
3. Подготовка концов труб под контактную сварку.
4. Контактная сварка плети.
5. Гибка плети в змеевик.
6. Плазировка змеевика.
7. Сборка и сварка приварных деталей.
8. Гидравлическое испытание.
9. Сборка змеевиков в пакеты.
10. Окраска, маркировка и упаковка пакетов змеевиков.

Как видно из сравнения технологических маршрутов, большинство операций у них одинаковы. Разница состоит в операциях гибки и контактной
сварки. Кроме этого при «плетьевой» технологии отпадает операция контроля согнутых элементов змеевика или трубы, что сокращает трудозатраты на 5-8%.

III. Технологический маршрут изготовления водо- пароперепускных труб

1. Входной контроль труб.
2. Разметка и черновая резка труб (последняя выполняется газовой резкой или отрезными дисковыми пилами).
3. Чистовая обработка торцов труб.
4. Гибка труб.
5. Сборка и сварка приварных деталей.
6. Гидравлическое испытание труб.
7. Окраска, маркировка и упаковка труб.

Гибка труб

Гибка труб различных диаметров широко применяется в котлостроительной промышленности и наряду со сваркой является основной технологической операцией.

Ежегодно в отрасли производится несколько миллионов гибов.
Основное требование к гибке трубы заключается в сохранении неизменным проходного сечения в месте гиба.

Гибы труб при изготовлении котла очень разнообразны. Угол загиба трубы может достигать 360° (спиральный змеевик); между двумя соседними гибами может не быть прямого участка (гибка «из гиба в гиб»), причем такая гибка может выполняться как в одной плоскости, так и в разных плоскостях; прямые участки до и после гиба могут быть самой разной длины.

Что происходит с профилем трубы в процессе гибки?
При изгибе трубы в ее стенках возникают напряжения: снаружи растягивающие, внутри – сжимающие. Эти изменения вызывают:
— превращение круглого поперечного сечения трубы в овальное;
— уменьшение толщины стенки трубы на выпуклой стороне и увеличение на вогнутой;
— образование на вогнутой стороне складок (гофр).

Следует иметь ввиду, что пластическая деформация при гибке распространяется на зону изгиба трубы и на прилегающие к ней прямые участки длиной около полутора- двух диаметров трубы; поэтому здесь также нарушается поперечное сечение трубы.

Овальность трубы в месте гиба в основном зависит от радиуса гиба и отношения толщины стенки трубы к ее диаметру. Большая ось овала поперечного сечения согнутого участка трубы располагается в плоскости, перпендикулярной плоскости изгиба. Степень овальности а выражается в процентах: a=(D max -D min)/D н х 100% или
a=2(D max -D min)/(D max +D min) х100%

где D max – большая ось овала,
D min – малая ось овала,
D н – диаметр трубы (номинальный).

Овальность не должна превышать 10% для труб поверхностей нагрева диаметром до 76 мм и 8% для соединительных труб и трубопроводов.

Овальность трубы в месте гиба уменьшает площадь поперечного сечения.

Вероятность появления гофр, как и овальности, увеличивается с уменьшением радиуса гиба и отношения толщины стенки трубы к ее диаметру. Гофры повышают сопротивление движению среды и являются очагами засорения и коррозии трубы.

Исходя из изложенного, желательно производить гибку труб на возможно больший радиус, применяя толстостенные трубы, так как при этом проще всего обеспечить качество гиба.

При гибке относительно тонкостенных труб на радиус гиба 3D н и менее сечение трубы в месте гиба имеет недопустимый эллипс, а иногда, кроме этого, на внутренней стороне гиба появляются гофры. Для предотвращения подобных явлений гибка таких труб производится на специальной оправке, вставляемой на тяге внутрь трубы. Такая оправка называется дорном. Регулировкой дорна достигается нужное качество гиба.

Дорн представляет собой стержень с гибкими дисками, который находится внутри трубы. Гибка с дорном обеспечивает малый радиус гиба, гладкий ровный изгиб, минимальную овальность трубы в месте гиба.

Гибка труб может быть подразделена на станочную и ручную.
Ручная гибка ввиду низкой производительности в котлостроении практически не применяется.

Гибка на станках может быть вхолодную и вгорячую. «Горячая» гибка имеет меньшую производительности по сравнению с «холодной». При изготовлении станционных трубопроводов из труб большого диаметра с большой толщиной стенки, изгибаемых на малые радиусы применяется технология гибки труб с нагревом токами высокой частоты (ТВЧ).

Наибольшее распространение в котлостроении получила гибка труб вхолодную на станках. Этим способом гнут трубы диаметром до 219 мм, причем гибка может выполняться методами: наматывания и обкатки.

Рассмотрим гибку труб методом наматывания на сектор.


Цикл гибки труб на станке состоит из пяти основных приемов.

1-й прием заключается в подготовке рабочих органов станка к загрузке трубой.

Суппорты 1 и 2 вместе с упорами 11 и 4 и сменными вкладышами 5 и 10 отодвинуты от гибочного сектора 8. Сектор скреплен с поворотным столом 9 и располагается на общей с ним оси О-О.

Вкладыши, сменяемые в зависимости от диаметра труб, соединены с упорами 11 и 4 ласточкиным хвостом. Прижимной вкладыш 5 имеет гладкую поверхность желоба, по которому скользит труба. Зажимной вкладыш 10 имеет насечку на поверхности желоба для предупреждения выскальзывания трубы из зажима. Стержень 6 с дорном 7 отодвинуты вправо. Вторым концом стержень шарнирно соединен со штоком гидравлического цилиндра.

2-й прием заключается в загрузке станка трубой.
На стержне 6, после подачи стержня влево, в нужном месте устанавливается и закрепляется болтом фиксатор 13. Со стороны, указанной стрелкой, на дорн надевается труба 12, которая считается установленной, как только она достигает фиксатора.

3-й прием заключается в установке рабочих органов станка в положение, соответствующее началу гибки трубы. Свободный конец трубы зажимается между сектором 8 и зажимным вкладышем 10. Вкладыш 5 прижимает трубу к сектору, создавая направление и поддерживая трубу при гибке. Зажим конца трубы и прижим трубы к сектору осуществляются путем перемещения суппортов 1 и 2 в направлении сектора 8 под действием гидравлического давления.

4-й прием заключается в выполнении гибки трубы, т.е. в рабочем ходе станка.

В процессе рабочего хода станка труба 12 зажата между гибочным сектором 8 и суппортом 1 с зажимным вкладышем 10. Дорн находится при этом в зоне гиба. Стол 9 поворачивается вместе с гибочным сектором вокруг оси О-О с помощью гидравлического привода.

Труба 12, опираясь на неподвижный прижимной вкладыш 5 и скользя по нему, изгибается по форме гибочного сектора 8. Процесс изгибания трубы продолжается до тех пор, пока поворотный стол 9 с трубой 12 не повернется вокруг оси О-О на заданный угол и привод его автоматически выключится.

После отключения привода поворота стола и остановки станка рабочий с помощью гидравлического привода, связанного со стержнем, вытягивает дорн из зоны гиба трубы. Затем отодвигается прижимной суппорт 2 и труба снимается со станка.
5-й прием, завершающий цикл гибки трубы, заключается в возврате с помощью гидропривода поворотного стола 9 и гибочного сектора 8 в исходное положение.
На этом заканчивается цикл одного гиба трубы.


В последнее время все чаще внимание технологов привлекают трубогибочные станки с использованием метода обкатки, при котором гибочный сектор 2 в процессе гибки остается неподвижным, труба 8 крепится в зажиме 1 и также становится неподвижной. Участок трубы, который должен быть согнут, подвергается воздействию двух роликов: первый из них (по ходу гибки) 4 является изгибающим, второй 3 – калибрующим. Оба ролика заключены в единую обойму 5 и свободно вращаются на своих осях. Обойма с роликами прижимается к изгибаемой трубе и ей сообщается вращательное движение вокруг гибочного сектора. Гибочный сектор в различных конструкциях станков может быть установлен горизонтально либо вертикально. Применение дорна при гибке обкаткой выигрыша не дает, так как труба относительно дорна неподвижна и он не калибрует трубу в процессе гибки. Для уменьшения овальности трубы в данном случае служит калибрующий ролик, который движется по гибу трубы вслед за изгибающим роликом.

Таким образом, при гибке обкаткой возможна только бездорновая гибка, что ограничивает ее применение при гибке труб на малые радиусы гиба. Кроме этого, при гибке обкаткой на трубе до начала гиба должен быть оставлен достаточно большой прямой участок, иначе конец трубы не захватится изгибающим роликом. При гибке обкаткой невозможна гибка «из гиба в гиб», без прямого участка между соседними гибами. В этом отношении гибка труб методом наматывания более универсальна.


Этот способ гибки является одним из наиболее совершенных способов.

На трубе, подаваемой направляющими роликами 1, с помощью кольцевого индуктора 2 ТВЧ (токов высокой частоты) нагревают узкий участок трубы и изгибают его с помощью нажимного гибочного ролика 4. При этом нагретый участок пластически деформи-руется, в то время как близлежащие холодные зоны с относительно низкой пластичностью препятствуют образованию овальности. Для поддержания минимальной ширины нагретой зоны, труба на выходе индуктора интенсивно охлаждается водой кольцевым спрейером 3. Процесс гибки складывается из нескольких стадий: продвижение трубы под нажимной ролик; подвод нажимного ролика к трубе (начало гибки); взаимное перемещение трубы и нажимного ролика (труба перемещается в продольном направлении, а нажимной ролик – в поперечном) и гибка при неподвижном ролике и при перемещении только трубы.

При достижении заданного угла гиба механизм подачи останавливается, и процесс гибки прекращается. Радиус гиба зависит от конечного положения нажимного ролика и задается соответствующей настройкой оборудования. Угол гиба зависит от величины продвижения трубы.

Процесс гибки с нагревом ТВЧ эффективен при изготовлении трубных элементов с различными радиусами гиба и в различных плоскостях и находит применение в единичном и мелкосерийном производстве. Способ характерен меньшим утонением стенки и меньшей овальностью трубы, чем при других способах гибки.

Гибка труб на трубогибочных станках любой конструкции выполняется с помощью гибочной оснастки: гибочного шаблона (гибочной головки), прижимного устройства, направляющего корыта или роликов, изгибающего и калибрующего роликов, а также дорна. Гибочный шаблон, прижим, ролики, корыто имеют профилированный желоб, равный диаметру изгибаемой трубы.

Гибка может производиться по разметке или по упору, устанавливаемому на станине станка. В случае гибки по разметке на трубе мелом наносят риски, соответствующие местам гиба и прямых участков. При разметке длина изгибаемого участка корректируется с учетом вытяжки труб при гибке. Гибка по упору предпочтительнее, так как отпадает операция разметки труб и связанные с ней ошибки; кроме того, повышается производительность труда.

При проектировании трубного изогнутого элемента утонение трубы в гибе учитывают выбором большей, чем расчетная, толщины стенки трубы (определяется нормами расчета на прочность). В чертеже обычно указывают угол и радиус гиба.

Сварка труб

Основным видом сварки при изготовлении змеевиков водяного экономайзера, пароперегревателя и труб экрана является контактная сварка на специальных контактно-сварочных машинах.

Метод контактной сварки наиболее производителен в условиях массового производства однотипных деталей.

Особенность контактной сварки – отсутствие контроля качества сварных соединений существующими в настоящее время неразрушающими методами контроля.

Поэтому основным средством обеспечения высокого качества сварки является оснащение сварочных машин регистрирующими устройствам, контролирующими параметры сварки каждого стыка и обеспечивающими постоянство сварочных параметров. В целях контроля качества сварки предусматривается систематическое испытание экспресс-образцов.

Контактная сварка стыков освоена для всех марок котельных сталей. Из других видов сварки применяется полуавтоматическая многослойная сварка под слоем флюса для сварки водо-пароперепускных труб диаметром 133 мм, и ручную сварку, с помощью которой привариваются различные мелкие детали на змеевиках и трубах, развилки экранов. Иногда ручной сваркой выполняются стыки опускных и пароперепускных труб. Особым видом сварки является приварка шипов на экранных трубах.

Контактная сварка является одним из способов сварки давлением. Осуществляется она с местным нагревом и сжатием благодаря выделению теплоты, возникшей в месте повышенного сопротивления при прохождении электрического тока через цепь, в которую включены свариваемые детали. контакт между этими деталями создается в том месте, где они должны быть сварены между собой. Сопротивление контакта прохождению тока значительно больше, чем сопротивление сплошного металла. Это обстоятельство влечет за собой усиленное местное выделение теплоты на участке соприкосновения деталей, что как раз и необходимо для сварки, металл в зоне сварки нагревается до пластического состояния, и концы труб сжимаются под действием давления, прикладываемого на свариваемом участке.

Различают два вида стыков контактной сварки: сварку сопротивлением и сварку оплавлением.

При сварке сопротивлением детали вначале сжимают, а затем к ним подводят электрический ток и соединяемые концы труб нагревают до пластического состояния, после чего ток выключают и одновременно с этим производят осадку (в настоящее время этот вид сварки не применяется ввиду возможного брака стыков).

Широко применяется стыковая сварка непрерывным оплавлением. В этом случае ток включают до соприкосновения труб. При очень слабом давлении вначале медленно, а затем быстрее трубы сближают. В момент их соприкосновения на свариваемых поверхностях в точках касания возникает интенсивное искрение, металл на торцах труб оплавляется. После этого трубы подвергают осадке.

Осадка разогретых концов свариваемых труб необходима для удаления из плоскости контакта разогретого наружного слоя уже окисленного воздухом металла и его окалины. При осадке в соприкосновение вступают глубинные разогретые, но неокисленные слои металла, поскольку к ним не было доступа воздуха. Окисленный металл выдавливается вовнутрь и наружу стыка, образуя грат. Осадка необходима также для того, чтобы вступили в действие силы молекулярного сцепления свариваемых концов труб. При выполнении этих условий обеспечивается надежное соединение труб.

В связи с отсутствием неразрушающих методов контроля сварных швов, выполненных контактной сваркой, требуется оснащение контактно-сварочных машин приборами автоматического контроля основных параметров процесса сварки.

Перед началом сварки сварщик устанавливает в зажимы машины медные губки, соответствующие диаметру свариваемых труб, затем проверяет центровку зажимов. Эту операцию он выполняет с помощью контрольных валиков, которые зажимают в губки машины.

Сварка начинается с укладки одной из свариваемых труб и зажатия ее в губках машины. Трубу укладывают в губки так, чтобы вылет ее конца из губок составлял половину расстояния между зажимами. В другой зажим помещают вторую свариваемую трубу так, чтобы ее торец соприкасался с торцом первой трубы. На одну из свариваемых деталей одевают наконечник, подводящий кислородно-воздушную смесь при кислородной продувке для удаления внутреннего грата, или наконечник воздушного шланга, с помощью которого прогоняют шар или снаряд для удаления внутреннего грата. При сварке прямых труб в этот конец для удаления внутреннего грата заводят пневматический дорн. На свободный конец другой свариваемой детали устанавливают ловушку для искр или шароуловитель.

Внутренний грат в трубах может быть удален несколькими способами. Наиболее употребительными являются способы удаление внутреннего грата:
. пневматическим дорном;
. шаром;
. снарядом;
. воздушно-кислородной смесью.

В процессе контактной сварки внутренняя поверхность трубы в месте сварного стыка загрязняется брызгами металла, которые не поддаются удалению ни одним из способов удаления внутреннего грата. Для уменьшения образования этих брызг перед сваркой в концы труб укладывают картонные кольца, которые защищают внутреннюю поверхность труб. Ширина кольца примерно 20-30 мм. После сварки кольцо удаляется из трубы в процессе удаления внутреннего грата.
Удаление грата кислородно-воздушной смесью основано на свойстве стали гореть в среде кислорода. При сварке труб из высоколегированных сталей внутренний грат кислородом не удаляется, так как он не горит в кислороде.

Время продувки составляет 1-1,5 с. Причем смесь подают через 0,2-0,3 с после осадки. При большем интервале времени температура грата может стать ниже температуры воспламенения стали и грат не будет удален.

После продувки остается некоторое количество окалины, которую удаляют прогонкой шара. При любом количестве стыков шар прогоняется только один раз, после сварки последнего стыка. Этот шар является одновременно и контрольным. Его диаметр 0,8-0,86 внутреннего размера трубы.

Элементы поверхностей нагрева, признанные при осмотре и проверке годными к дальнейшей эксплуатации, ремонтируют в топках и газоходах котлов без демонтажа.

В объем ремонтных работ входят подгибка и рихтовка труб, ремонт опор, подвесок и креплений, вырезка контрольных образцов и установка вставок, ремонт и замена защитных устройств, промывка змеевиков пароперегревателя. При ремонте устраняют дефектные сварные стыки, выполняют приварку к трубам рёбер, плавников и других деталей, производят ошиповку труб. Подгибку (на гнутых участках) и рихтовку (на прямых участках) труб паровых котлов производят в случае выхода труб из проектной плоскости на величину, превышающую предельные отклонения от проектных размеров. Это происходит при короблении труб, а также при отрыве труб от креплений и дистанционирующих деталей, отрыва креплений труб от деталей каркаса. У прямоточных котлов встречаются перекосы панелей радиационной части и выходы их из проектной плоскости.

Подгибку и рихтовку трубных элементов из углеродистой стали при выходе из ряда на 15-20мм производят холодным способом, при выходе из ряда на 20-30мм - при нагреве участка трубы до 750-1050єС. При большей деформации изогнутые участки обычно вырезают.

Деформированные участки из легированной стали, как правило, не рихтуют, а заменяют.

Выпрямленные трубы фиксируют установкой креплений. Оборванные и перегоревшие крепления заменяют.

Подгибку и рихтовку труб производят при помощи домкратов, винтовых скоб, клиньев, струбцин и других приспособлений.

Провисшие и деформированные змеевики выравнивают путём регулирования длины подвесок и восстановления стоек, гребёнок, хомутов.

Подтяжку подвесных труб и пружинных опор трубных элементов производят динамометрическими ключами, позволяющими контролировать нагрузку, установленную технической документацией.

Установку на место перекошенных и вышедших из проектной плоскости панелей радиационной части производят при помощи винтовых стяжек или ручных рычажных лебёдок после удаления обдувочных аппаратов и других мешающих деталей и освобождения панели от закрепляющих устройств.

При рихтовке ширм и вертикальных змеевиков (пакетов) конвективного пароперегревателя вместо индивидуальной рихтовки каждой петли иногда целесообразно восстанавливать правильное положение элемента целиком, пользуясь приспособлением. Работы по восстановлению правильного положения панелей, правке и рихтовке труб тесно связаны с проверкой и ремонтом креплений труб, их опор, подвесок и дистанционирующих деталей. Детали крепления труб в современных котлах большой мощности являются ответственными элементами, они фиксируют поверхности нагрева в определенном положении и обеспечивают тепловые перемещения трубных элементов и коллекторов в заданных направлениях. Змеевики пароперегревателей имеют не только подвески и крепления, но и дистанционирующие устройства. Их ремонт заключается в проверке и замене поломанных и сгоревших деталей с одновременным выравниванием змеевиков. Поверхности нагрева прямоточных котлов фиксируются неподвижными креплениями с одной стороны и подвижными креплениями в направлении удлинения труб и панелей при нагревании.

При осмотре неподвижных креплений проверяют прочность сварных швов и при обнаружении обрывов или трещин усиливают сварку. У всех креплений проверяют и восстанавливают прочность приварки дета- лей. Прорези в косынках и планках должны быть направлены в сторону перемещения панели. Большое значение для компенсации тепловых перемещений труб имеет их холодный натяг. В котлах ТПП-312 и ТГМП-314 холодный натяг труб осуществлен на стыке фронтового и потолочного экранов и в углах опускного газохода у потолочных труб поворотной камеры. Холодный натяг труб фронтового экрана равен 145мм, потолочного - 15мм. Для перемещения труб потолочного экрана в сторону фронтовой стены котла предусмотрено 160мм. Перемещение труб фронтового экрана вверх воспринимается компенсатором верхней части экрана. Перемещение потолочных труб поворотного газохода в сторону задней стены компенсируется холодным натягом, равным 45мм.

Величина холодного натяга труб указывается в технической документации на котлы.

Многие дефекты поверхностей нагрева(течи, трещины сварных и вальцовочных соединениях) нельзя обнаружить при эксплуатации котла и его осмотре, так как они находятся в зонах не доступных для его наблюдения, поэтому следующим этапом осуществляемых в результате ремонта называется гидроиспытание или гидроопресовка. Непосредственно перед гидроиспытанием необходимо выполнить:

    удалить скопление шлака и золы со стен топки и газоходов(при работе котла на угле)

    затем бригада обмуровщиков и изолировщиков разбирают участки обмуровки и изоляции у тех элементов котла, плотность которых должна быть проверена после гидроиспытания.

    гидроиспытание проводится в следующем порядке: 1. через воздушные краны и предохранительные клапаны удаляется воздух. 2. котел заполняется деаэрированной питательной водой и создается давление равное рабочему давления. Одновременно удаляется воздух через верхние точки котла, температура воды при гидроиспытаниях 30-50 0 С. 3. начинается проверка плотности вальцовочных и сварных соединений труб, змеевиков, люков барабана, обнаруженные течи и неплотности специальным образом маркируются. 4. после гидроиспытания из котла пароперегревателя экономайзера сливают воду, отключают котел от всех питательных и спускных трубопроводов, после этого начинается внутренний осмотр барабана, камер, секций, труб. 5. проверяют наличие коррозии состояния сварных, заклепочных, вальцовочных соединений. 6. по результатам осмотра уточняют объем работы.

Ремонт поверхностей нагрева. Проверка труб на ремонтной площадки.

Трубы для изготовления поверхностей нагрева выбирают в соответствии с правилами Госгортехнадзора ГОСТами и ТУ на эксплуатацию. Каждая партия труб должна иметь свой сертификат качества. Трубы из легированной стали в независимости от наличия сопровождающих документов проверяют содержание легирующих элементов. Трубы из ауцентной стали проверяют на магнитные элементы. Ультразвуковые - на наличие скрытых дефектов, проверяют трубы которые будут работать при давлении 565 и выше. Так же проверяют на овальность труб и соответствующие в ГОСТ. Местные дефекты удаляются с помощью шлифмашины.

Разметка гнутьё, и обрезка труб при изготовлении трубчатых элементов.

Поверхности нагрева состоят из прямых и гнутых участков, которые свариваются между собой и образуют длинный контур для прохода пара и воды поэтому для изготовления трубных элементов сложных форм используются плазы.

Плаз представляет собой настил из листового метала 1., на котором вычерчены в натуральную величину изготовляемые трубы или змеевики, а также участки камер и барабанов 2. На плазу приваривают планки или уголки 3., служащие для точного направлении труб при их укладывании на плазы. И ограничение габаритов изготовляемого элемента. Процесс разметки и изготовление труб называется плазировкой. Гнутье труб осуществляется холодным способом на труборезочных станках. Основными требованиями: 1. отсутствие складок при гнутье. 2. овальность трубы может допускаться только в ограниченных допустимых пределах. Изогнутые трубы режут на труборезных станках и газовых резаках. На обрезных концах труб специальным приспособлением снимаются фаски.

Проверка труб шарами и гидровлическими испытаниями.

Подогнанные и сваренные состыкованные участки труб проверяют на непроходимость, для этого их прогоняют стальным шариком диаметром 0,8 диаметра трубы, предварительно нагрев его газовой горелкой. Место нахождения с ужения участка трубы определяется по нагретому участку трубы, проводя рукой. После проверки на проходимость проводят гидравлическое испытание труб удвоенным рабочим давлением. После этого сжатым воздухом из змеевиков воду, а концы труб заглушают пробками.

Подгибка и рихтовка труб.

Работы по устранению небольших повреждений элементов поверхностей нагрева признанных годными в дальнейших эксплуатациях по результатам осмотра производят на месте установки.

Покоробленные и кранные трубы, змеевики водяных экономайзеров и других трубных элементов из углеродистых сталей, при смещении их или выходе из общего ряда более чем на 10 мм, подгибают и рихтуют. При выходе из плоскости рядом на 15-20 мм., рихтовку рекомендуется производить холодным способом. При выходе до 30 мм. участок трубы нагревают до тем-ры 750-1050 0 С, нагревают пламенем газовой горелки. При выходе из общего ряда более чем на 30 мм изогнутые участки вырезают и заменяют новыми. Подгибы и рихтовку труб используют с помощью домкратов и др. Рихтовку труб и кранных поверхностей нагрева с помощью реечных домкратов показано на рисунке.

Домкрат 1 закрепляют за трубу 2 подвешиваемую на конструкцию лесов или трубах котла. Труба входит в проушаны двух скоб 3, которые при помощи прутка 5, за трубы 4 не требующие рихтовки. Вращение рукоятки домкрата покоробленные трубы входят в общий ряд. Окончившие рихтовку труб восстанавливают детали крепления обеспечивая при этом свободу движения труб при нагревании. Устранение погнутости труб с нагревом производят – греют комнату и участок до вишнево-красного цвета, затем используя приспособления для холодной правки рихтуют трубу. При остывании трубы правку прекращают и возобновляют ее только после повторного нагрева.

Ремонт крепления труб и змеевиков.

Длинные элементы поверхностей нагрева закрепляют за неподвижные детали котла которые перемещаются вместе с трубами при их термическом расширении. Основное требование к креплениям – недолжны препятствовать тепловому перемещению труб. Повреждение крепления экранных труб, происходит при нарушении нормальных режимов эксплуатации котла и выражаются в их обрыве или короблении. Об обрыве крепления свидетельствует увеличение прогиб труб в сторону топки. Условия работы крепления пароперегревателя значительно тяжелее, чем крепление экранных труб, так как крепление экранных труб защищаются самими экранными трубами, а детали крепления пароперегревателя изготавливают из жаропрочных сталей. Иногда подвески и крепления изготавливают из охлаждаемых паром труб. Ремонт крепления подвесок и дистационирующих планок заключается в их проверке и замене сломанных или сгоревших, одновременно выравниваются змеевики путем регулировки длины подвесок.

Восстановление защитных узлов для котлов использующих уголь

Защитные устройства бывают индивидуальными или групповыми на группу труб. К трубам защитные устройства прикрепляются хомутами или сваркой. Предохраняет трубы от истирания. Защитные устройства истираются до дыр, после чего стираются сами трубы.



Поделиться