Наблюдения за коррозионным состоянием трубопроводов. Анализ коррозионного состояния участка газопровода по данным внутритрубной дефектоскопии

Гончаров, Александр Алексеевич

Ученая cтепень:

Кандидат технических наук

Место защиты диссертации:

Оренбург

Код cпециальности ВАК:

Специальность:

Химическое сопротивление материалов и защита от коррозии

Количество cтраниц:

Глава 1. Анализ условий работы и технического состояния ТП и оборудования ОНГКМ.

1.1 Условия работы металлических конструкций.

1.2. Обеспечение эксплуатационных свойств объектов ОГКМ.

1.3. Коррозионное состояние ТП и оборудования ОГКМ.

1.3.1. Коррозия НКТ и ТП.

1.3.2 Коррозия коммуникаций и оборудования УКПГ.

1.3.3 Коррозионное состояние оборудования ОГПЗ.

1.4. Методы определения остаточного ресурса.

Глава 2. Анализ причин повреждений оборудования и трубопроводов ОНГКМ.

2.1. Промысловое оборудование и трубопроводы.

2.2. Соединительные трубопроводы.

2.3. Оборудование и трубопроводы ОГПЗ.

2.4. Трубопроводы очищенного газа.

Выводы к главе 2.

Глава 3. Определение характеристик надежности и прогнозирование дефектности оборудования и ТП ОНГКМ.

3.1 Анализ отказов оборудования и ТП.

3.2 Определение характеристик надежности металлоконструкций.

3.3 Моделирование коррозионных повреждений ТП по результатам внутритрубной УЗД.

3.4 Прогнозирование дефектности трубопроводов.

Выводы к главе 3.

Глава 4. Методы оценки остаточного ресурса оборудования и ТП.

4.1. Оценка ресурса конструкций по изменению сопротивления сталей СР.

4.2. Особенности оценки работоспособности конструкций, имеющих водородные расслоения.

4.3 Определение остаточного ресурса оборудования и

ТП с поврежденной поверхностью.

4.3.1 Параметры распределения"глубин коррозионных повреждений.

4.3.2 Критерии предельных состояний конструкций с повреждениями поверхности.

4.3.3. Прогнозирование остаточного ресурса ТП.

4.4 Методика диагностирования оборудования и трубопроводов.

Выводы к главе 4.

Введение диссертации (часть автореферата) На тему "Коррозионное состояние и долговечность оборудования и трубопроводов сероводородсодержащих нефтегазовых месторождений"

Наличие в нефти и газе сероводорода обусловливает необходимость применения определенных марок сталей и специальной технологии сварочно-монтажных работ (СМР ) при обустройстве данных месторождений, а при эксплуатации оборудования и трубопроводов (ТП) необходим комплекс диагностических и противокоррозионных мероприятий. Помимо общей и язвенной коррозии сварных конструкций сероводород вызывает сероводородное растрескивание (СР) и водородное расслоение (ВР) оборудования и трубопроводов.

Эксплуатация металлических конструкций сероводородсодержащих нефтегазовых месторождений связана с осуществлением многопланового контроля за коррозионным состоянием оборудования и трубопроводов, а также с проведением большого количества ремонтных работ: ликвидацией аварийных ситуаций; подключением новых скважин и трубопроводов к действующим; заменой аппаратов,запорной арматуры,дефектных участков трубопроводов и т.п.

Трубопроводы и оборудование Оренбургского нефтегазоконденсатного месторождения (ОНГКМ) в настоящее время выработали проектный нормативный ресурс. Следует ожидать снижения надежности этих металлических конструкций в процессе эксплуатации вследствие накопления внутренних и внешних повреждений. Вопросы диагностирования ТП и оборудования ОНГКМ и оценки потенциальной опасности повреждений на данный период времени изучены недостаточно.

В связи с вышеизложенным являются актуальными исследования, связанные с выявлением основных причин повреждений металлических конструкций сероводородсодержащих нефтегазоконденсатных месторождений, разработкой методик диагностирования трубопроводов и оборудования и оценки их остаточного ресурса.

Работа выполнена в соответствии с приоритетным направлением развития науки и техники (2728п-п8 от 21.07.96 г.) "Технология обеспечения безопасности продукции, производства и объектов" и постановлением Правительства России от 16.11.1996 г. N 1369 по проведению в 1997-2000 г.г. внутритрубной диагностики ТП в пределах территорий Уральского района и Тюменской области.

1. Анализ условий работы и технического состояния ТП и оборудования ОГКМ

Заключение диссертации по теме "Химическое сопротивление материалов и защита от коррозии", Гончаров, Александр Алексеевич

Основные выводы

1. Определены основные причины повреждений ТП и оборудования в процессе 20 лет эксплуатации ОНГКМ: НКТ и муфты НКТ подвержены язвенной коррозии и СР, фонтанная арматура - СР; в аппаратах УКПГ после 10-летней эксплуатации возникают ВР; детали аппаратов выходят из строя из-за язвенной коррозии; дефектные сварные соединения ТП подвергаются СР, в металле ТП после 15 лет эксплуатации возникают ВР; запорно-регулирующая арматура теряет герметичность вследствие охрупчивания уплотнительных элементов; аппараты ОГПЗ подвержены язвенной коррозии, имеются отказы аппаратов вследствие ВР и СР; теплообменное оборудование выходит из строя из-за забивки межтрубного пространства солевыми отложениями и сквозной язвенной коррозии металла; отказы насосов обусловлены разрушением подшипников, а поршневых компрессоров - разрушением штоков поршня и шпилек; большинство отказов ТП очищенного газа происходит из-за дефектов сварных соединений.

2. Создана автоматизированная база данных, содержащая более 1450 отказов ТП и оборудования и позволившая выявить закономерности распределения во времени отказов конструкций, обусловленных одинаковыми причинами: количество отказов вследствие язвенной коррозии, механических повреждений, потери герметичности и ВР возрастает с увеличением срока эксплуатации; а количество отказов из-за СР максимально в первые пять лет эксплуатации ОНГКМ, затем снижается и остается практически на одном уровне.

3.Установлено, что среднее время безотказной работы, вышедших из строя аппаратов УКПГ и ОГПЗ, превышает в 1,Зч-1,4 раза запланированное проектом, составляющее 10-И 2 лет. Средняя интенсивность отказов ТП ОНГКМ

3 1 составляющая 1,3-10" год" находится в пределах, характерных для величин потока отказов газопроводов и конденсатопроводов. Средняя интенсивность

3 1 отказов НКТ составляет 1,8-10" год" . Средняя интенсивность отказов аппаратов ОГПЗ составляет 5-10"4 год"1, что близко к этому показателю для энергетических установок АЭС (4 Т0"4год""). Средняя интенсивность отказов аппаратов УКПГ

168 равна 13-10"4 год"1 и в 2,6 раза превышает данную характеристику для аппаратов ОГПЗ, что, в основном, объясняется заменой аппаратов УКПГ, имеющих несквозные водородные расслоения.

4.Установлена зависимость количества дефектов от режима работы ТП и построена регрессионная модель прогноза образования коррозионных поражений на внутренней поверхности ТП. Моделирование коррозионного состояния ТП по результатам внутритрубной дефектоскопии, позволяет определять наиболее экономичные и безопасные режимы эксплуатации ТП.

5. Разработаны методики оценки:

Остаточного ресурса оборудования и ТП по изменению сопротивления металлов сероводородному растрескиванию;

Работоспособности конструкций, в которых зафиксированы водородные расслоения, при условии их периодического контроля;

Критериев предельных состояний оболочковых конструкций с поверхностными коррозионными повреждениями и внутренними металлургическими дефектами;

Остаточного ресурса оборудования и ТП с коррозионными повреждениями поверхности.

Методики позволили обосновать сокращение количества демонтируемых аппаратов и на порядок уменьшить планируемое количество вырезок дефектных участков ТП.

6. Разработана методика диагностирования оборудования и ТП, определяющая периодичность, способы и объем контроля технического состояния оборудования и ТП, признаки оценки вида дефектов и их потенциальной опасности, условие дальнейшей эксплуатации или ремонта конструкций. Основные положения методики вошли в «Положение о диагностировании технологического оборудования и трубопроводов П «Оренбурггазпром », подверженных воздействию сероводородсодержащих сред», утвержденные РАО «ГАЗПРОМ » и Госгортехнадзором России.

Список литературы диссертационного исследования кандидат технических наук Гончаров, Александр Алексеевич, 1999 год

1. Акимов Г.В. Теория и методы исследования коррозии металлов. М. Изд. АН СССР 1945 г. 414 с.

2. Андрейкив А.Е. Панасюк В.В. Механика водородного охрупчивания металлов и расчет элементов конструкций на прочность /АН УССР . Физ.-мех. Ин-т- Львов, 1987. -50 с.

3. Арчаков Ю.И., Тесля Б.М., Старостина М.К. и др. Коррозионная стойкость оборудования химических производств. JL: Химия, 1990. 400 с.

4. Болотин В.В. Применение методов теории вероятностей и теории надежности в расчетах сооружений. -М.:Стройиздат, 1971.-255 с.

5. ВСН 006-89. Строительство магистральных и промысловых трубопроводов. Сварка. Миннефтегазстрой. М., 1989. - 216 с.

6. Гафаров H.A., Гончаров A.A., Гринцов A.C., Кушнаренко В.М. Методы контроля коррозии трубопроводов и оборудования// Химическое и нефтяное машиностроение. 1997. -№ 2. - С. 70-76.

7. Гафаров H.A., Гончаров A.A., Гринцов A.C., Кушнаренко В.М. Экспресс-. оценка сопротивления металлов сероводородному растрескиванию. // Химическое и нефтяное машиностроение. 1998. - № 5. - С. 34-42.

8. Гафаров H.A., Гончаров A.A., Кушнаренко В.М. Коррозия и защита оборудования сероводородсодержащих нефтегазовых месторождений. М.: Недра.- 1998.-437 с.

9. Гафаров H.A., Гончаров A.A., Кушнаренко В.М. Методы контроля сварных соединений конструкций, контактирующих с наводороживающими средами//Сварочное производство. 1997. -№ 12. - С. 18-20.

10. Гафаров H.A., Гончаров A.A., Кушнаренко В.М., Щепинов Д.Н. Моделирование коррозионного состояния ТП по результатам внутритрубной диагностики/Международный конгресс «Защита-98». М. 1998. - С. 22.

11. Гончаров A.A., Овчинников П.А. Анализ диагностических работ за 19998 год на объектах предприятия «Оренбурггазпром » и перспективы их совершенствования в плане реализации в 1999 г «Положения о диагностировании.»

12. Гончаров А.А, Нургалиев Д.М.,Митрофанов A.B. И др. Положение о диагностировании технологического оборудования и трубопроводов предприятия "Оренбурггазпром", подверженных воздействию сероводородсодержащих сред М.: 1998.-86с.

13. Гончаров A.A. Организация диагностирования оборудования и трубопроводов П «Оренбурггазпром », выработавших ресурс. Материалы международного НТ семинара. М.: ИРЦ Газпром. - 1998. - С. 43-47.

14. Гончаров A.A. Эксплуатационная надежность технологического оборудования и трубопроводов//Газовая промышленность.-1998.-№ 7. С. 16-18.

15. Гончаров A.A., Чирков Ю.А. Прогнозирование остаточного ресурса трубопроводов ОГКМ. Материалы международного НТ семинара. М.: ИРЦ Газпром. - 1998. - С. 112-119.

16. ГОСТ 11.007-75 Правила определения оценок и доверительных границ для параметров распределения Вейбулла.

17. ГОСТ 14249-89. Сосуды и аппараты. Нормы и методы расчета на прочность.

18. ГОСТ 14782-86. Контроль неразрушающий. Соединения сварные. Методы ультразвуковые.

19. ГОСТ 17410-78. Контроль неразрушающий. Трубы металлические бесшовные цилиндрические. Методы ультразвуковой дефектоскопии.

20. ГОСТ 18442-80. Контроль неразрушающий. Капиллярные методы. Общие требования.

21. ГОСТ 21105-87. Контроль неразрушающий. Магнитопорошковый метод.

22. ГОСТ 22727-88. Прокат листовой. Методы ультразвукового контроля.

23. ГОСТ 24289-80. Контроль неразрушающий вихретоковый. Термины и определения.

24. ГОСТ 25221-82. Сосуды и аппараты. Днища и крышки сферические неотбортованные. Нормы и методы расчета на прочность.

25. ГОСТ 25859-83. Сосуды и аппараты стальные. Нормы и методы расчета на прочность при малоцикловых нагрузках.

26. ГОСТ 27.302-86. Надежность в технике. Методы определения допускаемого отклонения параметра технического состояния и прогнозирования остаточного ресурса составных частей агрегатов машин.

27. ГОСТ 28702-90. Контроль неразрушающий. Толщиномеры ультразвуковые контактные. Общие технические требования

28. ГОСТ 5272-68. Коррозия металлов. Термины.

29. ГОСТ 6202-84. Сосуды и аппараты. Нормы и методы расчета на прочность обечаек и днищ от воздействия опорных нагрузок.

30. ГОСТ 9.908-85. Металлы и сплавы. Методы определения показателей коррозии и коррозионной стойкости.

31. Гумеров А.Г., Гумеров K.M., Росляков A.B., Разработка методов повышения ресурса длительно эксплуатирующихся нефтепроводов. -М.: ВНИИОЭНГ, 1991.

32. Дубовой В.Я., Романов В.А. Влияние водорода на механические свойства стали // Сталь. 1974. - Т. 7. - N 8. - С. 727 - 732.

33. Дьяков В.Г., Шрейдер A.B. Защита от сероводородной коррозии оборудования нефтеперерабатывающей и нефтехимической промышленности. -М.: ЦНИИТЭнефтехим, 1984. 35 с.

34. Зайвочинский Б.И. Долговечность магистральных и технологических трубопроводов. Теория, методы расчета, проектирования. М.: Недра. 1992. -271с.

35. Захаров Ю.В. Влияние напряжений на пластичность стали в растворе сероводорода. // Коррозия и защита в нефтегазовой промышленности. -1975. -N10.-С. 18-20.

36. Иино И. Водородное вспучивание и растрескивание.-перевод ВЦП N В-27457, 1980, Босеку гидзюцу, t.27,N8, 1978, с.312-424.

37. Инструкция по вихретоковому контролю линейной части магистральных газопроводов.-М.: РАО «Газпром », ВНИИГАЗ. 1997 г.- 13 с.

38. Инструкция по входному контролю арматуры в сероводородостойком исполнении. М.: ВНИИГАЗ. 1995. - 56 с.

39. Инструкция по освидетельствованию, отбраковке и ремонту в процессе эксплуатации и капитального ремонта линейной части магистральных газопроводов. М. ВНИИгаз, 1991г. -12 с.

40. Исходные данные обосновывающие материалы и технологии ингибиторной защиты внутри промысловых трубопроводов. Отчет о НИР // Донецк. ЮЖНИИГИПРОГАЗ. 1991. - 38 с.172

41. Карпенко Г.В., Крипякевич Р.И. Влияние водорода на свойства стали.- М.: Металлургиздат, 1962. 198 с.

42. КостецкийБ.И., Носовский И.Г. и др., Надежность и долговечность машин. -"Техника". 1975. -408 с.

43. Котлы стационарные паровые и водогрейные и трубопроводы пара и горячей воды. Нормы расчета на прочность. ОСТ 108.031.02 75. -Л.: ЦКТИ, 1977. -107 с.

44. Кушнаренко В.М., Гринцов A.C., Оболенцев Н.В. Контроль взаимодействия металла с рабочей средой ОГКМ.- М.: ВНИИЭгазпром, 1989.- 49 с.

45. Лившиц Л.С., Бахрах Л.П., Стромова Р.П. и др. Сульфидное растрескивание низкоуглеродистых легированных сталей // Коррозия и защита трубопроводов, скважин, газопромыслового и газоперерабатывающего оборудования. 1977. - N 5. - С. 23 - 30.

46. Малов Е.А. О состоянии аварийности на магистральных и промысловых трубопроводах нефтяной и газовой промышленности // Тез.семинара.,23-24 мая 1996г. М. Центральный Российский дом знаний, с. 3-4.

47. Маннапов Р.Г. Оценка надежности химического и нефтяного оборудования при поверхностном разрушении. ХН-1, ЦИНТИХИМНЕФТЕМАШ, Москва, 1988.-38 с.

48. Метод оценки и прогнозирование коррозии для изменившихся условий на ОГКМ. Отчет о НИР // ВНИИ природных газов.-М.: 1994.28 с.

49. Методика оценки остаточного ресурса работоспособности сосудов /пылеуловителей, фильтр-сепараторов и др./, работающих под давлением на КС и ДКС РАО «ГАЗПРОМ ».// АО ЦКБН РАО «ГАЗПРОМ » 1995 г. 48 с.

50. Методика вероятностной оценки остаточного ресурса технологических стальных трубопроводов. М.: НТП «Трубопровод », 1995 г. (Согласовано Госгортехнадзором России 11.01.1996г.)

51. Методика диагностирования технического состояния оборудования и аппаратов, эксплуатирующихся в сероводородсодержащих средах. (Утверждена Минтопэнерго России 30.11.1993 г. Согласована Госгортехнадзором России 30.11.1993 г.)

52. Методика оценки ресурса остаточной работоспособности технологического оборудования нефтеперерабатывающих, нефтехимических и химических производств г. Волгоград, ВНИКТИ нефтехимоборудование, 1992 г.

53. Мазур И.И., Иванцов О.М., Молдованов О.И. Конструктивная надежность и экологическая безопасность трубопроводов. М.: недра, 1990. - 264 с.

54. Механика разрушений / Под ред. Д.Темплина М.: Мир, 1979.- 240с.173

55. Методика прогнозирования остаточного ресурса нефтезаводских трубопроводов, сосудов, аппаратов и технологических блоков установок подготовки нефти, подвергающихся коррозии.- М.: МИНТОПЭНЕРГО. -1993.- 88 с.

56. Методика оценки сроков службы газопроводов. М.ИРЦ Газпром, 1997 г.- 84с.

57. Методические указания по диагностическому обследованию состояния коррозии и комплексной защите подземных трубопроводов от коррозии. -М.: СОЮЗЭНЕРГОГАЗ, ГАЗПРОМ, 1989. 142 с.

59. Мирочник В.А., Окенко А.П., Саррак В.И. Зарождение трещины разрушения в феррито-перлитных сталях в присутствии водорода // ФХММ.- 1984. N 3. -С. 14-20.

60. Митенков Ф.М., Коротких Ю.Г., Городов Г.Ф. и др. Определение и обоснование остаточного ресурса машиностроительных конструкций при долговременной эксплуатации. //Проблемы машиностроения и надежности машин, N 1, 1995.

61. МСКР-01 -85. Методика испытания сталей на стойкость против сероводородного коррозионного растрескивания.- М.: ВНИИНМАШ, 1985. 7 с.

62. Некасимо А., Иино М., Мацудо X., Ямада К. Водородное ступенчатое растрескивание стали трубопроводов, работающих в сероводородсодержащих средах. Проспект фирмы Ниппон Стал Корпорейшн, Япония, 1981.С. 2 40.

63. Нормы расчета на прочность элементов реакторов, парогенераторов, сосудов и трубопроводов атомных электростанций, опытных и исследовательских ядерных реакторов и установок. М.: Металлургия, 1973. - 408 с.

64. Нургалиев Д.М., Гафаров Н.А.,Ахметов В.Н.,Кушнаренко В.М., Щепинов Д.Н., Аптикеев Т.А. К оценке дефектности трубопроводов при внутритрубной дефектоскопии. Шестая международная деловая встреча "Диагностика-96".-Ялта 1996 г.-М.:ИРЦ ГАЗПРОМ. с.35-41.

65. Нургалиев Д.М., Гончаров A.A., Аптикеев Т.А. Методика технического диагностирования трубопроводов. Материалы международного НТ семинара. М.: ИРЦ Газпром. - 1998. - С. 54-59.m

67. Павловский Б.Р., Щугорев В.В., Холзаков Н.В. Водородная диагностика: опыт и перспективы применения // Газовая промышленность. -1989. Вып. 3. -С. 30-31

68. Павловский Б.Р. и др. Экспертиза по проблеме ресурса соединительных трубопроводов, транспортирующих влажный сероводород содержащий газ: Отчет о НИР // АООТ . ВНИИНЕФТЕМАШ.-М., 1994.-40 с

69. ПБ 03-108-96. Правила устройства и безопасной эксплуатации технологических трубопроводов. М.: НПО ОБТ, 1997 - 292 с. (Утверждены Госгортехнадзором России 02.03.1995 г.)

70. Перунов Б.В., Кушнаренко В.М. Повышение эффективности строительства трубопроводов, транспортирующих сероводородсодержащие среды. М. : Информнефтегазстрой. 1982. Вып. 11. - 45 с.

71. Петров H.A. Предупреждение образования трещин подземных трубопроводов при катодной поляризации. М.: ВНИИОЭНГ, 1974. - 131 с.

72. ПНАЭ Г-7-002-86. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. М.: ЭНЕРГОАТОМИЗДАТ, 1986 г.

73. ПНАЭ Г-7-014-89. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Ультразвуковой контроль. Часть 1. М.: ЭНЕРГОАТОМИЗДАТ, 1990 г.

74. ПНАЭ Г-7-019-89. Унифицированные методики контроля основных материалов (полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов АЭУ. Контроль герметичности. Газовые и жидкостные методы. ЭНЕРГОАТОМИЗДАТ, г. Москва, 1990 г

75. Пол Мосс. British Gas. Старые проблемы новые решения. "Нефтегаз" на выставке "НЕФТЕГАЗ-96".М.:- 1996.- С. 125-132.

76. Половко A.M. Основы теории надежности.-М.: «Наука », 1964.-446 с.

77. Положение о входном контроле арматуры, труб и соединительных деталей на предприятии «Оренбурггазпром ». Утверждено «Оренбурггазпром » 26.11.96г. Согласовано Оренбургским округом Госгортехнадзора России 20.11.1996 г.175

78. Положение о порядке диагностирования технологического оборудования взрывоопасных производств топливноэнергетического комплекса. (Утверждено Минтопэнерго России 24.01.1993 г. Согласовано Госгортехнадзором России 25.12.1992 г.)

79. Положение о системе технического диагностирования паровых и водогрейных котлов промышленной энергетики. -М.: НГП "ДИЭКС"1993. 36с.

80. Положение о системе технического обслуживания и плановопредупре-дительных ремонтов промыслового оборудования для газодобывающих предприятий.- Краснодар:ПО Союзоргэнергогаз.- 1989.- 165 с.

81. Положение об экспертном техническом диагностировании трубопроводов, Оренбург, 1997. 40 с.

82. Полозов В.А. Критерии опасности повреждений магистральных газопроду-ктопроводов. // М. Газовая промышленность №6, 1998 г.

83. Правила устройства и безопасной эксплуатации сосудов, работающих под давлением. (ПБ 10-115-96).- М.: ПИО ОБТ.- 1996.- 232с.

84. Р 50-54-45-88. Расчеты и испытания на прочность. Экспериментальные методы определения напряженно-деформированного состояния элементов машин и конструкций-М.: ВНИИНМАШ. 1988 -48 с.

85. Р 54-298-92. Расчеты и испытания на прочность. Методы определения сопротивления материалов воздействию сероводородсодержащих сред М.: ГОССТАНДАРТ РОССИИ, ВНИИНМАШ, ОрПИ. 26 с.

86. РД 09-102-95. Методические указания по определению остаточного ресурса потенциально опасных объектов поднадзорных Госгортехнадзору России. -М.: Госгортехнадзор. Пост. N 57 от 17.11.95. 14 с.

87. РД 26-02-62-97. Расчёт на прочность элементов сосудов и аппаратов, работающих в коррозионно-активных сероводородсодержащих средах. М.: ВНИИНефтемаш, ЦКБН, 1997 г.

88. РД 26-15-88. Сосуды и аппараты. Нормы и методы расчета на прочность и герметичность фланцевых соединений. М.: НИИХИММАШ, УкрНИИ-ХИММАШ, ВНИИНЕФТЕМАШ. - 1990 г. - 64 с.

89. РД 34.10.130-96. Инструкция по визуальному и измерительному контролю. (Утверждена Минтопэнерго РФ 15.08.96 г.)

90. РД 39-132-94. Правила по эксплуатации, ревизии, ремонту и отбраковке нефтепромысловых трубопроводов. М.: НПО ОБТ - 1994- 272 с.

92. РД-03-131-97. Правила организации и проведения акустико-эмиссионного контроля сосудов, аппаратов, котлов, технологических трубопроводов. (Утверждены постановлением Госгортехнадзора России от 11.11.96 г. № 44.)

93. РД-03-29-93. Методические указания по проведению технического освидетельствования паровых и водогрейных котлов, сосудов, работающих под давлением, трубопроводов пара и горячей воды М.: НПО ОБТ, 1994 г.

94. РД26-10-87 Методические указания. Оценка надежности химического и нефтяного оборудования при поверхностном разрушении. М. ОКСТУ 1987 г. 30с.

95. РД-51-2-97. Инструкция по внутритрубной инспекции трубопроводных систем. М.: ИРЦ Газпром, 1997 48 с.

100. Розенфельд И.Л. Ингибиторы коррозии.-М.: Химия, 1977.-35 е.,

101. Саррак В.И. Водородная хрупкость и структурное состояние стали //МИТОМ. 1982. - N 5. - С. 11 - 17.

102. Северцев H.A. Надежность сложных систем в эксплуатации и отработке. -М.: Высшая школа. 1989.- 432 с.

103. СНиП Ш-42-80.Магистральные трубопроводы. М.:Стройиздат, 1981.- 68 с.

104. СНиП 2.05.06-85*. Магистральные трубопроводы М.: Минстрой России. ГУЛ ЦПП, 1997. -60 с.

105. СНиП 3.05.05-84. Технологическое оборудование и технологические трубопроводы. Утверждены Миннефтехимпромом СССР 01.01.1984 г.

106. Сталь магистральных труб для транспортировки высокосернистого нефтяного газа. Проспект фирмы Ниппон Кокан ЛТД, 1981. 72 с.

107. Стандарт МЭК . Техника анализа надежности систем. Метод анализа вида и последствий отказов. Публикация 812 (1985). М.: 1987.

108. Стеклов О.И., Бодрихин Н.Г., Кушнаренко В.М., Перунов Б.В. Испытание сталей и сварных соединений в наводороживающих средах.- М.:-Металлургия.- 1992.- 128 с.

109. Томашов Н.Д. Теория коррозии и защиты металлов. М. Изд. АН СССР 1960 г. 590 с.

110. У орд K.P., Данфорд Д.Х., Манн Э.С. Дефектоскопия действующих трубопроводов для выявления коррозионных и усталостных трещин. "Диагностика-94".-Ялта 1994г.-М.:ИРЦ ГАЗПРОМ.-С.44-60.17?

111. Ф.А.Хромченко, Надежность сварных соединений труб котлов и паропроводов. М.: Энергоиздат, 1982. - 120 с.

112. Шрейдер А.В., Шпарбер И.С., Арчаков Ю.И. Влияние водорода на нефтяное и химическое оборудование.- М.: Машиностроение, 1979.- 144 с.

113. Швед М.М. Изменение эксплуатационных свойств железа и стали под влиянием водорода. Киев: Наукова думка, 1985. - 120 с.

114. Яковлев А.И. Коррозионное воздействие сероводорода на металлы. ВНИИЭгазпром, М.: 1972. 42 с.

115. Ямамота К., Мурата Т. Разработка нефтескважинных труб, предназначенных для эксплуатации в среде влажного высокосернистого газа // Технический доклад фирмы "Nippon Steel Corp".-1979.-63 с.

116. ANSI/ASME В 31G-1984. Manual For Determining the Remaining Strength of Corroded Pipelines. ASME. New York.13 0 British Gas Engineering Standard BGC/PS/P11. 42 p.

117. Biefer G.I. The Stepwise Cracking of Pipe Line Steel in Sour Environements // Materials Performance, 1982. - Iune. - P. 19 - 34.

118. Marvin C.W. Determining the strength of Corroded Pipe. // Materials protection and Performance. 1972. - V. 11. - P. 34 - 40.

119. NACE MR0175-97.Material Requirements. Sulfide Stress Cracking Resistance Metallic Materials for Oil field Equipment.l997. 47 p.

120. Nakasugi H.,Matsuda H. Development of new dine-Pipe Steels for Sour Gas Servis // Nippon Steel Techn. rep.- 1979. N14.- P.66-78.

121. O"Grandy T.J., Hisey D.T., Kiefner J.F., Pressure calculation for corroded pipe developed//Oil and Gas J.-1992.-№42.-P. 84-89.

122. Smialawski M. Hydrogening Steel. Pergam Press L. 1962. 152 p.

123. Terasaki F., Ikeda A., Tekejama M., Okamoto S., The Hydrogen Indu-ced Cracking Sucseptibilities of Various Kinds of Commerc.Rolled Steels under Wet Hydrogene Sulfide // Environement. The Sumitomo Search. 1978. - N 19. - P. 103-111.

124. Thomas J. O"Gradyll, Daniel T. Hisey, John F. Kiefner Pressure calculation for corroded pipe developed. Oil & Gas Journal. Oct. 1992. P. 84-89.

125. NACE Standard ТМ0177-96.Standard Test Method Laboratory Testing of Metals for Resistanc to Specific Forms of Environmental Cracking in H2S Environments. 32 p.

126. NACE Standard TM0284-96 Standart Tesn Metod Evaluation of Pipeline and pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking. 10 p

127. Townsend H. Hydrogen Sulfide Stress Corrosion Cracking of High Stranght Steel Wire // Corrosion.- 1972.- V.28.- N2.- P.39-46.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Оценка коррозионного состояния трубопровода, находящегося в электрическом поле ЛЭП ПТ, производится по разности потенциалов труба - земля и величине тока в трубопроводе.
Ьлок-схема комплексной оценки технического состояния ЛЧ МГ. Оценка коррозионного состояния ЛЧ МГ в перспективе должна стать составной частью комплексной оценки технического состояния ЛЧ МГ.
Схема возникновения и распространения блуждающих. При оценке коррозионного состояния газопровода важж знать как средние, так и максимальные значения разности по тенциалов.
Приборы для оценки коррозионного состояния должны включать в себя датчики, систему регистрации и соответствующие источники энергии. При использовании магнитных и электромагнитных методов возможно применение различных намагничивающих систем. Проблему сканирования решают либо небольшим числом датчиков, движущихся внутри трубы по винтовой линии, либо большим числом датчиков, движущихся поступательно вместе с намагничивающей системой и расположенных по периметру прибора. В этом случае наиболее целесообразно использование двухкольцевой шахматной системы расположения датчиков для устранения возможных пропусков дефектов на трубе. Выпускаемые в США приборы типа Лайналог состоят из трех секций, соединенных шарнирами. В первой секции находятся источники питания и уплотнительные манжеты, во второй - электромагнит с системой кассет для датчиков, в третьей - электронные узлы и записывающее устройство, Их используют для проведения обследований трубопроводов.
Шурфование для оценки коррозионного состояния трубопровода необходимо проводить с полным вскрытием трубы и возможностью осмотра ее нижней образующей. Длина вскрытой части трубы должно быть не менее трех ее диметров.
Эффективным способом оценки коррозионного состояния оборудования (на стадиях его проектирования, эксплуатации, реновации) является коррозионный мониторинг - система наблюдений и прогнозирования коррозионного состояния объекта с целью получения своевременной информации о его возможных коррозионных отказах.
В табл. 6 дается оценка фактического коррозионного состояния систем горячего водоснабжения из черных труб в ряде городов. Кроме того, для сравнения приведены расчетные индексы насыщения воды при 60 С, данные по содержанию в воде растворенного кислорода, свободной углекислоты и оценка коррозионной активности.
Распределение областей скорости движения водогазонефтяного потока для трубопро-водов различных диаметров. Коррозионные обследования обсадных колонн проводят для оценки коррозионного состояния их (как по глубине, так и по площади месторождения), определения параметров электрохимической защиты, выявления причин негерметичности обсадных колонн в процессе эксплуатации и контроля защищенности.
На основе анализа изложенных выше данных по оценке коррозионного состояния и надежности оборудования и ТП ОНГКМ, результатов внутритрубной и наружной дефектоскопии, натурных и лабораторных коррозионно-механических испытаний, металлографических исследований темплетов и образцов, результатов технического диагностирования конструкций, а также с учетом действующих нормативно-технических документов (НТД), разработана методика диагностирования оборудования и ТП сероводородсодержащих нефтегазовых месторождений.
В нашей стране и за рубежом разрабатывают методы и приборы для оценки коррозионного состояния трубопровода без его вскрытия. Наиболее перспективны методы, основанные на пропускании по трубопроводу специально оборудованного прибора, фиксирующего очаги коррозионного поражения стенки трубы с внутренней и наружной сторон. В литературе приводят данные по методам контроля состояния трубопроводов. Основное внимание уделяют магнитным и электромагнитным методам, При этом предпочтение отдают последним. Здесь же кратко описываются ультразвуковые и радиографические методы.
Модели, не описываемые какими-либо математическими уравнениями и представимые в виде набора табличных коэффициентов или номограмм, рекомендованных для оценки коррозионного состояния металлов.

Для оценки состояния покрытия на трубопроводе при эксплуатации целесообразно использовать переходное сопротивление изолированного трубопровода, параметры, характеризующие проницаемость материала покрытия, и число антиоксиданта (для стабилизированных композиций), оставшегося в покрытии. Для оценки коррозионного состояния стенки трубы следует использовать данные замеров коррозионных потерь металла под покрытием или в местах его дефекта, а также размеры и взаиморасположение коррозионных поражений на стенке трубы. Ко второй - местная коррозия (каверны, питтинги, пятна), одиночные (при расстоянии между ближайшими краями соседних поражений более 15 см), групповые (при расстоянии между ближайшими краями соседних поражений от 15 до 0 5 см) и протяженные (при расстоянии между ближайшими краями соседних поражений менее 0 5 см) поражения. Одиночные коррозионные поражения не приводят к возникновению отказов на трубопроводах.
Для оценки состояния изоляционного покрытия на трубопроводе в процессе эксплуатации необходимо использовать значения переходного сопротивления трубопровода, параметры, характеризующие проницаемость материала покрытия, и количество актиоксиданта (для стабилизированных композиций), оставшегося в изоляции. Для оценки коррозионного состояния стенки трубы необходимо использовать данные замеров коррозионных потерь металла под покрытием или в местах его дефекта, а также размеры и взаиморасположения коррозионных поражений на стенке трубы.
При оценке коррозионного состояния трубопровода определяют виды коррозии, степень поврежденности коррозией наружной стенки труб с обобщенной характеристикой участков, оценивают максимальную и среднюю скорость коррозии, прогнозируют коррозионное состояние участка на 3 - 5 лет.
В табл. 9.12 приведена оценка коррозионного состояния трубопровода при полном наборе влияющих факторов и соответствующие рекомендации.
На практике для количественной оценки коррозионной стойкости металлов можно использовать любое свойство или характеристику металла, которые существенно и закономерно изменяются при коррозии. Так, в системах водоснабжения оценку коррозионного состояния труб можно дать по изменению во времени гидравлического сопротивления системы или ее участков.
Для изыскания возможности уменьшения потерь металла в результате коррозии и снижения значительных прямых и косвенных потерь от коррозии необходима оценка коррозионного состояния аппаратов и коммуникаций химико-технологических систем. При этом следует провести как оценку коррозионного состояния химико-технологической системы, так и прогнозирование возможного развития коррозии и влияния этого процесса на работоспособность аппаратов и коммуникаций химико-технологических систем.
Методика измерений приведена в разделе II. Объем и комплекс измерений, необходимых для оценки коррозионного состояния сооружения, предусмотрены ведомственными инструкциями, утвержденными в установленном порядке.
Сложность и своеобразие протекания процесса коррозии подземных металлических и железобетонных конструкций обусловлены особыми условиями подземной среды, где взаимодействуют атмосфера, биосфера и гидросфера. В связи с этим особое внимание уделяется разработке и созданию аппаратуры и систем для оценки коррозионного состояния объектов, находящихся под землей. Такая оценка может проводиться на основе измерения усредненного по времени потенциала металлической конструкции относительно земли. Для определения среднего значения потенциала разработаны приборы - интеграторы блуждающих токов. Они просты в изготовлении, не требуют специальных источников электропитания и надежны в эксплуатации. Использование этих приборов дает информацию о характере пространственного распределения анодных, катодных и знакопеременных зон для выбора места подключения средств электрохимической защиты и интегрального учета эффективности ее работы. Эта информация может быть использована как в процессе проектирования, строительства и монтажа нового оборудования, так и в процессе эксплуатации. Появляется возможность осуществления плановых мероприятий по обеспечению высокой надежности металлических и железобетонных конструкций в условиях длительной эксплуатации.
Оценку опасности коррозии стальных подземных трубопроводов, вызываемой влиянием электрифицированного транспорта, работающего на переменном токе, следует производить на основании результатов замеров разности потенциалов между трубопроводом и окружающей средой. Методика измерений приведена в разделе II. Объем и комплекс измерений, необходимые для оценки коррозионного состояния трубопровода, определяются ведомственными инструкциями, утвержденными в установленном порядке.
Контроль режима ведут на основании результатов анализов проб вод и пара, показаний рН - метров питательной и котловой воды, периодических определений количественного и качественного состава отложений, а также оценки состояния металла котла в коррозионном отношении. Оперативный персонал особо контролирует два основных показателя режима: дозу комплесона (по убыли уровня в мернике рабочего раствора 7 с пересчетом на расход питательной воды) и рН котловой воды чистого отсека. Вырезка представительных образцов труб поверхности нагрева, качественный и количественный анализ отложений, оценка коррозионного состояния металла в сравнении с его исходным состоянием в первые 1 - 2 года отработки режима выполняются через каждые 5 - 7 тыс. ч работы.
Поэтому имеют место случаи, когда из-за неточного определения расположения коррозионных дефектов на поверхности и внутри трубопровода вследствие перестраховки допускается неоправданная замена трубопровода на значительных участках, что приводит к большому перерасходу государственных средств. Следовательно, требуется надежная оценка коррозионного состояния трубопроводов и своевременное и правильное проведение их ремонта на основании полученных данных. С этой целью в нашей стране разработаны, сконструированы и проходят испытания дефектоскопы для оценки коррозионного состояния трубопроводов без их вскрытия из траншеи.

  • 1. Основные понятия и показатели надёжности (надёжность, безотказность, ремонтопригодность, долговечность и др.). Характеристика.
  • 2. Взаимосвязь качества и надёжности машин и механизмов. Возможность оптимального сочетания качества и надёжности.
  • 3. Способы определения количественных значений показателей надёжности (расчётные, экспериментальные, эксплуатационные и др.). Виды испытаний на надёжность.
  • 4. Способы повышения надёжности технических объектов на стадии проектирования, в процессе производства и эксплуатации.
  • 5. Классификация отказов по уровню их критичности (по тяжести последствий). Характеристика.
  • 7. Основные разрушающие факторы, действующие на объекты в процессе эксплуатации. Виды энергии, оказывающие влияние на надёжность, работоспособность и долговечность машин и механизмов. Характеристика.
  • 8. Влияние физического и морального износа на предельное состояние объектов трубопроводного транспорта. Способы продления периода исправной эксплуатации конструкции.
  • 9. Допустимые и недопустимые виды повреждений деталей и сопряжений.
  • 10. Схема потери работоспособности объектом, системой. Характеристика предельного состояния объекта.
  • 11. Отказы функциональные и параметрические, потенциальные и фактические. Характеристика. Условия, при которых отказ может быть предотвращён или отсрочен.
  • 13. Основные типы структур сложных систем. Особенности анализа надёжности сложных систем на примере магистрального трубопровода, насосной станции.
  • 14. Способы расчёта надёжности сложных систем по надёжности отдельных элементов.
  • 15. Резервирование как способ повышения надёжности сложной системы. Разновидности резервов: ненагруженный, нагруженный. Резервирование систем: общее и раздельное.
  • 16. Принцип избыточности как способ повышения надежности сложных систем.
  • 17. Показатели надежности: наработка, ресурс технический и его виды, отказ, срок службы и его вероятностные показатели, работоспособность, исправность.
  • 19. Надежность и качество, как технико-экономические категории. Выбор оптимального уровня надежности или ресурса на стадии проектирования.
  • 20. Понятие «отказ» и его отличие от «повреждения». Классификация отказов по времени их возникновения (конструкционные, производственные, эксплуатационные).
  • 22. Деление мт на эксплуатационные участки. Защита трубопроводов от перегрузок по давлению.
  • 23. Причины и механизм коррозии трубопроводов. Факторы, способствующие развитию коррозии объектов.
  • 24. Коррозионное поражение труб магистральных трубопроводов (мт). Разновидности коррозионного поражения труб мт. Влияние процессов коррозии на изменение свойств металлов.
  • 25. Защитные покрытия для трубопроводов. Требования, предъявляемые к ним.
  • 26. Электро-хим. Защита трубопроводов от коррозии, ее виды.
  • 27. Закрепление трубопроводов на проектных отметках, как способ повышения их надежности. Способы берегоукрепления в створах подводных переходов.
  • 28. Предупреждение всплытия трубопроводов. Методы закрепления трубопроводов на проектных отметках на обводняемых участках трассы.
  • 29. Применение системы автоматизации и телемеханизации технологических процессов для обеспечения надежной и устойчивой работы мт.
  • 30. Характеристики технического состояния линейной части мт. Скрытые дефекты трубопроводов на момент пуска в эксплуатацию и их виды.
  • 31. Отказы запорно-регулирующей арматуры мт. Их причины и последствия.
  • 32. Отказы механо - технологического оборудования нпс и их причины. Характер отказов магистральных насосов.
  • 33. Анализ повреждений основного электротехнического оборудования нпс.
  • 34. Чем определяется несущая способность и герметичность резервуаров. Влияние скрытых дефектов, отклонений от проекта, режимов эксплуатации на техническое состояние и надежность резервуаров.
  • 35. Применение системы технического обслуживания и ремонта (тор) при эксплуатации мт. Задачи, возлагаемые на систему тор. Параметры, диагностируемые при контроле технического состояния объектов мт.
  • 36. Диагностика объектов мт, как условие обеспечения их надежности. Контроль состояния стенок труб и арматуры методами разрушающего контроля. Испытания трубопроводов.
  • 37. Контроль состояния стенок трубопроводов методами неразрушающего контроля. Аппараты для диагностирования: самоходные и перемещаемые потоком перекачиваемой жидкости.
  • 38. Диагностика напряженно-деформированного состояния линейной части трубопровода.
  • 39, 40, 41, 42. Диагностика наличия утечек жидкости из трубопроводов. Методы диагностики мелких утечек в мнп и мнпп.
  • 1. Визуальный
  • 2. Метод понижения давления
  • 3. Метод отрицательных ударных волн
  • 4. Метод сравнения расходов
  • 5. Метод линейного баланса
  • 6. Радиоактивный метод
  • 7. Метод акустической эмиссии
  • 8. Лазерный газоаналитический метод
  • 9. Ультразвуковой метод (зондовый)
  • 43. Методы контроля состояния изоляционных покрытий трубопроводов. Факторы, приводящие к разрушениям изоляционных покрытий.
  • 44. Диагностика технического состояния резервуаров. Визуальный контроль.
  • 45. Определение скрытых дефектов в металле и сварных швах резервуара.
  • 46. Контроль коррозионного состояния резервуаров.
  • 47. Определение механических свойств металла и сварных соединений резервуаров.
  • 48. Контроль геометрической формы и осадки основания резервуара.
  • 49. Диагностика технического состояния насосных агрегатов.
  • 50. Профилактическое обслуживание мт, как способ повышения надежности в процессе его эксплуатации. Стратегии то и ремонта.
  • 51. Система планово-предупредительного ремонта (ппр) и ее влияние на надежность и долговечность мт. Виды то и ремонта.
  • 52. Перечень мероприятий, включаемых в систему ппр трубопроводных систем.
  • 53. Недостатки системы ппр по наработке и основные направления ее совершенствования.
  • 54. Капитальный ремонт линейной части мт, его основные этапы. Виды капитального ремонта нефтепроводов.
  • 55. Последовательность и содержание работ при ремонте трубопровода с подъемом и укладки его на лежки в траншее.
  • 56. Аварии на мт, их классификация и организация ликвидации аварий.
  • 57. Причины аварий и виды дефектов на мт.
  • 58. Технология аварийно - восстановительных работ трубопроводов.
  • 59. Способы герметизации трубопроводов. Требования, предъявляемые к герметизирующим устройствам.
  • 60. Метод герметизации трубопровода через «окна».
  • Толщину листов верхних поясов, начиная с четвертого, проверяют по образующей вдоль шахтной лестницы по высоте пояса (низ, середина, верх). Толщину нижних трех поясов проверяют по четырем диаметрально противо­положным образующим. Толщины патрубков, размещенных на листах первого пояса, измеряют в нижней части, не менее, чем в двух точках.

    Толщину листов днища и кровли измеряют по двум взаимноперпенди- кулярным направлениям. Число измерений на каждом листе должно быть не менее двух. В местах, где имеется коррозионное разрушение листов кровли, вырезаются отверстия размером 500x500 мм и производятся измерения сече­ний элементов несущих конструкций. Толщину листов понтона и плавающей крыши измеряют на ковре, а также на наружных, внутренних и радиальных ребрах жесткости.

    Результаты измерений осредняются. При изменении толщины листа в нескольких точках в качестве фактической принимается среднеарифмитиче- ская величина. Измерения, давшие результат, отличающийся от среднеариф- митической величины более, чем на 10 % в меньшую сторону, указываются дополнительно. При измерении толщины нескольких листов в пределах одно­го пояса или любого другого элемента резервуара за фактическую толщину принимается минимально замеренная толщина отдельного листа.

    Результаты измерений сравниваются с предельно допустимыми величи­нами толщин стенки, кровли, несущих конструкций, понтонов.

    Предельно допустимый износ листов кровли и днища резервуара не должен превышать 50 %, а окраек днища - 30 % проектной величины. Для не­сущих конструкций покрытия (ферм, балок) износ не должен превышать 30 % от проектной величины, а для листов понтона (плавающей крыши) - 50% в центральной части и 30 % для коробов.

    47. Определение механических свойств металла и сварных соединений резервуаров.

    Для определения фактической несущей способности и пригодности резервуара к дальнейшей эксплуатации весьма важно знать механические свойства основного металла и сварных соединений.

    Механические испытания производятся в случае, когда отсутствуют данные о первоначальных механических свойствах основного металла и сварных соединений, при значительной коррозии, при появлении трещин, а также во всех других случаях, когда имеется подозрение на ухудшение механических свойств, усталость при действии переменных и знакопеременных нагрузок, перегрева, действия чрезмерно высоких нагрузок.

    Механические испытания основного металла выполняются в соответствии с требованиями ГОСТ 1497-73 и ГОСТ 9454-78. Они включают в себя определение пределов прочности и текучести, относительного удлинения и ударной вязкости. При механических испытаниях сварных соединений (согласно ГОСТ 6996-66) выполняют определение предела прочности, испытания на статический изгиб и ударную вязкость.

    В случаях, когда требуется определить причины ухудшения механических свойств металла и сварных соединений, появление трещин в различных элементах резервуара, а также характер и размеры коррозионного повреждения, находящегося внутри металла, производятся металлографические исследования.

    Для механических испытаний и металлографических исследований вырезают основной металл диаметром 300 мм в одной из четырех нижних поясов стенки резервуара.

    В процессе металлографических исследований определяют фазовый состав и размеры зерна, характер термической обработки, наличие неметаллических включений и характер коррозионного разрушения (наличие межкристал- лидной коррозии).

    Если в паспорте резервуара отсутствуют данные о марке металла, из которого он изготовлен, прибегают к химическому анализу. Для определения химического состава металла используются образцы, вырезанные для механических испытаний.

    Механические свойства и химический состав основного металла и сварных соединений должен соответствовать указаниям проекта, а также требованиям стандартов и технических условий.

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО
АКЦИОНЕРНАЯ КОМПАНИЯ
ПО ТРАНСПОРТУ НЕФТИ «ТРАНСНЕФТЬ»
ОАО «АК «ТРАНСНЕФТЬ»

ТЕХНОЛОГИЧЕСКИЕ
РЕГЛАМЕНТЫ

ПРАВИЛА ПРОВЕДЕНИЯ ОБСЛЕДОВАНИЙ
КОРРОЗИОННОГО СОСТОЯНИЯ
МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

Москва 2003

Регламенты, разработанные и утвержденные ОАО «АК «Транснефть», устанавливают общеотраслевые обязательные для исполнения требования по организации и выполнению работ в области магистрального нефтепроводного транспорта, а также обязательные требования к оформлению результатов этих работ.

Регламенты (стандарты предприятия) разрабатываются в системе ОАО «АК «Транснефть» для обеспечения надежности, промышленной и экологическом безопасности магистральных нефтепроводов, регламентации и установления единообразия взаимодействия подразделений Компании и ОАО МН при ведении работ по основной производственной деятельности как между собой, так и с подрядчиками, органами государственного надзора, а также унификации применения и обязательного исполнения требований соответствующих федеральных и отраслевых стандартов, правил и иных нормативных документов.

ПРАВИЛА ПРОВЕДЕНИЯ ОБСЛЕДОВАНИЙ
КОРРОЗИОННОГО СОСТОЯНИЯ
МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ ПРАВИЛ

1.1. Правила обследования распространяются на магистральные нефтепроводы подземной прокладки, имеющие систему активной защиты от коррозии и тип изоляционного покрытия, соответствующий .

1.2. При разработке правил использованы нормативные документы:

Сооружения стальные магистральные. Общие требования к защите от коррозии.

Трубопроводы стальные магистральные. Общие требования к защите от коррозии.

РД 153-39.4-039-99 «Нормы проектирования ЭХЗ магистральных трубопроводов и площадок магистральных нефтепроводов».

2. ЗАДАЧИ ОБСЛЕДОВАНИЯ

Основными задачами обследования являются:

2.1. Оценка коррозионного состояния нефтепроводов.

2.2. Оценка состояния противокоррозионной защиты.

2.3. Своевременное обнаружение и устранение коррозионных повреждений.

2.4. Разработка и проведение мероприятий по повышению эффективности защиты, оптимизации работы средств ЭХЗ.

3. ОРГАНИЗАЦИЯ РАБОТ ПО ПРОТИВОКОРРОЗИОННОМУ ОБСЛЕДОВАНИЮ

3.1. Комплексное противокоррозионное обследование должно проводиться производственными лабораториями ЭХЗ при ОАО МН или специализированными организациями, имеющими разрешение (лицензию) Госгортехнадзора на проведение данных работ.

3.2. Обследование должно проводиться:

Не позднее чем через 6 месяцев после ввода в эксплуатацию системы электрохимической защиты вновь построенных нефтепроводов с обязательной выдачей сертификата соответствия качества противокоррозионной защиты государственным стандартам;

Не реже 1 раза в 5 лет для нефтепроводов, проложенных на участках с высокой коррозионной опасностью по ;

Не реже 1 раза в 10 лет на остальных участках.

Внеочередное обследование при обнаружении в процессе эксплуатации вредного влияния от систем ЭХЗ вновь построенных близлежащих и пересекающих подземных коммуникаций и от электрифицированных железных дорог.

3.3. В соответствии с периодичностью обследования по п. в ОАО МН должна быть разработана программа противокоррозионного обследования на ближайшие 10 лет.

3.4. Ежегодно до 1 января следующего года Программа должна корректироваться с учетом выполненных в текущем году работ по обследованию.

3.5. Обследование должно проводиться с использованием полевых лабораторий ЭХЗ и современного измерительного оборудования, как отечественного, так и импортного.

3.6. Методика обследования должна соответствовать РД «Инструкция по комплексному обследованию коррозионного состояния магистральных нефтепроводов».

3.7. Договоры на обследование со сторонними организациями должны быть заключены до 1 апреля текущего года.

3.8. Обязательным приложением к договору является «Программа коррозионного обследования нефтепровода», составленная на основании «Инструкции по комплексному обследованию коррози онного состояния МН», с учетом особенностей коррозионного состояния и коррозионных факторов обследуемого участка.

3.9. Окончательный срок выдачи результатов по коррозионному обследованию сторонней организацией должен быть не позднее 1 апреля следующего года. Информационный отчет с предварительными, наиболее важными результатами должен быть выдан до 1 ноября текущего года для своевременного включения в план следующего года мероприятий, требующих капитальных затрат.

4. СОСТАВ КОМПЛЕКСНОГО ОБСЛЕДОВАНИЯ

4.1. Анализ коррозионной опасности по трассе нефтепроводов проводится на основе данных коррозионной опасности грунтов, в том числе и микробиологической, наличию и характеру блуждающих токов, наличию участков, длительное время находившихся без защиты.

4.2. Сбор и анализ статистических данных об условиях эксплуатации противокоррозионной защиты обследуемого участка нефтепровода за весь предшествующий комплексному обследованию период: технологических характеристик средств ЭХЗ, сведений о работе средств электрохимической защиты за прошедший период эксплуатации, сведений по состоянию изоляции.

4.3. Проведение комплекса электрометрических работ:

По локализации дефектов и оценке переходного сопротивления изоляционного покрытия методом градиента потенциала, методом выносного электрода и другими методами;

По измерению защитного потенциала по протяженности, а в зонах блуждающих токов - по протяженности и по времени;

По измерению коррозионных характеристик почвы - удельного сопротивления грунта, поляризационных характеристик почвы.

4.4. Определение коррозионно-опасных мест на основе обработки и анализа данных обследования.

4.5. Вскрытие нефтепровода в коррозионно-опасных местах в процессе обследования с составлением актов шурфовки, устранение дефектов изоляции и коррозионных повреждений силами эксплуатационных служб.

4.6. Решение расчетно-аналитических задач по обеспечению коррозионной безопасности нефтепровода:

4.6.1. Оценка состояния изоляции, в том числе:

Прогнозирование изменения ее физико-химических свойств во времени;

Оценка остаточного ресурса изоляции;

Определение оптимального срока и очередности ремонта изоляции участков.

4.6.2. Определение технического состояния средств ЭХЗ:

Соответствие параметров установок нормативным документам;

Техническое состояние элементов установок ЭХЗ;

Прогнозирование изменения параметров установок ЭХЗ во времени;

Выработка мероприятий по оптимизации работы и срокам проведения ремонта средств ЭХЗ.

4.6.3. Оценка коррозионного состояния нефтепровода.

4.7. Составление отчета по проведенному обследованию с выдачей рекомендаций по совершенствованию комплексной защиты нефтепроводов.

4.8. При необходимости разработка проекта ремонта и реконструкции средств ЭХЗ на основе рекомендаций обследования.

4.9. Результаты обследования должны быть представлены на бумажных и магнитных носителях.

4.10. Служба ЭХЗ ОАО МН после получения отчета должна использовать результаты обследования для пополнения эксплуатационной и архивной базы данных о состоянии противокоррозионной защиты.

5. ОСНОВНЫЕ ПОЛОЖЕНИЯ МЕТОДИКИ ОБСЛЕДОВАНИЯ

5.1. Анализ коррозионной опасности по трассе нефтепровода

5.1.2. Оценку коррозионной опасности по трассе нефтепровода производят с целью выделения участков, требующих первоочередного обследования с расширенным перечнем электрометрических работ.

5.1.3. Оценка коррозионной опасности не производится в том случае, когда коррозионно-опасные участки установлены ранее.

5.1.4. Измерение удельного электрического сопротивления грунта производится по четырехэлектродной схеме Веннера.

5.1.5. Коррозионную опасность от биологической коррозии определяют с помощью микробиологического анализа грунтов по существующим методикам.

5.1.6. Коррозионную опасность от блуждающих токов рассчитывают по формулам с учетом расстояния между электрифицированной ж/д и нефтепроводом, расстояния между тяговыми подстанциями и рода тока ж/д (постоянный, переменный).

5.1.7. Общая коррозионная опасность рассчитывается с учетом величин, указанных в пп. - . По результатам оценки коррозионной опасности определяют очередность и объем обследования участков нефтепроводов.

5.2. Анализ данных по условиям эксплуатации противокоррозионной защиты за предыдущий период.

5.2.1. Цель анализа:

Определение опасных в коррозионном отношении участков нефтепровода;

Интегральная оценка сопротивления изоляции по участкам за весь период эксплуатации.

5.2.2. Для анализа необходимо обобщить данные:

По результатам осмотра нефтепровода в шурфах по представленным актам шурфовки;

По внутритрубной дефектоскопии;

По коррозионным отказам нефтепроводов;

По проводившимся ранее замерам защитного потенциала и режимам работы установок ЭХЗ.

5.2.3. Участки, имевшие коррозионные поражения, подлежат детальному изучению. Все коррозионные поражения следует сопоставить с оценкой коррозионной опасности, определенной на первом этапе обследования.

5.2.4. Ретроспективная оценка состояния изоляции производится по сопротивлению изоляции, рассчитанному по эксплуатационным данным установок ЭХЗ и распределению разности потенциалов вдоль трубопровода.

5.3. Проведение электрометрических работ

5.3.1. Поиск дефектных мест в изоляции производят одним из следующих методов:

Выносного электрода;

Градиента напряжения постоянного тока;

Продольного градиента;

Поперечного градиента.

5.3.2. Измерение защитного потенциала по протяженности определяют по поляризационному потенциалу.

5.3.3. Поляризационный потенциал измеряют по методикам в соответствии с и НТД.

5.3.4. Сплошные измерения защитного потенциала могут быть выполнены следующим образом:

Методом выносного электрода;

Методом интенсивных измерений с использованием отключения средств ЭХЗ.

5.3.5. На основании замеров составляется график распределения защитного потенциала вдоль нефтепровода.

5.4. Решение расчетных задач по обеспечению коррозионной безопасности

5.4.1. При оценке текущего состояния изоляции и прогнозировании изменения ее параметров решают следующие задачи:

Дают интегральную оценку по сопротивлению ее постоянному току;

Определяют физико-химические свойства изоляции;

Рассчитывают остаточный ресурс изоляции;

Определяют оптимальный срок переизоляции нефтепровода.

5.4.2. Определение параметров средств ЭХЗ и прогнозирование изменения ее параметров во времени.

Расчеты производятся на основании исходных данных:

Электрических параметров катодных и протекторных установок;

Паспортных характеристик средств ЭХЗ;

Конструктивных и электрических параметров анодных заземлений;

Данных периодического контроля установок ЭХЗ.

5.4.3. Оценка остаточного ресурса элементов установок ЭХЗ производится:

Для установок катодной защиты:

Анодного заземления;

Катодного преобразователя;

Дренажной линии;

Защитного заземления.

Для установок дренажной защиты:

Дренажа;

Дренажной линии;

Для протекторных установок - протекторов.

5.4.4. Комплексная оценка состояния ЭХЗ нефтепровода осуществляется в соответствии с по следующим критериям:

Общая защищенность;

Защищенность трубопровода по протяженности;

Защищенность трубопровода по времени.

5.5. Оценка коррозионного состояния нефтепровода производится с целью выявления наиболее опасных в коррозионном отношении участков нефтепроводов

5.5.1. Оценка производится путем обобщения всех данных обследования и данных по наличию коррозионных повреждений. Сводные данные по коррозионному состоянию заносятся в форму, определяемую НТД по противокоррозионному обследованию.

5.5.2. Коррозионную опасность определяют по сумме баллов, которыми оцениваются влияние различных коррозионных факторов.

5.6.2. На основании анализа данных о состоянии изоляционного покрытия и расчетов остаточного ресурса изоляции должны быть выделены участки и сроки ремонта изоляции.

5.6.3. На основании данных о работе средств ЭХЗ и технико-экономических расчетов по остаточному ресурсу и оптимизации должны быть определены мероприятия по совершенствованию системы ЭХЗ для обеспечения требуемой защиты по протяженности и по времени.

Коррозионное состояние трубопроводов является одним из основных факторов, характеризующих работоспособность ЛЧ МГ, надежность и безопасность ее эксплуатации. Защита трубопроводов определяется состоянием изоляционного покрытия и систем ЭХЗ.

Для установок электрохимзащиты (ЭХЗ) контроль технического состояния отдельных осуществляют путем периодических осмотров. При этом производят проверку показаний электроизмерительных приборов контрольными приборами, измерение потенциалов в точках дренажа, измерение электрического сопротивления цепи постоянного тока, оценку непрерывности работы установки катодной защиты по специальному счетчику или счетчику электрической энергии, контроль контактных соединений, анодных заземлений, узлов и блоков установок.

Осмотры производят не реже: 4-х раз в месяц для установок дренажной защиты, 2-х раз в месяц - для установок катодной защиты.

Постоянный контроль по работе установок катодной защиты обеспечивается телеметрическими устройствами. Это позволяет снизить затраты и время на объезды установок, сократить время перерывов в их работе от момента обнаружения отказа до замены или ремонта установки, повышает точность настройки и стабильность параметров средств ЭХЗ.

При проверке состояния электрохимзащиты участка МГ определяют:

Уровень катодной защиты трубопровода;

Величину поляризационных потенциалов методом отключения источника поляризации (СКЗ) или экстраполяционными методами с использованием этих же измерительных систем;

Токи поляризации, протекающие по трубопроводу, по методике, рекомендуемой ГОСТ;

Величину удельного электрического сопротивления грунта;

Состав проб межслойного электролита, содержащегося в местах вздутий, мешков и других дефектах изоляционного покрытия.

Контроль защищенности трубопроводов заключается в периодических измерениях потенциалов "сооружение-земля" на всем протяжении трубопровода и сравнении полученных значений с нормативным значением, а также в определении суммарного времени, в течение которого трубопровод на всем протяжении имеет защитное значение потенциалов.

Измерение потенциалов на всем протяжении трубопровода производят выносным электродом сравнения с шагом измерения 10-20 м не реже одного раза в пять лет. При этом первое измерение должно быть произведено по истечении не менее 10 месяцев после засыпки трубопровода.

Измерения потенциалов в контрольно-измерительных колонках (КИК) и выносным электродом в точках на трассе, имеющих минимальные значения потенциала, производят не менее двух раз в год. Дополнительно измерения выполняются при работах, связанных с развитием систем ЭХЗ, изменениями в режиме работы установок катодной защиты, при работах связанных с ликвидацией источников блуждающих токов.



По результатам измерений потенциалов должны быть построены графики и определена защищенность по протяженности, а на основании данных телеконтроля по работе установок катодной защиты или их технических осмотров - защищенность трубопроводов во времени.

Контроль технического состояния изоляционных покрытий в процессе строительства осуществляется на участках законченного строительства. Контроль сплошности выполняется способом катодной поляризации. Данные о результатах заносятся в исполнительную документацию.

Контроль изоляционных покрытий при эксплуатации проводят в процессе комплексного обследования МГ. Сопоставление данных полученных при обследовании МГ с данными исполнительной документации позволяет оценить изменение защитных свойств покрытий во времени и по протяженности.

Определение состояния покрытия на обследуемом участке оценивается в два этапа как прямым, так и косвенным методами.

Косвенно на основании анализа данных по изменению защитной плотности тока по протяженности и во времени, результатов измерений потенциала "трубопровод-земля" и коррозионного электрометрического обследования;

Прямым методом при выборочном шурфовании.

Косвенные методы определения состояния изоляции и системы ЭХЗ предполагают интегральные и локальные измерения.

Интегральными методами определяют характеристики обследуемого участка газопровода в целом. Эти методы позволяют оценивать состояние покрытия на всей длине участка и определять места отслоений и сквозных повреждений изоляции. При этом выявляются отдельные специфические зоны, в которых нужно применить локальные методы контроля покрытий и средств ЭХЗ.



Основными критериями определения периодичности контроля изоляции без вскрытия траншеи являются защитная плотность тока на трубопроводе и переходное сопротивление "трубопровод-земля", позволяющие интегрально оценить качество изоляционного покрытия. На основе этих данных с помощью искателей производят поиск мест повреждений изоляционного покрытия и осуществляют выборочное шурфование.

Прямой метод или выборочное шурфование предполагает вскрытие газопровода, очистку его поверхности от грунта, визуальное обследование изоляционного покрытия и измерение переходного сопротивления, например, методом "полотенца". При этом следует проводить измерения сплошности, адгезии, толщины и переходного электросопротивления покрытия. Отбор проб изоляции и лабораторные испытания покрытий выполняют через каждые 3 года эксплуатации. Одновременно производится отбор проб грунта и грунтового электролита для контроля системы ЭХЗ.

После обследования производится вскрытие изоляции, прежде всего на участках с механическими повреждениями и другими дефектами. При обнаружении на освобожденных местах коррозионных и других повреждений зона осмотра расширяется для определения границ поврежденного участка трубы. В обязательный осмотр входит участок кольцевого сварного стыка.

Контроль состояния изоляционных покрытий выборочным шурфованием производят через 3 года с начала эксплуатации покрытий, а при достижении критических значений ЭХЗ и снижения локального переходного сопротивления до 10 ом·м - один раз в год.

Как интегральные, так и локальные методы являются электрометрическими. Они используют приборы постоянного и переменного тока и подразделяются на контактные и бесконтактные.

Оценку коррозионного состояния осуществляют путем осмотра и инструментальных измерений в контрольных шурфах. Определения выполняют в первую очередь:

На участках с неудовлетворительным состоянием защитных покрытий;

На участках, не обеспеченных непрерывной катодной поляризацией защитной величины;

На коррозионно-опасных участках трассы, к которым относятся горячие участки с температурой транспортируемой продукции выше 40° С, участки трубопроводов, эксплуатирующиеся южнее 50-й параллели северной широты, в засоленных почвах (солончаках, солонцах, солодях, такырах, сорах и др.), на поливных почвах;

На участках блуждающих токов;

На участках выхода трубопроводов из грунта;

На пересечениях трубопроводов;

На склоновых участках оврагов, балок и рек;

На участках промышленных и бытовых стоков;

На участках с периодическим обводнением грунта.

При визуальном осмотре и индивидуальном измерении коррозионного состояния трубопровода в шурфе определяют:

Наличие и характер продуктов коррозии;

Максимальную глубину каверн;

Площадь поверхности, поврежденной коррозией.



Поделиться