Правила диагностики коррозионного состояния металлических объектов и систем электрохимической защиты. Комплексное обследование коррозионного состояния и режимов электрохимической защиты действующих магистральных газонефтепроводов

коррозионное состояние газопроводов большого диаметра">

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Аскаров Герман Робертович. Оценка влияния нестабильного температурного режима на коррозионное состояние газопроводов большого диаметра: диссертация... кандидата технических наук: 25.00.19 / Аскаров Герман Робертович;[Место защиты: Уфимский государственный нефтяной технический университет].- Уфа, 2014.- 146 с.

Введение

1. Современные представления о температурном влиянии на коррозионное состояние газопровода 8

1.1 Краткая характеристика коррозионных процессов в трубопроводном транспорте 8

1.1.1 Характерные коррозионные дефекты на стальной трубе 10

1.2 Нарушение защитных свойств изоляционного покрытия 11

1.3 Коррозионная агрессивность грунтов 15

1.4 Причины формирования коррозионных элементов на наружной поверхности газопровода 19

1.4.1 Условия формирования макро-коррозионных элементов на наружной поверхности газопровода 19

1.4.2 Изменение электрического сопротивления грунта, прилегающего к трубопроводу, при движении влаги в коррозионно-активном слое грунта 23

1.5 Влияние температуры и колебаний температуры на коррозионное состояние газопровода 31

1.6 Диагностика газопроводов с использованием внутритрубных снарядов. 32

1.7 Модели для прогнозирования коррозионных процессов 34 Выводы к главе 1 40

2. Оценка импульсного воздействия влажности и температуры на коррозионную активность грунтов, окружающих газопровод 42

2.1 Физическое моделирование и выбор управляющих параметров. 42

2.2 Краткое описание экспериментальной установки. 45

2.3 Результаты опытов и эффект повышения коррозионной активности грунтов при импульсном температурном воздействии 48

2.4 Исследование влияния частоты колебаний температуры и тепловых параметров на коррозионную активность грунтов 58

2.5 Зависимость скорости коррозии от средней температуры при нестабильном теплообмене 67

Выводы к главе 2 70

3. Прогноз коррозионного состояния газопровода на основе данных внутритрубной дефектоскопии 71

3.1 Критерии оценки коррозионной опасности. 71

3.2 Анализ коррозионного состояния участка газопровода по данным внутритрубной дефектоскопии 74

3.2.1 Характеристика участка газопровода 74

3.2.2 Анализ результатов ВТД. 75

3.3 Образование и скорость развития коррозионных очагов на трубопроводах с пленочной изоляцией. 80

3.4 Коррозионный прогноз дефектности труб большого диаметра. 85

Выводы к главе.3 . 100

4. Разработка метода ранжирования участков газопроводов по степени опасности для вывода в ремонт 102

4.1. Методика ранжирования участков газопроводов по степени опасности 101

4.1.1 ВТД газопроводов при ранжировании по степени опасности 101

4.1.2 Уточняющие интегральные показатели для определения выводимых в ремонт участков газопроводов. 103

4.2 Комплексная диагностика изоляционного покрытия и средств ЭХЗ 104

4.2.1 Факторы опасности коррозионного повреждения трубопроводов. 105

4.2.2 Пример расчета комплексного показателя коррозионной активности 106

4.3 Учет колебаний температуры на газопроводах больших диаметров 107

4.4 Суммарный интегральный показатель. 109

4.4.1 Пример расчета суммарного интегрального показателя. 110

4.5 Эффективность разработки 113

Выводы к главе 4 . 115

Литература 117

Введение к работе

Актуальность работы

Общая протяжённость эксплуатируемых в системе ОАО «Газпром» подземных магистральных газопроводов составляет около 164,7 тыс. км. Основным конструкционным материалом для сооружения газопроводов в настоящее время является сталь, которая обладает хорошими прочностными свойствами, но низкой коррозионной стойкостью в условиях окружающей среды – грунта, который при наличии влаги в поровом пространстве является коррозионно-активной средой.

После 30-ти и более лет эксплуатации магистральных газопроводов изоляционное покрытие стареет и перестает выполнять защитные функции, вследствие чего коррозионное состояние подземных газопроводов существенно ухудшается.

Для определения коррозионного состояния магистральных газопроводов в настоящее время используется внутритрубная дефектоскопия (ВТД), которая с достаточной точностью определяет местоположение и характер коррозионных повреждений, что позволяет отслеживать и прогнозировать их образование и развитие.

Значительную роль в развитии коррозионных процессов играет наличие грунтовых вод (почвенного электролита), причем следует отметить, что скорость коррозии в большей степени возрастает не в постоянно обводненном или сухом грунте, а в грунте с периодическим увлажнением.

Предшествующими исследованиями установлена связь между импульсным изменением температуры газопровода и колебанием влажности в коррозионно-активном слое грунта. Однако не были определены количественные параметры импульсного температурного воздействия на активизацию коррозионных процессов.

Исследование коррозионной агрессивности грунтов на участках пролегания магистральных газопроводов при импульсном тепловом воздействии и прогноз коррозионного состояния трубопроводов являются актуальными для газотранспортной отрасли.

Цель работы

Разработка и совершенствование методов определения коррозионного состояния участков магистральных газопроводов для своевременного вывода их в ремонт.

Основные задачи :

1 Определение изменения удельного электрического сопротивления грунта вокруг магистрального газопровода и анализ особенностей коррозионных процессов в трубопроводном транспорте.

2 Исследование в лабораторных условиях влияния импульсного теплового воздействия перекачиваемого газа и влажности на коррозионную активность грунта, окружающего подземный газопровод.

3 Исследование образования и развития коррозионных дефектов на магистральном газопроводе и прогноз его коррозионного состояния по данным внутритрубной дефектоскопии.

4 Разработка методики ранжирования участков магистральных газопроводов на основе прогноза их коррозионного состояния для вывода в ремонт.

Научная новизна

1 Определено изменение и построены эпюры удельного электрического сопротивления грунта в зависимости от влажности по периметру подземного газопровода большого диаметра.

2 Экспериментально доказан факт активизации коррозионных процессов при импульсном изменении температуры перекачиваемого газа по сравнению со стабильным температурным воздействием, а также определен диапазон температур, в котором при нестабильном (импульсном) температурном воздействии развивается максимальная скорость коррозии.

3 Определена функциональная зависимость для прогноза образования и развития коррозионных дефектов на магистральных газопроводах.

Практическая ценность работы

На основании проведенных исследований разработан стандарт предприятия РД 3-М-00154358-39-821-08 «Методика ранжирования газопроводов ООО «Газпром трансгаз Уфа» по результатам внутритрубной дефектоскопии для вывода их в ремонт», согласно которому проводится ранжирование участков магистральных газопроводов между крановыми узлами с целью определения последовательности вывода их в ремонт.

Методы исследований

Поставленные в работе задачи решались с использованием теории подобия путем моделирования условий теполомассообмена подземного газопровода с окружающим грунтом.

Результаты диагностических работ обрабатывались по методу наименьших квадратов с проведением корреляционного анализа. Расчеты проводились с использованием пакета прикладных программ «StatGrapfics Plus 5.1».

На защиту выносятся :

Результаты исследований изменения удельного электрического сопротивления грунта в зависимости от влажности по периметру магистрального газопровода;

Результаты лабораторных исследований импульсного теплового воздействия на активизацию коррозионных процессов на стальном трубопроводе;

Метод ранжирования участков магистральных газопроводов для вывода их в ремонт.

Публикации

Основные результаты диссертационной работы опубликованы в 30 научных трудах, из них четыре статьи в ведущих рецензируемых научных журналах, рекомендованных ВАК Министерства образования и науки РФ.

Структура и объем работы

Условия формирования макро-коррозионных элементов на наружной поверхности газопровода

Коррозионные разрушения металла происходят на наружной поверхности газопровода в местах нарушения изоляционного покрытия, несмотря на наличие катодной защиты газопровода. Часто эти явления наблюдаются на начальных участках газопроводов (10-20 км после выхода с компрессорной станции), с пересеченной местностью, приуроченых к оврагам, балкам, местам с периодическим увлажнением.

Анализ и обобщение многочисленных материалов показывает, что на активацию коррозионных процессов влияет поведение грунтовых вод под тепловым воздействием газопровода, которое усиливается по мере совместного влияния (или совпадения) как минимум трех факторов:

Импульсного изменения температуры газопровода;

Нарушения изоляционного покрытия газопровода;

Большой диаметр трубопровода.

1. Принципиальное отличие начального участка от конечного (при отсутствии или стабильности отборов газа по трассе) в том, что именно на начальном участке газопровода максимально ощущаются колебания или импульсное изменение температуры газа. Эти колебания происходят как из-за неравномерности газопотребления, так и по причине несовершенства системы воздушного охлаждения газа, подаваемого в газопровод. При использовании аппаратов воздушного охлаждения погодные колебания температуры воздуха вызывают аналогичные колебания температуры газа и как по волноводу передаются непосредственно на начальный участок газопровода (особенно это явление проявляется на первых 20…30 км газопровода).

В опытах Исмагилова И.Г. было зарегистрировано, что температурная волна в 5 0С, искусственно созданная отключением АВО газа на КС Полянская, прошла до следующей станции КС Москово со снижением амплитуды до 2 0С. На нефтепроводах, где скорости движения потоков на порядок меньше, в силу инерционности продукта перекачки, такого явления не наблюдается.

2. При нарушении изоляционного покрытие происходит формирование макрокоррозионных элементов на наружной поверхности трубопровода. Как правило, это происходит на участках с резким изменением параметров окружающей среды: омического сопротивления грунтов и коррозионных сред (рисунок 1.3 и рисунок 1.4).

3. Эффект «большого диаметра». Геометрические параметры горячего трубопровода таковы, что и температура, и влажность грунта, а следовательно и прочие характеристики: омическое сопротивление грунта, свойства грунтовых электролитов, поляризационные потенциалы и т. д. – меняются по периметру. Влажность по периметру меняется в пределах от 0,3 % до 40 % и до полного насыщения. Удельное сопротивление грунта при этом изменяется в 10 …100 раз.

Рисунок 1.4 – Модель макрокоррозионных элементов Исследования показали, что температура перекачиваемого газа влияет на катодную поляризацию трубной стали в карбонатных растворах. Зависимость потенциалов максимума анодного тока от температуры линейна. Увеличение температуры ведет к возрастанию тока растворения и смещает интервал потенциалов анодного тока в отрицательную область. Увеличение температуры приводит не только к изменению скорости электрохимических процессов, но и изменяет значения рН раствора.

С ростом температуры карбонатного раствора потенциал максимума анодного тока, связанного с образованием оксида, при возрастании температуры на 10 С смещается в сторону отрицательных значений потенциала на 25 мВ . Вследствие неоднородности грунта, изменения его влажности и аэрации, неравномерного уплотнения, оглеения и др. эффектов, а также дефектов самого металла, возникает большое количество макрокоррозионных элементов. При этом коррозионному разрушению в большей степени подвергаются анодные участки, имеющие более положительный потенциал, по сравнению с катодными, чему способствует импульсное тепловое воздействие газопровода на миграционные процессы в грунтовом электролите.

Колебательные процессы температуры и влажности в грунте провоцирует общую коррозию. Макрокоррозионные элементы, локализованные на поверхности, развиваются по сценарию КРН или очагами язвенной коррозии. На общность электрохимического процесса, приводящего к образованию коррозионных язв и трещин, указывается в .

Именно неравновесные термодинамические процессы происходят более интенсивно и с максимальным эффектом проявления основных признаков. При импульсном температурном воздействии на грунт, почти синхронно, меняются параметры, определяющие его коррозионную активность. Так как этот процесс происходит на протяжении всего времени эксплуатации газопровода под сильным воздействием доминирующих параметров, то место локализации макроэлемента становится вполне определенным, зафиксированным по отношению к геометрическим отметкам.

Как показано в непрерывное колебательное движение грунтовой влаги, которое можно объяснить с позиций термокапиллярно-пленочного механизма движения происходит на протяжении всего времени эксплуатации газопровода.

Таким образом, даже при наличии катодной защиты газопровода, в местах повреждения изоляционного покрытия газопровода большого диаметра вследствие неравномерности распределения влажности грунта по периметру трубы неизбежно возникают макрокоррозионные элементы, провоцирующие почвенную коррозию металла трубы.

Одним из важных условий протекания коррозионных процессов является наличие в почвенном электролите диссоциированных ионов.

Ранее не принимаемый к рассмотрению фактор, определяющий протекание неравновесных процессов, импульсное температурное воздействие газа на стенку трубопровода и импульсное изменение влажности грунта, прилегающего к трубопроводу.

Результаты опытов и эффект повышения коррозионной активности грунтов при импульсном температурном воздействии

График кинетической кривой активности коррозионных процессов во времени. основываясь на физических представлениях процесса (рисунок 1.9) и используя закономерности кинетической кривой, экстраполировать результаты внутритрубной дефектоскопии по выявленным в различные периоды эксплуатации максимальным и средним дефектам. Но это вряд ли позволит прогнозировать динамику количественного роста коррозионных дефектов.

Представленные модели, описывают коррозионные процессы в рамках конкретных ситуаций, при соблюдении определенных условий, химической среды, температуры, сталей различных марок, давления и т.п. Особый интерес представляют модели, описывающие коррозионные процессы аналогичных систем (магистральных трубопроводов) с изоляционным покрытием, работающих в схожих условиях с газопроводами и регистрация результатов также на базе внутритрубной диагностики. Например, в методике проведения факторного анализа на магистральных нефтепроводах, независимо от диаметра и вида изоляционного покрытия авторами предлагается модель: где L-коэффициент затухания коррозионного процесса; Н – глубина коррозионного повреждения, мм; Но – толщина стенки трубы, мм; t – время эксплуатации, год.

Из приведенной формулы 1.6 видно, что авторами принято утверждение, что в начале эксплуатации трубопроводов коррозия имеет наиболее интенсивный рост, а затем носит затухающий характер вследствие пассивации. Вывод и обоснование формулы (1.6) приводятся в работе .

Утверждение, что коррозионные процессы стартуют с началом эксплуатации трубопровода, является довольно спорным, т.к. новое изоляционное покрытие обеспечивает защиту значительно надежней, чем со временем, когда изоляция стареет и теряет свои защитные свойства.

Несмотря на обилие исследований, ни одна из моделей, предложенных для прогнозирования коррозионных процессов, не позволяет в полной мере учитывать влияние температуры на скорость коррозии, т.к. не учитывают ее импульсное изменение в процессе эксплуатации.

Это утверждение позволяет сформулировать цель исследований: экспериментально доказать, что нестабильный температурный режим газопровода является первопричиной активации коррозионных процессов на наружной поверхности газопровода.

1. Проведен анализ литературных источников с целью раскрытия влияния температуры газа на коррозионное состояние газопровода:

1.1. Рассмотрены особенности коррозионных процессов в трубопроводном транспорте;

1.2.Определена роль коррозионной активности грунтов при утере изоляционным покрытием защитных свойств. 1.3. Изучена техническая возможность внутритрубной дефектоскопии по оценке дефектности трубопроводов.

1.4. Рассмотрены модели других исследователей по прогнозированию коррозионных процессов.

2. Исследованы причины формирования макрокоррозионных элементов на наружной поверхности трубопровода.

3. Доказано, что при движении влаги в коррозионно- активном слое грунта происходит изменение электрического сопротивления грунта, прилегающего к трубопроводу.

Анализ коррозионного состояния участка газопровода по данным внутритрубной дефектоскопии

На то, что периодическое увлажнение грунта ускоряет коррозионные процессы, указывает практика эксплуатации магистральных газопроводов.

Изучая это явление, Исмагилов И.Г. доказал, что магистральный газопровод большого диаметра является мощным источником тепла, оказывающим импульсное температурное воздействие на грунт и вызывающий колебательные движения влаги в коррозионно – активном слое грунта .

Однако, высказанное им предположение, что импульсное температурное воздействие усиливает коррозионную активность слоя грунта, прилегающего к трубопроводу, нуждается в экспериментальном подтверждении.

Поэтому целью исследования является постановка эксперимента для изучения и оценки коррозионной активности грунтов при импульсном температурном воздействии.

Задачи исследования коррозионных процессов обычно решаются экспериментальным путем. Существуют различные методы оценки влияния коррозии, в т. ч. и ускоренных коррозионных испытаний .

Таким образом, необходимо смоделировать условия тепломассообмена с окружающим грунтом, характерные для участка газопровода, пересекающего овраг, по дну которого протекает ручей и определить в какой степени изменяется коррозионная активность грунта при импульсном воздействии температуры и влажности.

Наиболее точно исследовать воздействие каждого фактора (импульсной температуры и влажности) возможно в лабораторных условиях, где фиксировано и с высокой точностью регулируется параметры процесса коррозии. Импульсный температурный режим газопровода при квазистационарном теплообмене моделировался для газопроводов, проходящих по территории Башкортостана и сходных с ним регионов. Согласно теории подобия, при равенстве чисел подобия, характеризующих процесс теплообмена, с соблюдением геометрического подобия, процессы теплообмена можно считать подобными .

Грунт, использованный в эксперименте, взят с трассы газопровода «Уренгой – Петровск» участка Поляна – Москово с позиций 3 часа, 12 часов и 6 часов по периметру газопровода. Теплофизические свойства грунта, использованного в лабораторных исследованиях, одинаковые с натурными, т.к. образцы грунтов отобраны с коррозионно-активного участка действующего газопровода. Для одинаковых грунтов автоматически выполнилось равенство чисел Лыкова Lu и Ковнера Кв для натуры и модели:

При соблюдении равенства температурных напоров, идентичности грунтов и одинаковом уровне их влажности выполнялось равенство чисел Коссовича Ко и Постнова Pn.

Таким образом, задача моделирования условий тепломассообмена, в данном случае, сводилась к такому подбору параметров установки, чтобы обеспечивалось равенство чисел Фурье Fo и Кирпичева Ki для натуры и модели.

При соответствии чисел Фурье Fo = ax/R годовому периоду эксплуатации трубопровода диаметром 1,42 м, при равенстве коэффициентов температуропроводности а = а, на основании (2.5) получаем для модели:

Так, при диаметре опытной трубы 20 мм годовой период на установке должен «проходить» за 1,7 ч.

Условия теплообмена моделировались критерием Кирпичева

При глубине заложения газопровода до оси трубы Н0 = 1,7 м и Н0/Rтр = 2,36 (относительная глубина заложения газопровода на участке Поляна – Москово), на основании равенства (2.6), получаем для модели:

Для моделирования «ручья» необходимо выдержать равенство чисел Рейнольдса для натуры и модели:

Так как жидкость одна и та же, вода - то на основании (2.12) и с учетом геометрического подобия, получаем равенство:

Соответствующие расчеты с учетом (2.13) показывают, что подача воды, имитирующей ручей на данной установке, должна быть капельной.

Так как в процессе эксперимента необходимо менять температуру стенки трубы в пределах реального ее изменения 30...40С , и регулировать, поддерживая импульсный режим, то в качестве управляющего параметра была выбрана температура tтр наружной поверхности стальной трубки - образца Ст. 3.

Для определения относительной коррозионной активности грунта при импульсном температурном воздействии, по сравнению со стабильным температурным воздействием, был выбран ускоренный метод испытания , на основании которого коррозионная активность грунтов определяется по потере массы стальных образцов.

Уточняющие интегральные показатели для определения выводимых в ремонт участков газопроводов

С целью проведения анализа коррозионного состояния и изучения динамики роста коррозионных дефектов на действующем магистральном газопроводе диаметром 1420 мм, рассмотрены результаты диагностики его технического состояния. Одним из ключевых направлений диагностики является ВТД, которая в настоящее время является наиболее оперативным и информативным методом диагностики магистральных газопроводов.

В таблице 3.1 приводятся общие критерии выделения участков магистральных газопроводов высокой, повышенной и умеренной коррозионной опасности по глубине коррозии. Согласно к участкам с высокой коррозионной опасностью (ВКО) относят участки со скоростью коррозии более 0,3 мм/год и глубиной более 15% от толщины стенки трубы.

Критерии оценки по глубине коррозионных поражений (в процентах от толщины стенки) применяют к трубопроводам с периодом эксплуатации, приближающимся к 30% амортизационного срока службы (11 лет и более).

Необходимым и достаточным условием для отнесения любого участка магистральных газопроводов к одной из трех степеней коррозионной опасности является соответствие хотя бы одному из трех указанных критериев.

Согласно к зонам повышенной коррозионной опасности относятся участки магистральных трубопроводов диаметром свыше 1000 мм на которых следует применять усиленный тип защитных покрытий,.

По результатам пропуска снарядов-дефектоскопов оценивают интегральный показатель коррозионного состояния участков магистральных газопроводов по плотности коррозионных дефектов sкд.

Интегральный показатель плотности коррозионных дефектов не учитывает неравномерность их распределения по длине газопровода и может применяться только для предварительной оценки коррозионного состояния магистральных газопроводов с обязательным указанием суммарной протяженности участков (в км), по которым он рассчитывается.

Поэтому, после определения интегрального показателя коррозионного состояния магистрального газопровода выполняется дифференцированный анализ участков магистрального газопровода по глубине и интенсивности коррозионных повреждений:

Оценивается характер распределения коррозионных дефектов по длине газопровода;

Выделяются участки ВКО и ПКО (коррозионной опасности);

Определяются показатели интенсивности коррозионных повреждений в пределах участков ВКО и ПКО;

Для всего контролируемого участка газопровода (от камеры запуска до камеры приема снаряда-дефектоскопа) рассчитывается коэффициент неравномерности плотности коррозионных повреждений bн, который равен

отношению суммарной длины неповрежденных коррозией участков к суммарной длине участков, имеющих повреждения (каверны и трещины), зарегистрированные внутритрубным дефектоскопом:

Более точно отражает степень коррозионной опасности (охвата) коэффициент дефектности труб Кд.

Так как размеры труб известны, то определены и линейные параметры дефектных участков. При известном количестве дефектных труб появляется возможность планировать их замену при капитальном ремонте (переизоляции) участка. В нефтепроводном транспорте, например, в АК «ТРАНСНЕФТЬ» для определения коррозионного состояния участков трубопроводов используют «Методику проведения факторного анализа коррозионных повреждений магистральных нефтепроводов по данным внутритрубной диагностики и выработки рекомендаций по ее предотвращению», которая также базируется на положении об изменении скорости развития коррозионных повреждений во времени . В основу факторного анализа положен метод разделения системы магистральных нефтепроводов на участки (кластеры), для которых сохраняется постоянство основных факторов, определяющих развитие коррозионных повреждений, а кинетика развития коррозионных повреждений во времени описывается регрессионными уравнениями – характеристическими зависимостями. По полученным характеристическим зависимостям осуществляется прогноз глубины коррозионных повреждений для случая однократного и повторного обследования внутритрубными приборами участка трубопровода.

Для анализа коррозионного состояния были рассмотрены параллельные участки (1843 – 1914 км) газопроводов Уренгой-Петровск и Уренгой-Новопсков, находящиеся на выходе с КС «Полянская», «горячий участок», подверженные активному и длительному коррозионному воздействию.

Это потенциально наиболее опасный участок в масштабах ООО «Газпром трансгаз Уфа», где с 1998 по 2003 годы на участке произошли 6 аварий по причине КРН (5 аварий на газопроводе Уренгой-Петровск, 1 авария на газопроводе Уренгой-Новопсков). После четырех аварий 1998 года, было проведено обследование в протяженных шурфах двенадцати участков газопровода Уренгой-Петровск (1844-1857 км), расположенных в оврагах и балках. При обследовании было выявлено 744 очага КРН, в том числе глубиной до 7,5 мм. С целью устранения очагов КРН было заменено 700 м трубопроводов . Аналогичная работа была проведена в 2000 году на газопроводе Уренгой-Новопсков, при этом было выявлено 204 очага КРН .

Участки со стресс-коррозионными дефектами не классифицируются в нормативной литературе на критерии высокой или повышенной категории коррозионной опасности . Но, с учетом вышеизложенного, участок в коридоре газопроводов 1843-1914 км по составу грунтов, может быть отнесен к коррозионно-активному.

Несмотря на принятые меры, в 2003 года на газопроводе Уренгой-Петровск, на рассматриваемом участке, произошли еще 2 аварии по причине КРН. С 2003 года диагностику технического состояния в газотранспортной отрасли стали проводить снарядами нового поколения НПО «Спецнефтегаз», которые при первой внутритрубной дефектоскопия выявили 22 участка с дефектами КРН, при этом максимальная глубина отдельных трещин достигала половины толщины стенки трубы. Согласно «Правилам эксплуатации магистральных газопроводов» внутритрубную дефектоскопию рекомендуется проводить в среднем один раз в 5 лет. Однако, учитывая особые обстоятельства (аварии по причине КРН, значительное количество выявленных участков с дефектами КРН), ООО «Газпром трансгаз Уфа» с целью отслеживания и предупреждения развития стресс -коррозионных дефектов, в короткий период с 2003г. по 2005 г. провело второй пропуск внутритрубного дефектоскопа .

Б . В . Кошкин , В . Н . Щербаков , В . Ю . Васильев , ГОУВПО «Московский государственный Институт Стали и Сплавов (технологический университет ) » ,

ГУП «Мосгортепло»

Электрохимические методы оценки, мониторинга, диагностики, прогнозирования коррозионного поведения и определения скоростей коррозии, достаточно давно и хорошо разработанные в теоретическом плане , и широко применяемые в лабораторных условиях, начали применяться для оценки коррозионного состояния в эксплуатационных условиях лишь в последние 5-10 лет.

Отличительной особенностью электрохимических методов оценки является возможность определения коррозионного состояния (в том числе и непрерывно) в реальном времени при одновременном отклике материала и коррозионноактивной среды.

Наиболее широкое применение для оценки коррозионного состояния в эксплуатационных условиях имеют методы поляризационного сопротивления (гальвано- и потенциостатический), резистометрический и импедансный. Практическое применение получили два первых. Гальваностатический метод измерения используется в портативных переносных приборах, потенциостатический - преимущественно при лабораторных исследованиях вследствие более сложного и дорогого оборудования.

Метод поляризационного сопротивления основан на измерении скорости коррозии посредством определения тока коррозии.

Существующие зарубежные приборы для измерения скоростей коррозии основаны в основном на принципе поляризационного сопротивления и с достаточной степенью точности могут определять скорость коррозии лишь в условиях полного погружения измеряемого объекта в коррозионно-активную среду, т.е. практически определяется коррозионная активность среды. Такая схема измерений реализуется в зарубежных приборах для оценки скорости коррозии (приборы фирм ACM, Ronbaks, Voltalab, Magna и др.). Приборы достаточно дороги и не адаптированы к российским условиям. Отечественные коррозиметры определяют агрессивность среды вне зависимости от реальных сталей, из которых изготовлены трубопроводы, в связи с чем не могут определять коррозионную стойкость трубопроводов в эксплуатационных условиях.

В связи с этим в МИСиС был разработан коррозиметр, предназначенный для определения скоростей коррозии трубопроводов тепловых сетей из реально эксплуатирующихся сталей.

Малогабаритный коррозиметр «КМ-МИСиС» (рис. 1) разработан на современной элементной базе на основе прецизионного цифрового микровольтметра с нулевым сопротивлением. Коррозиметр предназначен для измерения скорости коррозии методом поляризационного сопротивления с бестоковой IR-компенсацией. Прибор имеет простой, интуитивно понятный интерфейс управления и ввода/вывода информации на жидкокристаллическом дисплее.

Программой коррозиметра предусмотрена возможность введения параметров, позволяющих оценивать скорость коррозии различных марок сталей и установку нуля. Эти параметры устанавливаются при изготовлении и калибровке коррозиметра. Коррозиметр показывает как измеренное значение скорости коррозии, так и текущие значения разности потенциалов «Е 2 -Е1 » для контроля параметров.

Основные параметры коррозиметра находятся в соответствии с Единой Системой Защиты от Коррозии и Старения (ЕСЗКС).

Коррозиметр «КМ-МИСиС» предназначен для определения скорости коррозии методом поляризационного сопротивления в электролитически проводящих средах и может использоваться для определения скорости коррозии металлических деталей и оборудования в энергетике, химической и нефтехимической промышленности, строительстве, машиностроении, при охране окружающей среды, для нужд образования.

Опыт эксплуатации

Коррозиметр прошел опытно-промышленные испытания в эксплуатационных условиях теплосетей г. Москвы.

Испытания на Ленинском проспекте проводили в августе - ноябре 2003 г. на первом и втором контуре тепловых сетей (абонент 86/80). На этом участке в I и II контур трубопроводов тепловых сетей были вварены патрубки, в которые установили датчики (рабочие электроды) и проводили ежедневные измерения скорости коррозии и электрохимических параметров с помощью опытного образца коррозиметра. Измерения проводили во внутренней части трубопроводов с регистрацией параметров теплоносителя. Основные параметры теплоносителя приведены в таблице 1.

При измерениях с различной длительностью от 5 до 45 мин. регистрировали основные параметры коррозионного состояния трубопроводов тепловых сетей при длительных испытаниях. Результаты измерений приведены на рис. 2 и 3. Как следует из результатов испытаний, начальные значения скорости коррозии хорошо коррелируются с длительными испытаниями как при испытаниях в I, так и во II контуре. Средняя скорость коррозии для I контура составляет около 0,025 - 0,05 мм/год, для II контура около 0,25 - 0,35 мм/год. Полученные результаты подтверждают имеющиеся опытные и литературные данные по коррозионной стойкости трубопроводов тепловых сетей из углеродистых и низколегированных сталей. Более точные значения могут быть получены при конкретизации марок сталей эксплуатируемых трубопроводов. Обследование коррозионного состояния тепловых сетей проводили на участке шоссе Энтузиастов - Саянская ул. Участки теплотрассы в этом районе (№ 2208/01 - 2208/03) часто выходят из строя, трубопроводы на данном уча
стке были уложены в 1999 - 2001 гг. Теплотрасса состоит из прямой и обратной нитки. Температура прямой нитки теплотрассы около 80-120 ОС при давлении 6 атм, обратной - около 30-60 ОС. В весенне-осенний период теплотрасса часто подтопляется грунтовыми водами (вблизи Терлецкие пруды) и/или канализационными стоками. Характер укладки теплотрассы в этом районе - канальная, в бетонные желоба с крышкой, и глубиной укладки около 1,5-2 м. Первые течи в теплотрассе были замечены весной 2003 г., вышли из строя и были заменены в августе - сентябре 2003 г. При осмотре канал теплотрассы был затоплен примерно на 1/3 - 2/3 диаметра трубы грунтовыми водами или стоками. Трубы теплотрассы имели изоляцию из стеклоткани.

Участок № 2208/01 - 22008/02. Теплотрасса уложена в 1999 г., трубы сварные, продольно-шовные, диаметром 159 мм, изготовлены предположительно из ст. 20. Трубопроводы имеют теплоизоляционное покрытие из кузбасс-лака, минеральной ваты и пергамина (рубероида или стеклоткани). На данном участке имеется 11 дефектных зон со сквозными коррозионными поражениями преимущественно в зоне затопления канала. Плотность коррозионных поражений по длине прямой нитки 0,62 м- 1 , обратной -0,04 м -1 . Вышли из строя в августе 2003 г.

Участок № 2208/02 - 2208/03. Уложен в 2001 г. Преимущественная коррозия прямой нитки теплотрассы. Общая длина дефектных участков трубопровода, подлежащего замене -82 м. Плотность коррозионных поражений прямой нитки 0,54 м -1 . По данным ГУП «Мосгортепло» трубопроводы изготовлены из стали 10ХСНД.

Участок № 2208/03 - ЦТП. Уложен в 2000 г., трубы бесшовные, предположительно из ст. 20. Плотность коррозионных поражений прямой нитки -0,13 м -1 , обратной нитки -0,04 м- 1 . Средняя плотность сквозных коррозионных поражений (типа делокализованной язвенной коррозии) внешней поверхности трубопроводов прямой нитки 0,18 - 0,32 м -1 . На вырезанных образцах труб покрытие на внешней стороне отсутствует. Характер коррозионных поражений внешней стороны трубы образцов - преимущественно общая коррозия при наличии сквозных поражений типа язвенной коррозии, которые имеют конусообразную форму с размером около 10-20 см с внешней поверхности, переходящих в сквозные диаметром около 2-7 мм. На внутренней части трубы - небольшая общая коррозия, состояние удовлетворительное. Результаты определения состава образцов труб приведены в таблице 2.

По составу материал образцов труб соответствует сталям типа «Д» (или ХГСА).

Поскольку часть трубопроводов находилась в канале в воде, возможно было оценить скорость коррозии наружной части трубы. Оценку скорости коррозии проводили в местах выхода канальной прокладки, в грунтовой воде в непосредственной близости от трубопровода, и в местах наиболее быстрого течения грунтовых вод. Температура грунтовых вод составляла 40 - 60 ОС.

Результаты измерений приведены в табл. 3-4, где данные, полученные в спокойной воде, выделены красным цветом.

Результаты измерений показывают, что скорости общей и локальной коррозии увеличиваются во времени, что наиболее выражено для локальной коррозии в спокойной воде. Скорость общей коррозии имеет тенденцию к возрастанию на течении, в спокойной воде увеличиваются скорости локальной коррозии.

Полученные данные позволяют определить скорость коррозии трубопроводов тепловых сетей и прогнозировать их коррозионное поведение. Скорость коррозии трубопроводов на данном участке составляет > 0,6 мм/год. Максимальный срок службы трубопроводов в этих условиях - не более 5-7 лет с периодическими ремонтами в местах локальных коррозионных поражений. Более точный прогноз возможен при непрерывном коррозионном мониторинге и по мере накопления статистических данных.

Анализ эксплуатационных коррозионных поражений т

Федотов С.Д., Улыбин А.В., Шабров Н.Н.

инженер С. Д. Федотов;
к. т. н., доцент А. В. Улыбин *;
д. ф.- м. н., профессор Н. Н. Шабров,
ФГБОУ ВПО Санкт - Петербургский государственный политехнический университет

Ключевые слова: коррозионный износ; стальные конструкции; ультразвуковая толщинометрия; обследование строительных конструкций

Хорошо известно, что коррозионные потери металлических конструкций приносят большой экономический ущерб. Коррозионное разрушение элементов стальных конструкций и арматуры в железобетоне является одним из основных факторов, приводящих к недопустимому и аварийному состоянию конструкций . Скорость коррозии изменяется в широких пределах от 0,05 до 1,6 мм в год и зависит от коррозионной стойкости металла, параметров агрессивной среды, наличия и состояния антикоррозионной обработки, конструктивного решения и прочих факторов.

Определение фактического коррозионного износа эксплуатируемых стальных конструкций необходимо как для контроля их технического состояния и своевременного восстановления, так и для предотвращения аварий (отказов и обрушений).

В современных нормативах по обследованию, технической литературе и научных трудах вопрос правильного определения коррозионного износа раскрыт не полностью. Из имеющихся указаний не всегда четко понятно, чем и как измерять потери, какие участки выбирать и как их подготавливать. Нет однозначного мнения о том, как отображать результат измерений. Таким образом, необходимо обобщить имеющиеся в литературе данные и разработать методику контроля с учетом современного приборного обеспечения.

Контроль коррозионных потерь на практике сводится к двум основным задачам:

1) определение фактического остаточного сечения металлического элемента;

2) сравнение фактической толщины с изначальной (либо измеренной на предыдущем этапе обследования).

Казалось бы, обе указанные задачи весьма легко решаются. Однако на практике возникают проблемы как при измерении толщины поврежденной конструкции, так и при сопоставлении ее с изначальной. Также не всегда очевидно, как наиболее удобно и информативно отобразить результат исследования. Решению данных проблем, схематично представленных на рис.1, посвящена данная статья.

Рисунок 1. Методы определения коррозионных потерь

В статье рассмотрены основные методы контроля, реализуемые при наличии сплошной коррозии металла. Вопросы измерения местной коррозии (язвенной, питтинговой, межкристаллитной и др.) в данном материале не рассматриваются.

Измерение остаточной толщины механическим методом

Прежде чем рассматривать вопрос толщинометрии, необходимо отметить, что обмеры металлических конструкций требуют максимальной точности измерений по сравнению с конструкциями из других материалов. Согласно нормативно - методическим документам и технической литературе точность измерения должна быть не менее 0,05-0,1 мм.

Наиболее простым и требующим минимальных затрат на оборудование способом является определение фактической толщины элементов стальных конструкций с помощью различных механических измерительных приборов. Для реализации указанных целей с обеспечением необходимой точности рекомендуется использовать штангенциркули, микрометры и механические толщиномеры, а также измерительные скобы .

На практике применение наиболее доступных из указанных средств, а именно штангенциркулей, не всегда удобно, а иногда невозможно. Объясняется это тем, что измерение штангенциркулем можно осуществить только на открытых участках профилей (перья уголков, полки двутавров и швеллеров и др.) (рис. 2). Особенно часто возникает необходимость измерения остаточной толщины более тонкого элемента сечения, которым является стенка в швеллерах и двутаврах. В большинстве случаев свободный конец профиля (на участках опирания) недоступен и, соответственно, измерение выполнить невозможно. Вторым существенным ограничением является длина губок штангенциркуля. При этом имеется возможность измерения толщины металла только на участках, расположенных вдоль края исследуемого профиля в пределах полосы, равной длине губок.

Рисунок 2. Измерение остаточной толщины штангенциркулем

Рисунок 3. Измерение остаточной толщины ИЧТ со скобой

Рисунок 4. Микрометр - толщиномер

Более удобными средствами измерения являются толщиномеры со скобой. Применяя их, возможно выполнить измерение толщины на локальных участках, расположенных на отдалении от краев исследуемого элемента. При неравномерном коррозионном повреждении данное преимущество будет решающим в сравнении со штангенциркулем. Помимо этого, при использовании толщиномера с мессурой (рис. 3) может быть увеличена точность измерения по сравнению с механическим штангенциркулем до 0,01 мм и более. С другой стороны, применение механических толщиномеров в виде скоб сопровождается теми же ограничениями, что и у штангенциркулей.

Очевидно, что применение вышеуказанных механических средств измерения невозможно на элементах замкнутого профиля - трубах, которые применяются с каждым годом все в больших объемах. Единственно возможный способ механического измерения толщины замкнутого профиля заключается в сверлении отверстия и измерении специализированным микрометром (рис. 4). При этом точность измерения и производительность контроля резко снижаются.

Измерение остаточной толщины физическим методом

Для определения толщины, сплошности и других параметров изделий и покрытий, выполненных из различных материалов, используется широкий спектр физических методов неразрушающего контроля (НК). Среди них можно отметить магнитные, вихретоковые, радиоволновые методы и др. .

Одним из наиболее успешно применяемых физических методов контроля толщины и других параметров стальных конструкций является ультразвуковой метод. Подтверждением тому стало повсеместное изучение и применение ультразвуковых приборов (толщиномеров и дефектоскопов) в отечественной и зарубежной практике . Данный метод основан на способности ультразвуковых волн отражаться на границе раздела сред . Необходимо отметить, что для целей, описываемых в настоящей работе, ультразвуковой эхо - метод является единственно применимым среди физических методов НК .

Основные преимущества использования современных приборов, реализующих ультразвуковой метод толщинометрии:

Возможность контроля при одностороннем доступе;

Работа на участках, удаленных от края конструкции (без наличия открытых краев);

Высокая производительность;

Достаточная точность измерений;

Относительно простые требования по предварительной подготовке участка измерения.

В России широко применяются ультразвуковые толщиномеры как отечественных, так и зарубежных производителей (ООО «АКС», ООО «Технотест», ЗАО «Константа», « Olympus » и др.). Наиболее удобными для работы в полевых условиях являются приборы - моноблоки (рис. 5).

Рисунок 5. Измерение толщины с помощью ультразвукового прибора

Безусловно, у них есть и недостатки, среди которых ограниченный диапазон измеряемых толщин, меньшая емкость аккумулятора и другие.

Для использования большинства ультразвуковых толщиномеров необходима подготовка поверхности стали путем зачистки или (предпочтительно) шлифовки участка измерения. С одной стороны, данное обстоятельство снижает производительность контроля, а в случае отсутствия источника электроснабжения - весьма существенно. С другой стороны, подготовка участка измерения также необходима для обеспечения нормальной точности контроля механическими толщиномерами. Кроме того, доступность портативных аккумуляторных инструментов для механической обработки поверхности металла в наши дни практически устраняет эту проблему.

Учитывая вышесказанное, можно сделать вывод о том, что преимущество ультразвуковых приборов перед механическими толщиномерами очевидно.

Определение начальной толщины сечения

Чтобы понять, каковы потери металла, необходимо знать его начальную толщину. Самым простым и достоверным способом является измерение толщины исследуемого элемента в неповрежденном сечении. В случае неограниченного (в пространстве) и продолжительного доступа агрессивной среды к открытым элементам зачастую вся площадь элемента имеет коррозионное повреждение. В данном случае определить изначальную толщину элемента прямым измерением невозможно.

В такой ситуации параметры сечения элементов определяют либо по проектной документации, либо по сортаменту металлопроката. Данный подход имеет невысокую достоверность и в ряде случаев невозможен (отсутствие документации, применение нестандартных сварных профилей и пр.). Если же проектная документация доступна для анализа, вероятность определения искомых параметров выше. Однако нет гарантии того, что возведенные конструкции полностью соответствуют проектному решению, а в реалиях отечественного строительства - исполнительной документации.

Выявление толщин элементов по сортаменту путем определения общих габаритов сечения (высоты и ширины) также не всегда возможно. Если конструкции выполнены из швеллеров и двутавров, для решения задачи необходимо наличие сортаментов, соответствующих периоду изготовления профилей. Однако при обследовании конструкций не всегда удается определить соответствие профилей конкретному сортаменту. При обследовании труб и уголков использование сортамента для определения начальной толщины невозможно, так как одним и тем же габаритам сечений соответствует большой диапазон толщин. Например, равнополочный уголок № 50 по ГОСТ 8509-93 может иметь начальную толщину от 3,0 до 8,0 мм с шагом 1,0 мм.

Косвенный метод контроля коррозионных потерь

В нормативах и технической литературе по обследованию зданий можно встретить рекомендации применять для приблизительной оценки величины коррозионных потерь косвенный метод. Суть его заключается в измерении толщины слоя продуктов коррозии и в оценке величины повреждения, равной 1/3 толщины коррозионных окислов.

Достоверность такого подхода с нашей точки зрения весьма сомнительна по следующим причинам. В основу идеи, вероятно, положен тот факт, что продукты коррозии имеют плотность существенно меньшую, чем разрушенный металл. Можно предположить, что для достоверной реализации метода плотность коррозионных окислов должна быть в 3 раза меньше плотности стали. Однако по результатам измерений, выполненных авторами на различных объектах, отношение плотностей продуктов коррозии (без учета объема открытых пор и воздушных прослоек) и стали изменяется в диапазоне 2,1...2,6 раза (табл. 1).

Таблица 1. Плотность коррозионных окислов

Объект отбора

Элемент

Условия эксплуатации

Плотность окислов, т / м 3

Отношение к плотности стали

Балки междуэтажного перекрытия жилого здания

Полка балки

Увлажнение во время протечек

Стенка балки

Канализационная решетка лаборатории

Уголок решетки

Периодическое увлажнение

Отстойник

Подкос лотка

Под уровнем жидкости

канализационных очистных сооружений

Уголок водослива

Постоянное увлажнение

Можно было бы опровергнуть данные утверждения тем, что именно за счет наличия пор и воздушных прослоек толщина продуктов коррозии как раз в три раза больше поврежденного слоя металла. Однако в этом и заключается вторая причина невозможности реализации косвенного подхода. Плотность «упаковки» продуктов коррозии (соотношение воздушных прослоек и пор с объемом окислов) зависит от разных факторов. К ним в разной степени относятся вид агрессивной среды, периодичность доступа среды к материалу, наличие микроорганизмов, являющихся катализатором процесса , и другие. В большей степени играет роль конструктивное решение, а именно наличие прилегающих к корродирующему элементу других конструкций, препятствующих свободному накоплению продуктов коррозии.

Авторам не раз приходилось наблюдать при обследовании однотипных конструктивных элементов различные по своей структуре продукты коррозии. Например, в одном из зданий постройки конца XIX века плотность коррозионных окислов, зафиксированных на стенках балок перекрытий, отличалась в разы. Причиной высокой плотности окислов являлось межбалочное заполнение в виде кирпичных сводиков, препятствующих свободному накоплению коррозионных слоев. На другом перекрытии того же здания коррозионные «пироги» вдоль стенок двутавровых балок имели суммарную толщину 5,0-7,0 см при толщине потерь стали 5,0-7,0 мм (рис. 6). В данном случае заполнение между балками было сделано в виде деревянного наката.

Рисунок 6. Слоистые коррозионные окислы, отобранные с балок перекрытия

Подводя итоги, необходимо отметить, что указанный косвенный метод мог бы быть реализован только в случае, когда продукты коррозии накапливаются за весь коррозионный период и не удаляются с места образования. В условиях открытых элементов (металлические фермы, колонны и пр.) невозможно однозначно определить суммарную толщину продуктов коррозии, которые могли либо быть счищены во время эксплуатации, либо просто упали с конструкции под собственным весом.

Представление результатов измерения

Еще одной проблемой, не освещенной в литературе, является вопрос о том, как представлять результат измерения износа. Имеются следующие варианты: в абсолютных единицах (мм, мкм); в процентах от толщины отдельного элемента сечения (полки, стенки); в процентах от площади всего сечения. Необходимо отметить, что аварийный критерий коррозионного износа, имеющийся в документах , выражается в процентах от площади сечения. Как правило, износ, нормируемый как аварийный, составляет 25% площади.

Для выполнения поверочных расчетов мало иметь информацию о потере площади сечения (либо о фактической площади остаточного сечения). Такая информация может быть достаточной только для расчета растянутых элементов. Для расчета сжатых и изогнутых элементов необходимо знать фактические габариты всех элементов сечения (полок, стенок, перьев уголков и др.). Поэтому представление результатов измерений в процентах от площади сечения недостаточно информативно. Установить процент потери площади сечения прямым измерением не представляется возможным, так как данный параметр можно определить только пересчетом. Это утверждение обосновывается следующим: в случае одинаковой скорости коррозии всех элементов сечения величина потерь будет одинакова по абсолютной величине (мм), при этом износ в процентах будет равен только для элементов с одинаковой начальной толщиной. Однако случаи равномерной коррозии всех элементов сечения с одинаковой скоростью встречаются редко.

Часто ошибка исследователей связана с тем, что потери измеряются только в одном из элементов сечения, по которому и делают вывод о коррозионном износе сечения в целом. Такой подход ошибочен, так как в зависимости от пространственного расположения, типа сечения, доступа агрессивной среды и других факторов износ разных частей сечения будет различным . Характерным примером является коррозия двутавровых балок в воздушной среде. При равномерном доступе агрессивной среды большему износу будут подвергаться верхняя поверхность горизонтально расположенных частей сечения (например, полок). Это происходит за счет скопления на них влаги, пыли, продуктов коррозии, ускоряющих процесс разрушения.

При определенных условиях, связанных, как правило, с доступом агрессивной среды, глубина коррозионных потерь сильно изменяется даже в пределах одного элемента сечения. В качестве примера на рис. 7. представлено сечение двутавровой балки надподвального перекрытия с коррозионными потерями. Как видно из рисунка, максимальные повреждения имеются на краях нижней полки и достигают 100% толщины. При этом по мере приближения к стенке процент износа уменьшается. Принять по измерению на краях, что полка, а тем более все сечение полностью утрачено, было бы в корне неправильным.

Рисунок 7. Неравномерное коррозионное повреждение нижней полки двутавровой балки надподвального перекрытия

Исходя из вышесказанного, для качественного выполнения обследования и представления его результатов необходимо:

Производить измерение остаточной толщины во всех элементах сечения, имеющих признаки повреждения;

При неравномерном коррозионном повреждении в пределах части сечения определять минимальные и максимальные толщины, а также выявлять зоны максимальных потерь (строить конкретный профиль остаточного сечения);

При определении потери площади сечения производить ее расчет по данным толщинометрии каждого из элементов сечения.

Практический пример

Для иллюстрации описанного выше приведем результаты обследования, задачей которого было определение процента коррозионного износа ферм покрытия.

Обследуемые металлические фермы (рис. 8) расположены в производственном корпусе кирпичного завода и перекрывают пролет 36 м. Элементы поясов и решеток ферм преимущественно выполнены из спаренных уголков, образующих тавровое сечение (рис. 9). Верхний пояс в крайних панелях выполнен из сварного двутавра с различной шириной полок. Соединения элементов выполнены на сварке с фасонками. Согласно проектной документации элементы ферм изготовлены из разных марок стали: элементы решетки из ВСтЗпс 6 по ГОСТ 380-71, элементы поясов из 14 Г 2 по ГОСТ 19281-73, фасонки из ВСтЗспб по ГОСТ 380-71.

Рисунок 8. Общий вид обследованных ферм

Рисунок 9. Сечение одного из элементов фермы

Зачистка поверхности в зазоре между уголками весьма трудоемка, а использование механических толщиномеров без удаления продуктов коррозии приводит к значительной погрешности измерения. Для решения поставленной задачи был использован ультразвуковой толщиномер А 1207 с рабочей частотой 2,5 МГц. Диапазон устанавливаемых скоростей варьируется от 1000 до 9000 м / с, что позволяет производить калибровку прибора для различных конструкционных сталей.

Рисунок 10. Коррозионное повреждение элемента фермы

В ходе обследования выполнен визуальный осмотр металлических элементов ферм, в результате которого установлены наличие повсеместного износа защитных окрасочных покрытий и сплошная коррозия металлических элементов (рис. 10). Измерения остаточной толщины выполнялись на наиболее поврежденных по визуальным признакам участках элементов ферм.

Ввиду длительной эксплуатации без своевременных периодических ремонтов и восстановления защитных покрытий элементы ферм на всей площади имели коррозионное повреждение.

Таким образом, определение начальной толщины сечения по измерению на неповрежденном участке не представлялось возможным. С учетом этого была предпринята попытка сопоставления фактических габаритов сечений с ближайшим большим (по толщине профиля) сечением по сортаменту. Определенные таким образом коррозионные потери составили 25-30%, что, согласно требованиям норматива , является аварийным признаком.

После первоначального анализа (сопоставления с сортаментом) заказчиком была найдена и предоставлена проектная документация. В результате анализа проекта установлено, что часть элементов фермы была выполнена из профилей большего сечения (по толщине и габаритам), чем указано в проекте. С учетом изначального применения профилей большего сечения и их коррозионного износа было выявлено, что фактические толщины данных элементов превосходят проектные. Таким образом, несущая способность, предусмотренная проектом для данных элементов, обеспечена. Коррозионные потери той части элементов, сечение которых соответствует проектным данным, оказались не столь существенными (не более 10%).

Итак, при определении коррозионного износа на основе сравнения с проектной документацией было выявлено, что его величина не превышает 10% площади сечения некоторых элементов. При отсутствии проектной документации и использовании в качестве изначальных сечений по сортаменту техническое состояние конструкций ошибочно могло быть признано аварийным.

Заключение

В качестве выводов по изложенному материалу можно выделить следующее.

1. Показано, что наиболее удобным и производительным, а иногда и единственно возможным методом для определения остаточной толщины стальных конструкций является ультразвуковой эхо - метод. Использование механических толщиномеров можно рекомендовать только в случае отсутствия или невозможности применения ультразвуковых толщиномеров (например, при низких температурах воздуха).

2. Обосновано, что косвенный метод по определению коррозионных потерь на основе измерения толщины продуктов коррозии неприменим ввиду недостоверности получаемых результатов.

3. Представление коррозионных потерь металла в процентном выражении дает качественную оценку состояния конструкции, а также позволяет оценить скорость коррозии.

4. Состояние конструкций в большинстве случаев необходимо определять поверочным расчетом. Для этого необходимо иметь информацию об остаточных геометрических характеристиках поврежденного сечения.

5. Разработан алгоритм определения коррозионного износа, который рекомендуется применять в практике обследования объектов (рис. 11).

6. Требуется обновление разделов нормативных документов, регламентирующих инструментальную оценку коррозионного износа и классифицирующих техническое состояние металлических конструкций с учетом предлагаемой методики.

Рисунок 11. Алгоритм оценки коррозионного износа (* при сплошной коррозии металла)

Литература

1. Пузанов А. В., Улыбин А. В. Методы обследования коррозионного состояния арматуры железобетонных конструкций // Инженерно - строительный журнал. 2011. № 7(25). С. 18-25.

2. Добромыслов А. Н. Диагностика повреждений зданий и инженерных сооружений. М.: АСВ, 2006. 256 с.

3. Пособие по обследованию строительных конструкций зданий. М.: АО «ЦНИИПРОМЗДАНИЙ», 1997. 179 с.

4. Ремнев В. В., Морозов А. С., Тонких Г. П. Обследование технического состояния строительных конструкций зданий и сооружений: Учебное пособие для вузов ж.- д. транспорта. М.: Маршрут, 2005. 196 с.

5. Пособие по контролю состояния строительных металлических конструкций зданий и сооружений в агрессивных средах, проведению обследований и проектированию восстановления защиты конструкций от коррозии (к СНиП 2.03.11-85). М.: ГОССТРОЙ СССР, 1987. 23 с.

6. Гуревич А. К. [и др.] Таблица: Методы и задачи толщинометрии // В мире НК. 2008. № 2(40). С. 4.

7. Юнникова В. В. Исследование и разработка методов и средств повышения достоверности ультразвукового контроля толщины: дис.... канд. техн. наук. Хабаровск, 1999. 107 с.

8. Юнникова В. В. О достоверности ультразвукового контроля толщины // Контроль и диагностика. 1999. № 9. С. 31-34.

9. Broberg P., Runnemalm A., Sjodahl M. Improved corner detection by ultrasonic testing using phase analysis// Ultrasonics. 2013. № 53(2). Pp. 630-634.

10.Xiong R., Lu Z., Ren Z., Xu C. Experimental research on small diameter concrete-filled steel tubular by ultrasonic detection // Applied Mechanics and Materials. 2012. Vol. 226-228. Pp. 1760-1765.

11. Tang R., Wang S., Zhang Q. Study in ultrasonic flaw detection for small-diameter steel pipe with thick wall // International Journal of Digital Content Technology and its Applications. 2012. № 6(16). Pp. 17-27.

12. Самокрутов А. А., Шевалдыкин ВТ. Ультразвуковая эхо - томография металлоконструкций. Состояние и тенденции // Заводская лаборатория. Диагностика материалов. 2007. № 1. С. 50-59.

13. Данилов В. Н., Самокрутов А. А. Моделирование работы пьезопреобразователей с сухим точечным контактом в режиме излучения // Дефектоскопия. 2003. № 8. С. 11-23.

14. Introduction to Phased Array Ultrasonic Technology Applications: R/D Tech Guideline. Quebec: R/D Tech inc., 2004. 368 p.

15. Samokrutov A. A., Kozlov V. N., Shevaldykin V. G. New approaches and hardware means of ultrasonic thickness measurement with the usage of one-element single probes // 8th European conference on Non-Destructive Testing, Barcelona, 17-21 June, 2002. Pp. 134-139.

16. Самокрутов А. А., Шевалдыкин В. Г., Козлов В. Н, Алёхин С. Т., Мелешко И. А., Пастушков П. С. А 1207 - Ультразвуковой толщиномер нового поколения // В мире НК. 2001. № 2(12). С. 23-24.

17. Fowler K.A., Elfbaum G. M., Smith К. A., Nelligan T. J. Theory and application of precision ultrasonic thickness gaging [Электронный ресурс]. URL: http://www.ndt.net/article/w... (дата обращения: 09.01.2013).

18. Сорокин Ю. Н. Ультразвуковые методы неразрушающего контроля // Сб. ВИНИТИ. Итоги науки и техники: Метрология и измерительная техника. 1979. Т.4. С.253-290.

19. Гмырин С. Я. Влияние шероховатости контактной поверхности на показания ультразвуковых толщиномеров // Дефектоскопия. 1993. № 10. С. 29-43.

20. Гмырин С. Я. К вопросу о толщине стенок изделия и погрешности ее измерения в ультразвуковой толщинометрии в случае значительной коррозии поверхности ввода // Дефектоскопия. 1996. № 11. С. 49-63.

21. Землянский А. А., Вертынский О. С. Опыт выявления дефектов и трещин в крупноразмерных резервуарах для хранения углеводородов // Инженерно - строительный журнал. 2011. № 7(25). С. 40-44.

22. ГОСТ Р 53778-2010. Здания и сооружения. Правила обследования и мониторинга технического состояния. Введ. 01.01.2011. М., 2010. 60 с.

23. Старцев С. А. Проблемы обследования строительных конструкций, имеющих признаки биоповреждения // Инженерно - строительный журнал. 2010. № 7(17). С. 41-46.

24. ТСН 50-302-2004. Проектирование фундаментов зданий и сооружений в Санкт - Петербурге. Введ. 05.08.04. СПб., 2004. 57 с.

25. Прищепова Н. А. Долговечность стальных ферм покрытий промзданий предприятий цветной металлургии на крайнем севере: автореф. дис.... канд. техн. наук. Норильск.: Норильский индустр. инст - т, 1997. 25 с.

Cтраница 1


Коррозионное состояние и защищенность обсадной колонны могут быть оценены по плотности тока, стекающего с обсадной колонны, или по падению напряжения. Если плотность тока отрицательна, на данном участке колонны имеется анодная зона, в которой происходит коррозионное разрушение металла.  

Коррозионное состояние определяют осмотром на переходах и пересечениях с трубопроводами с неудовлетворительным состоянием защитного покрытия, не обеспеченных непрерывной катодной поляризацией защитной величины.  

Коррозионное состояние оборудования необходимо контролировать несколькими методами, взаимно дополняющими друг друга. Весьма важный способ - визуальный, который позволяет определить характер разрушения оборудования, возможность дальнейшей эксплуатации и прокорректировать методы защиты от коррозии. Однако внутренний осмотр может быть проведен лишь после остановки оборудования на ремонт. Наряду с визуальным методом используют приборные методы. Иногда используют метод рассверловки стенки оборудования на глубину, равную расчетной толщине стенки, и устанавливают момент, когда прокорродирует оставшаяся толщина стенки, соответствующая припуску на коррозию. При наличии в рабочей среде сероводорода пользуются водородными зондами для определения степени наводороживания металла оборудования.  

Коррозионное состояние среды характеризуется величиной рН, концентрацией кислорода и углекислого газа. Поскольку кислород и углекислый газ коррозионно-активны, удаление их из воды является одной из важнейших задач при подготовке воды. В отличие от кислорода углекислый газ частично взаимодействует с водой с образованием угольной кислоты.  

Коррозионное состояние сооружения определяют по протяженности коррозионноопасных зон путем электрических измерений. Результаты определения анодных и катодных зон на действующем сооружении представляются в виде графика распределения разности потенциалов.  

Коррозионное состояние подземного сооружения устанавливают электрическими измерениями и тщательным его осмотром.  


Коррозионное состояние подземных газопроводов и опасности их разрушения определяют а основе ряда электрических изме рений.  

Коррозионное состояние пятиколесного ротора может быть объяснено следующим образом. На первое колесо попадает большее количество капель серной кислоты, но температура среды здесь ниже, вследствие чего и агрессивность ниже.  

Коррозионное состояние подземных металлических сооружений города может быть точно охарактеризовано только после ряда электрических измерений.  


Обследование коррозионного состояния разнотипных МСП, эксплуатирующихся в морских условиях в течение более 10 лет без применения противокоррозиионных мероприятий, показало следующее.  

Контроль коррозионного состояния проводится методами магнитной дефектоскопии, радиографическим, с помощью ультразвукового прослушивания или телевизионных камер, пропускаемых внутри трубы. Исследование напряжений и деформаций проводятся механическими устройствами, запускаемыми по трубопроводу по окончании строительства, тензометрическим методом и др. Для обнаружения утечек пользуются визуальным контролем при обходах или облетах трассы, газоаналитическим, акустико-эмиссионным и другими методами.  

Комплексное обследование коррозионного состояния действующих магистральных газонефтепроводов и систем их электрохимической защиты проведено с целью определения зависимости наличия коррозионных и стресс-коррозионных повреждений на внешней КЗП от режимов работы средств ЭХЗ, выявления и устранения причин возникновения и роста коррозионных и стресс-коррозионных повреждений. Действительно, магистральные газонефтепроводы по мерс их эксплуатации практически не подвергаются моральному износу. Надежность их эксплуатации определяется в основном степенью коррозионного и стресс- коррозионного износа. Если рассмотреть динамику аварийности газопроводов за период с 1995 по 2003 гг., то становится очевидным, что идет процесс нарастания аварийности во времени по причине образования на КЗП коррозионных и стресс-коррозионных дефектов .

Рис. 5.1.

При рассмотрении динамики устранения особо опасных дефектов на действующих магистральных газопроводах становится очевидно, что в процессе эксплуатации идет нарастание особо опасных дефектов, требующих первоочередного ремонта, вызванных наружной коррозией и стресс-коррозионными трещинами (рис. 5.1). Из представленного на рис. 5.1 графика видно, что практически все устраненные особо опасные дефекты имеют коррозионную либо стрссс-коррозионную природу. Все эти дефекты выявлены на наружной катодно-защищаемой поверхности.

Результаты комплексных обследований противокоррозионной защиты газонефтепроводов (наличие коррозионных язв и стресс- коррозионных трещин, адгезия и сплошность изоляционного покрытия, степень электрохимической защиты) свидетельствуют о том, что решение проблемы противокоррозионной защиты магистральных газонефтепроводов с помощью изоляционных покрытий и катодной поляризации до настоящего времени остается актуальным. Прямым подтверждением сказанного являются результаты внутритрубной диагностики. По данным внутритрубной диагностики, на отдельных участках магистральных нефтегазопроводов со сроком эксплуатации более 30 лет доля дефектов наружная коррозия (в том числе стресс-коррозия) достигает 80 % от общего количества выявленных дефектов.

Качество изоляции магистральных газонефтепроводов характеризуется величиной переходного сопротивления, определяемого на основе параметров электрохимической защиты. Одним из основных параметров электрохимической защиты трубопроводов, характеризующим качество изоляционного покрытия, является величина тока катодной защиты. Данные по эксплуатации средств ЭХЗ свидетельствуют о том, что величина защитного тока СКЗ на линейной части Д у 1220 мм за 30 лет эксплуатации вследствие старения изоляции возросла практически в 5 раз. Расход тока для обеспечения электрохимической защиты 1 км нефтепровода в области защитных потенциалов 1,2...2,1 В по м. с. э. возрос с 1,2 до 5,2 А/км, что свидетельствует о пропорциональном уменьшении переходного сопротивления нефтепровода. Переходное сопротивление изоляции по истечении 30 лет эксплуатации газонефтепроводов имеет один и тот же порядок (2,6-10 3 Ом - м 2) по всей длине, кроме участков, где выполнен капремонт газонефтепроводов с заменой изоляции, в то время как количество коррозионных и стрссс- коррозионных повреждений на внешней катодно-защищаемой поверхности изменяется в значительных пределах - от 0 до 80 % от общего числа выявленных с помощью внутритрубной дефектоскопии дефектов, которые локализуются как на стыках защитных зон, гак и вблизи точек дренажа СКЗ в низинах и на заболоченных участках трассы. Грунтовые воды заболоченных территорий центральной части Западной Сибири отличаются слабой минерализацией (0,04 % по массе) и, как следствие, высоким омическим сопротивлением (60... 100 Ом м). Кроме этого, болотные грунты отличаются кислой реакцией. Величина pH болотных вод достигает 4. Высокое омическое сопротивление и кислотность болотного электролита являются важнейшими факторами, влияющими на скорость коррозии газонсфтспроводов и эффективность их электрохимической защиты. Обращает на себя внимание тот факт, что в поровых растворах болотных грунтов содержание сероводорода достигает 0,16 мг/л, что на порядок выше, чем в обычных грунтах и проточных водоемах. Сероводород, как показывают данные обследований, также оказывает влияние на коррозионное состояние газонефтепроводов. На протекание сероводородной коррозии за счет деятельности сульфатвоссга- навливающих бактерий (СВБ) указывает, например, тот факт, что при прочих одинаковых условиях максимальная глубина проникновения внешней коррозии в сквозных дефектах изоляции газонефтепроводов в застойных болотах больше таковой в проточных водоемах в среднем на 70 %, с одной стороны, и практически повсеместно стрссс- коррозиопные трещины на внешней КЗП обнаруживаются также в застойных болотах с повышенным содержанием H 2 S - с другой. Согласно современным представлениям, молекулярный сероводород стимулирует наводороживание сталей. Электровосстановление H 2 S на КЗП трубопровода протекает но реакциям H,S + 2-»2Н алс + S a ~ c и H,S + в -^ Н адс + HS” ac , что повышает степень заполнения хемосорбири- ванного слоя атомарным водородом в ц , диффундирующим в структуру трубной стали. Эффективным стимулятором наводороживания является и углекислый газ: НС0 3 +е-> 2Н адс +С0 3 ". Проблема коррозионного и

стрссс-коррозионного разрушения нефтегазороводов на заболоченных участках трассы до настоящего времени не имеет исчерпывающего объяснения и остается актуальной. Результаты коррозионного обследования магистральных газонефтепроводов па заболоченных участках показали, что практически вся наружная поверхность как на нефтепроводах, гак и на газопроводах в дефектах изоляции и под отслоившейся изоляцией покрыта бурыми (напоминающими алюминиевую пудру) отложениями. Коррозионные язвы с максимальной глубиной локализованы в сквозных повреждениях изоляции. Геометрические параметры коррозионных повреждений практически точно соответствуют геометрии сквозных повреждений изоляции. Под отслоившейся изоляцией, в зоне контакта стенки трубы с почвенной влагой, обнаруживаются следы коррозии без видимых коррозионных язв со следами стресс-коррозионных трещин.

Экспериментально на образцах из трубной стали, установленных у стенки магистрального нефтепровода Д у 1220 мм (у верхней, боковой и нижней его образующей), определено, что в грунтах таежно-болотного региона центральной части Западной Сибири скорость коррозии образцов без катодной защиты в сквозных дефектах изоляции достигает 0,084 мм/год. Под защитным потенциалом (с омической составляющей) минус 1,2 В по м. с. э., когда плотность тока катодной защиты превышает плотность предельного тока кислорода в 8... 12 раз, остаточная скорость коррозии нс превышает 0,007 мм/год. Такая остаточная скорость коррозии согласно десятибалльной шкале коррозионной стойкости соответствует коррозионному состоянию весьма стойкое и для магистральных газонефтепроводов допустима. Степень электрохимической защиты при этом составляет:

При комплексном обследовании коррозионного состояния внешней катодно-защищасмой поверхности газонефтепроводов в шурфах в сквозных дефектах изоляции обнаруживаются коррозионные язвы глубиной 0,5... 1,5 мм. Нетрудно рассчитать время, в течение которого электрохимическая защита не обеспечивала подавление скорости почвенной коррозии до допустимых значений, соответствующих весьма стойкому коррозионному состоянию газонефтепроводов:

при глубине проникновения коррозии 0,5 мм при глубине проникновения коррозии 1,5 мм

Это за 36 лет эксплуатации. Причина снижения эффективности электрохимической защиты газонефтепроводов от коррозии связана с уменьшением переходного сопротивления изоляции, появлением в изоляции сквозных дефектов и, как результат, снижением плотности тока катодной защиты на стыках защитных зон СКЗ до значений, не достигающих значений плотности предельного тока по кислороду, не обеспечивающих подавления почвенной коррозии до допустимых значений, хотя величины защитных потенциалов, измеренных с омической составляющей, соответствуют нормативу. Важным резервом, позволяющим снизить скорость коррозионного разрушения газонефтепроводов, является своевременное выявление участков недозащигы, когда Л 1 1 Лр

Корреляция дефектов внешней коррозии нефтепровода с длительностью отключений на вдольтрассовых ВЛ свидетельствуют о том, что именно при отключениях вдольтрассовых В Л и простоях СКЗ протекает язвенная коррозия в сквозных дефектах изоляции, скорость которой достигает 0,084 мм/год.


Рис. 5.2.

В ходе проведения комплексного обследования систем электрохимической защиты магистральных газонефтепроводов было установлено, что в области потенциалов катодной защиты 1,5...3,5 В по м. с. э. (с омической составляющей) плотность тока катодной защиты j a превышает плотность предельного тока кислорода j в 20... 100 раз и более. Причем при одних и тех же потенциалах катодной защиты плотность тока в зависимости от типа грунта (песок, торф, глина) существенно различается, практически в 3...7 раз. В полевых условиях в зависимости от типа грунта и глубины укладки трубопровода (глубины погружения коррозионно-индикаторного зонда) плотность предельного тока по кислороду, измеренная на рабочем электроде из стали 17ГС диаметром 3,0 мм, изменялась в пределах 0,08...0,43 А/м", а плотность тока катодной защиты при потенциалах с омической составляющей от

1,5...3,5 В по м. с. э., измеренная на этом же электроде, достигала значений 8... 12 А/м 2 , что вызывает интенсивное выделение водорода на внешней поверхности трубопровода. Часть адатомов водорода при этих режимах катодной защиты переходит в приповерхностные слои стенки трубопровода, наводороживая ее. На повышенное содержание водорода в образцах, вырезанных из трубопроводов, подверженных стресс- коррозионному разрушению указывается в работах отечественных и зарубежных авторов . Растворенный в стали водород оказывает разупрочняющее действие, что в итоге приводит к водородной усталости и появлению стресс-корозионных трещин на КЗП подземных стальных трубопроводов. Проблема водородной усталости трубных сталей (класс прочности Х42-Х70) в последние годы привлекает особое внимание исследователей в связи с участившимися авариями на магистральных газопроводах. Водородная усталость при циклически изменяющемся рабочем давлении в трубопроводе наблюдается практически в чистом виде при катодной перезащите, когда j KZ /j >10.

Когда плотность тока катодной защиты достигает значений плотности предельного тока по кислороду (или незначительно, не более чем в 3...5 раз, превышает се), остаточная скорость коррозии нс превышает 0,003...0,007 мм/год. Существенное превышение (более чем в 10 раз) j K t над j к дальнейшему подавлению коррозионного процесса практически не приводит, но приводит к наводороживаиию стенки трубопровода, что вызывает появление стресс-коррозионных трещин на КЗП. Появление водородной хрупкости при циклическом изменении рабочего давления в трубопроводе и является водородной усталостью. Водородная усталость трубопроводов проявляется при условии, когда концентрация катодного водорода в стенке трубопровода не уменьшается ниже некоторого минимального уровня. Если же десорбция водорода из стенки трубы происходит быстрее, чем развитие усталостного процесса, когда у кз превышает / пр не более чем в 3...5 раз, водородная усталость

не наблюдается. На рис. 5.3 приведены результаты измерения плотности тока водородных датчиков при включенной (1) и отключенной (2) СКЗ на трубопроводе «Грязовец» .


Рис. 5.3.

и отключенной (2) СКЗ на КП I; 3 - потенциал катодной защиты при включенной СКЗ - (а) и зависимость токов водородных датчиков от потенциала трубы при включенной и выкзюченной СКЗ на КП 1 - (б)

Потенциал катодной защиты в период измерений находился в интервале минус 1,6... 1,9 В по м. с. э. Ход результатов трассовых электроизмерений, представленных на рис. 5.3, а, свидетельствует о том, что максимальная плотность потока водорода в стенку трубы при включенной СКЗ составляла 6... 10 мкА/см 2 . На рис. 5.3, б представлены области изменения токов водородных датчиков и потенциалов катодной защиты при включенных и выключенных СКЗ.

Авторы работы отмечают, что потенциал трубопровода при выключенной СКЗ не снижался ниже минус 0,9... 1,0 В по м. с. э., что обусловлено влиянием смежных СКЗ. При этом плотности токов водородных датчиков при включенной и выключенной СКЗ различаются в

2...3 раза. На рис. 5.4 представлены кривые изменения токов водородных датчиков и потенциалов катодной защиты на КП 08 Краснотуринского узла.

Ход экспериментальных исследований, предсгвавленных на рис. 5.4, свидетельствует о том, что максимальная плотность потока водорода в стенку трубы не превышала 12... 13 мкА/см 2 . Измеряемые потенциалы катодной защиты лежали в интервале от минус 2,5...3,5 В по м. с. э. Выше было показано, что объем выделяющегося на КЗП водорода зависит от величины безразмерного критерия j K з / у пр. В связи с этим интерес представляет сопоставление результатов внутритрубной диагностики действующих магистральных нефтегазопроводов с режимами катодной защиты.


Рис. 5.4.

В табл. 5.1 представлено сопоставление результатов внутритрубной диагностики с результатами комплексного обследования систем ЭХЗ действующих нефтегазопроводов центральной части Западной Сибири. Результаты электрохимических измерений на линейной части действующих нефтегазопроводов свидетельствуют о том, что в различных грунтах при одних и тех же значениях измеренного потенциала плотности токов катодной защиты изменяются в широких пределах, что вызывает необходимость при выборе и регулировке защитных потенциалов подземных трубопроводов дополнительно контролировать плотность тока катодной защиты в сопоставлении с плотностью предельного тока кислорода. Дополнительные электрохимические измерения на трассе действующих магистральных газонефтепроводов позволят предотвратить или свести к минимуму образование высоких локальных напряжений в стенке трубопроводов, вызванных молизацией водорода (с высокой фигутивноегью). Повышение уровня локальных напряжений в стенке трубопровода связано с изменением трехосности напряженного состояния в локальных областях, обогащенных катодным водородом, где формируются микротрещины, предвестники стресс-коррозионных трещин на внешней КЗП.

Сопоставление результатов впутритрубной диагностики с результатами комплексного обследования систем

электрохимической защиты действующих газонефтепроводов центральной части Западной Сибири

Дистанция,

Распределение защитного потенциала (0WB)

(Лиц.А/м 2)

Значение

критерия

j к.з ^ Jxvp

эксплуатации, мм

Плотность

дефектов

потеря

метана,

Плотность

дефектов

расслоение,

Лилейная часть магистрального нефтепровода Д у 1220 мм

Дистанция,

Плотность предельного тока по кислороду (ЛрХА/м 2

Распределение защитного потенциала

и плотности тока катодной защиты

(Лащ>А/м 2)

Значение

критерия

Ук.з ^ Упр

Максимальная глубина проникновения коррозии за весь период

эксплуатации, мм

Плотность

дефектов

потеря

металла,

Плотность дефектов расслоение , шт/км

Суммарная длительность простоя СКЗ за весь период эксплуатации (по данным эксплуатирующей организации), сут

Анализ результатов, представленных в табл. 5.1, с учетом длительности простоя СКЗ свидетельствует об обратной пропорциональной зависимости между плотностью коррозионных дефектов и величиной безразмерного критерия j K з / j , в том числе, когда это отношение было равно

нулю. Действительно, максимальная плотность дефектов наружная коррозия наблюдается на участках, где длительность простоя средств электрохимической защиты (по данным эксплуатирующих организаций) превышала нормативные значения. С другой стороны, максимальная плотность дефектов типа расслоение наблюдается на болотистых пойменных участках трассы, где длительность простоя средств ЭХЗ не превышала нормативных значений. Анализ режимов работы СКЗ на участках с минимальной длительностью их простоя на фоне большого разброса данных свидетельствует о практически пропорциональной зависимости между плотностью дефектов типа расслоение и критерием j K 3 / / , когда плотность тока катодной защиты превышала плотность предельного тока по кислороду в десять и более раз в течение длительного периода эксплуатации (при минимальной длительности простоя СКЗ). Проведенный анализ режимов катодной защиты в сопоставлении с коррозионными и стресс- коррозионными дефектами на КЗП подтверждает ранее сделанные выводы о том, что отношение j K 3 / j np может служить безразмерным критерием для контроля остаточной скорости коррозии трубопровода при различных потенциалах катодной защиты, с одной стороны, с целью недопущения образования на КЗП дефектов наружная коррозия и для определения интенсивности электролитического наводороживания стенки трубопровода - с другой, с целью исключения образования и роста дефектов типа расслоение вблизи катодно-защищаемой поверхности.

Данные табл. 5.1 свидетельствуют о том, что максимальная длительность простоя практически всех СКЗ за весь период эксплуатации магистральных нефтегазопроводов, за 36 лет, составила в среднем 536 суток (практически 1,5 года). По данным эксплуатирующих организаций за год простой СКЗ в среднем составил 16,7 суток, за квартал - 4,18 суток. Эта длительность простоя СКЗ на линейной части обследуемых нефтегазопроводов практически соответствует требованиям нормативнотехнических документов (ГОСТ Р 51164-98, п. 5.2).

В табл. 6.2 представлены результаты измерения отношения плотности тока катодной защиты к плотности предельного тока по кислороду у верхней образующей магистрального нефтепровода Д у 1220 мм. Расчет остаточной скорости коррозии трубопровода при заданных потенциалах катодной защиты определен по формуле 4.2. Приведенные в табл. 5.1 и 5.2 данные свидетельствуют о том, что за весь период эксплуатации магистрального нефтепровода с учетом простоя средств элсктрохимзащиты

(по данным эксплуатирующей организации) максимальная глубина проникновения коррозии на внешней КЗП не должна превышать 0,12...0,945 мм. Действительно, плотность предельного тока по кислороду на уровне укладки обследуемых участков нефтегазопроводов изменялась в пределах от 0,08 А/м 2 до 0,315 А/м 2 . Даже с максимальным значением плотности предельного тока по кислороду 0,315 А/м 2 максимальная глубина проникновения коррозии за 36 лет эксплуатации при плановом простое СКЗ 1,15 лет не превысит 0,3623 мм. Это 3,022 % от номинальной толщины стенки трубопровода. Однако на практике мы видим другую картину. В табл. 5.1 представлены результаты внут- ритрубной диагностики участка магистрального нефтепровода Д у 1220 мм по истечении его эксплуатации в течение 36 лет. Результаты внут- ритрубной диагностики свидетельствуют о том, что максимальный коррозионный износ стенки трубопровода превысил 15% от номинальной толщины стенки трубы. Максимальная глубина проникновения коррозии достигала 2,0 мм. Это означает, что длительность простоя средств ЭХЗ не соответствует требованиям ГОСТ Р 51164-98, п. 5.2.

Проведенные электрометрические измерения, представленные в табл. 5.2, свидетельствуют о том, что при заданном режиме катодной защиты остаточная скорость коррозии не превышала 0,006...0,008 мм/год. Такая остаточная скорость коррозии согласно десятибалльной шкале коррозионной стойкости соответствует коррозионному состоянию коррозионно-стойкое и для магистральных нефтегазопроводов допустима. Эго означает, что за 36 лет эксплуатации трубопровода с учетом сведений о простое средств ЭХЗ по данным эксплуатирующей организации глубина проникновения коррозии не превысила бы 0,6411 мм. Действительно, за период плановых простоев средств ЭХЗ (1,15 лет) глубина проникновения коррозии составила 0,3623 мм. За период работы средств ЭХЗ (34,85 лет) глубина проникновения коррозии составила 0,2788 мм. Суммарная глубина проникновения коррозии на КЗП составила бы 0,3623 + 0,2788 = 0,6411 (мм). Результаты внутритрубной диагностики свидетельствуют о том, что реальная максимальная глубина проникновения коррозии за 36 лет эксплуатации на обследуемом участке магистрального нефтепровода Д у 1220 мм составила 1,97 мм. На основе имеющихся данных нетрудно рассчитать время, в течение которого электрохимическая защита нс обеспечивала подавление скорости почвенной коррозии до допустимых значений : Т = (1,97 - 0,6411) мм/0,08 мм/год = 16,61 лет. Длительность простоя средств ЭХЗ на проходящем в одном техническом коридоре магистральном газопроводе Д у 1020 мм, на котором в пойме р. Оби были обнаружены стресс-коррозионные трещины , совпадает с длительностью простоя СКЗ на магистральном нефтепроводе, так как СКЗ газопровода и нефтепровода запитаны от одной вдольтрассовой ВЛ.

В табл. 5.3 представлены результаты определения реального времени простоя СКЗ в течение всего периода эксплуатации (36 лет) магистральных нефтегазопроводов на основе электрометрических измерений.

Таблица 5.2

Распределение остаточной скорости коррозии па участках действующих газонефтепроводов центральной части Западной Сибири

Таблица 5.3

Результаты определения истинного времени простоя СКЗ в течение всего периода эксплуатации (36 лет) магистральных газонефтепроводов на основе электрометрических измерений

Дистанция,

Максимально возможная скорость коррозии трубопровода без КЗ, мм/год

Остаточная скорость коррозии трубопровода при заданном режиме КЗ, мм/год

Максимальная глубина прониновения коррозии на катодно-защищаемой поверхности, мм

Реальное

Линейная часть магистрального нефтепровода Д у 1220 мм

Линейная часть магистрального газопровода Д у 1020 мм

Анализ результатов, представленных в табл. 5.3, свидетльствует о том, что реальное время простоя средств электрохимзащиты существенно превышает нормативное значение, что является причиной интенсивного коррозионного износа стенки трубопровода с внешней, ка- тодно-защищасмой строны.



Поделиться