Что такое станция катодной защиты. Электрическая защита газопроводов

Трубопроводы, пролегающие под землёй, подвергаются разрушающему действию коррозии. Коррозия трубопровода поражает металлические трубы, если возникают условия, когда атомы металла могут перейти в состояние иона.

Чтобы нейтральный атом стал, ионом, необходимо отдать электрон, а это возможно если есть анод, который его примет. Такая ситуация возможна при возникновении разности потенциалов между отдельными участками трубы: один участок анод, другой катод.

Причины протекания электролитических реакций

Причин образования разности потенциалов (величина его значения) на отдельных участках трубы несколько:

  • различные составы грунта по физическим и химическим свойствам;
  • неоднородность металла;
  • влажность почвы;
  • значение рабочей температуры, транспортируемого вещества;
  • показатель кислотности грунтового электролита;
  • прохождение линии электротранспорта, который создаёт блуждающие токи.

Важно! Участки, которые требуют установления защиты, определяются на стадии проектирования объекта. Все необходимые сооружения строятся параллельно с прокладкой труб.

В результате могут возникнуть два вида коррозийного повреждения:

  • поверхностное, которое к разрушению трубопровода не приводит;
  • местное, в результате которого образуются раковины, щели, растрескивания.

Виды предохранения от коррозии

Чтобы уберечь трубы от разрушения, применяют защиту трубопроводов от коррозии.

Существует два основных способа защиты:

  • пассивный, при котором вокруг труб создаётся защитная оболочка полностью отделяющая их от грунта. Обычно это покрытие из битума, эпоксидной смолы, полимерной ленты;
  • активный, позволяющий управлять электрохимическими процессами, которые протекают в местах соприкосновения трубы и грунтового электролита.

Активный метод разделяется на три вида предохранения:

  • катодный;
  • протекторный;
  • дренажный.

Дренажный осуществляет защиту трубопроводов от коррозии производимой блуждающими токами. Такие токи отводят в направлении создающего их источника или напрямую в почвенный слой. Дренаж может быть земляным (заземление анодных зон трубопровода), прямым (отсоединение от отрицательного полюса источника блуждающего тока). Реже используют дренаж поляризованный и усиленный.

Способы организации катодной защиты

Катодная защита трубопровода от коррозии образуется, если использовать внешнее электрическое поле для организации катодной поляризации трубопровода, а повреждение перевести на внешний анод, который подвергнется разрушению.

Катодная разделяется на два вида:

  • гальваническая с использованием анодов-протекторов, для изготовления которых используют сплавы магния, алюминия, цинка;
  • электрическая, в которой применяется внешний источник постоянного тока с схемой подключения: минус на трубу, плюс - на заземлённый анод.

Основа гальванического способа катодной защиты: использование свойства металла иметь отличные по величине потенциалы, когда их применяют в виде электрода. Если в электролите находятся две металла с разным значением потенциала, то разрушаться будет тот, который имеет меньшее значение.

Материал для протектора подбирается такой, чтобы выполнялись определённые требования:

  • отрицательный потенциал с большим значение в сравнении с потенциалом трубопровода;
  • значительный КПД;
  • высокий показатель удельной токоотдачи;
  • малая анодная поляризуемость, чтобы не образовывались окисные плёнки.

Обратить внимание! Наиболее высокий КПД у анодов из сплава цинка и алюминия, наименьший - у магниевых.

Чтобы повысить КПД и действенность защиты, протекторы погружают в активатор, который снижает собственную коррозию протектор и величину сопротивления растеканию тока с протектора, уменьшает анодную поляризуемость.

Протекторная защитная установка состоит из протектора, активатора, проводника, соединяющего протектор и трубопровод, пункта для контроля и проведения замера электрических параметров.

Эффективность протекторной защиты от коррозии трубопроводов зависит от величины удельного сопротивления грунта. Она хорошо действует, если этот показатель не превышает 50 Ом*м, при большем значении защита будет частичной. Для повышения действенности используют ленточные протекторы.

Ограничением для использования протекторной защиты является электрический контакт трубопровода и смежной протяжённой коммуникацией.

Станции катодной защиты

Более сложный в организации, но самый эффективный - это электрический. Для его организации сооружают внешний источник постоянного тока - станцию катодной защиты. В электрической станции преобразуется переменный ток в постоянный.

Элементы катодной защиты:

  • анодное заземление;
  • линия соединения постоянного тока;
  • защитное заземление;
  • источник постоянного тока;
  • катодный вывод.

Электрический метод является аналогом процесса электролиза.

Под действием внешнего поля источника тока валентные электроны двигаются в сторону от анодного заземления к источнику тока и трубе. Заземленный анод постепенно разрушается. А у трубопровода от источника постоянного тока поступающий переизбыток свободных электронов приводит к деполяризации (как у катода при электролизе).

Чтобы предотвратить коррозийное разрушение нескольких труб, сооружают несколько станций и устанавливают соответствующее количество анодов.

Коррозия подземных трубопроводов и защита от нее

Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов. Коррозия металлов, т.е. их окисление — это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают. На подземном трубопроводе за счет неоднородности металла трубы и из-за неоднородности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных. Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная, щелевая и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов. Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений. Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:

  • влажность грунта,
  • химический состав грунта,
  • кислотность грунтового электролита,
  • структура грунта,
  • температура транспортируемого газа

Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:

  • переходное сопротивление рельс-земля;
  • продольное сопротивление ходовых рельсов;
  • расстояние между тяговыми подстанциями;
  • потребление тока электропоездами;
  • число и сечение отсасывающих линий;
  • удельное электрическое сопротивление грунта;
  • расстояние и расположение трубопровода относительно пути;
  • переходное и продольное сопротивление трубопровода.

Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.

Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).

На практике не удается добиться полной cплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.

Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал. Опытным путем установили, что величина потенциала катодной защиты стали составляет минус 0,85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен -0,55…-0,6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0,25…0,30 Вольта в отрицательную сторону.

Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного - 0,9 В. В результате этого скорость коррозии значительно снижается.

2. Установки катодной защиты
Катодную защиту трубопроводов можно осуществить двумя методами:

  • применением магниевых жертвенных анодов-протекторов (гальванический метод);
  • применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом. На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.

Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает. Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс.

В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.

В качестве источников питания установок катодной защиты используются воздушные линии 0,4; 6; 10 кВ. Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов «труба-земля», распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа). По мере удаления от этой точки разность потенциалов «труба-земля» уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Катодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего катодного тока. Для защиты подземных трубопроводов от коррозии по трассе их залегания сооружаются станции катодной защиты (СКЗ). В состав СКЗ входят источник постоянного тока (защитная установка), анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. В зависимости от условий защитные установки могут питаться от сети переменного тока 0,4; 6 или 10кВ или от автономных источников. При защите многониточных трубопроводов, проложенных в одном коридоре, может быть смонтировано несколько установок и сооружено несколько анодных заземлений. Однако, учитывая то, что при перерывах в работе системы защиты, из-за разности естественных потенциалов соединенных глухой перемычкой труб, образуются мощные гальванопары, приводящие к интенсивной коррозии, соединение труб с установкой должно осуществляться через специальные блоки совместной защиты. Эти блоки не только разъединяют трубы между собой, но и позволяют устанавливать оптимальный потенциал на каждой трубе. В качестве источников постоянного тока для катодной защиты на СКЗ в основном используются преобразователи, которые питаются от сети 220 В промышленной частоты. Регулировка выходного напряжения преобразователя осуществляется вручную, путем переключения отводов обмотки трансформатора, или автоматически, с помощью управляемых вентилей (тиристоров). Если установки катодной защиты работают в условиях, изменяющихся во времени, которые могут обусловливаться воздействием блуждающих токов, изменением удельного сопротивления грунта или другими факторами, то целесообразно предусматривать преобразователи с автоматическим регулированием выходного напряжения. Автоматическое регулирование может осуществляться по потенциалу защищаемого сооружения (преобразователи потенциостаты) или по току защиты (преобразователи гальваностаты).

3. Установки дренажной защиты

Электрический дренаж является наиболее простым, не требующим источника тока видом активной защиты, так как трубопровод электрически соединяется с тяговыми рельсами источника блуждающих токов. Источником защитного тока является разность потенциалов трубопровод-рельс, возникающая в результате работы электрифицированного железнодорожного транспорта и наличия поля блуждающих токов. Протекание дренажного тока создает требуемое смещение потенциала на подземном трубопроводе. Как правило, в качестве защитного устройства используется плавкие предохранители, однако находят применение и автоматические выключатели максимальной нагрузки с возвратом, то есть восстанавливающие цепь дренажа после спадания опасного для элементов установки тока. В качестве поляризованного элемента используются вентильные блоки, собранные из нескольких, соединенных параллельно лавинных кремниевых диодов. Регулирование тока в цепи дренажа осуществляется изменением сопротивления в этой цепи путем переключения активных резисторов. Если применение поляризованных электродренажей неэффективно, то используется усиленные (форсированные) электродренажи, представляющие собой установку катодной защиты, в качестве анодного заземлителя которой используются рельсы электрифицированной железной дороги. Ток форсированного дренажа, работающего в режиме катодной защиты, не должен превышать 100А, и применение его не должно приводить к появлению положительных потенциалов рельсов относительно земли, чтобы исключить коррозию рельсов и рельсовых скреплений, а также присоединенных к ним конструкций.

Электродренажную защиту допускается подключать к рельсовой сети непосредственно лишь к средним точкам путевых дроссель-трансформаторов через два на третий дроссельный пункт. Более частое подключение допускается, если в цепи дренажа включено специальное защитное устройство. В качестве такого устройства может быть использован дроссель, полное входное сопротивление которого сигнальному току системы СЦБ магистральных железных дорог частотой 50 Гц составляет не менее 5 Ом.

4. Установки гальванической защиты

Установки гальванической защиты (протекторные установки) применяются для катодной защиты подземных металлических сооружений в тех случаях, когда применение установок, питающихся от внешних источников тока, экономически не целесообразно: отсутствие линий электропитания, небольшая протяженность объекта и т.п.

Обычно протекторные установки применяются для катодной защиты следующих подземных сооружений:

  • резервуаров и трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями;
  • отдельных участков трубопроводов, которые не обеспечиваются достаточным уровнем защиты от преобразователей;
  • участков трубопроводов, электрически отсеченных от магистрали изолирующими соединениями;
  • стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай и других сосредоточенных объектов;
  • линейной части строящихся магистральных трубопроводов до введения в строй установок постоянной катодной защиты.

Достаточно эффективную защиту протекторными установками можно осуществить в грунтах с удельным электросопротивлением не более 50 Ом.

5. Установки с протяженными или распределенными анодами.

Как уже отмечалось, при применении традиционной схемы катодной защиты распределение защитного потенциала вдоль трубопровода неравномерно. Неравномерность распределения защитного потенциала приводит как к избыточной защите вблизи точки дренажа, т.е. к не-производительному расходу электроэнергии, так и к уменьшению защитной зоны установки. Этого недостатка можно избежать используя схему с протяженными или распределенными анодами. Технологическая схема ЭХЗ с распределенными анодами позволяет увеличить длину защитной зоны по сравнению со схемой катодной защиты с сосредоточенными анодами, а также обеспечивает более равномерное распределение защитного потенциала. При применении технологической схемы ЗХЗ с распределенными анодами могут использоваться различные схемы размещения анодных заземлений. Наиболее простой является схема с анодными заземлениями, равномерно установленными вдоль газопровода. Регулировка защитного потенциала осуществляется путем изменения тока анодного заземления при помощи регулировочного сопротивления или любого другого устройства, обеспечивающего изменение тока в необходимых пределах. В случае выполнения заземлений из нескольких заземлителей регулировка защитного тока может осуществляться за счет изменения числа включенных заземлителей. В общем случае заземлители, ближайшие к преобразователю, должны иметь более высокое переходное сопротивление. Протекторная защита Электрохимическая защита при помощи протекторов основана на том, что за счет разности потенциалов протектора и защищаемого металла в среде, представляющей собой электролит, происходит восстановление металла и растворение тела протектора. Поскольку основная масса металлических конструкций в мире делается из железа, в качестве протектора могут использоваться металлы с более отрицательным, чем у железа, электродным потенциалом. Их три — цинк, алюминий и магний. Основное отличие магниевых протекторов — наибольшая разность потенциалов магния и стали, благотворно влияющая на радиус защитного действия, который составляет от 10 до 200 м, что позволяет использовать меньшее количество магниевых протекторов, чем цинковых и алюминиевых. Кроме того, у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи. Эта особенность определяет основное применение магниевых протекторов для защиты подземных трубопроводов в грунтах с высоким удельным сопротивлением

Одним из часто применяемых методов электрохимической защиты разнообразных конструкций из металлов от ржавления является катодная защита. В большинстве случаев ее используют совместно с нанесением на металлические поверхности специальных покрытий.

1 Общая информация о катодной защите

Впервые такая защита металлов была описана в 1820-х годах Гемфри Дэви. На основании его докладов в 1824 году на корабле HMS Samarang осуществили проверку предоставленной теории. На медную обшивку корабля установили железные анодные протекторы, которые существенно уменьшили скорость ржавления меди. Методику стали развивать, и в наши дни катодная всевозможных конструкций из металлов (трубопроводов, элементов автомобиля и т. д.) признается наиболее эффективной и широко используемой.

В производственных условиях такая защита металлов (ее нередко называют катодной поляризацией) производится по двум основным методикам.

  1. Предохраняемая от разрушения конструкция подключается к внешнему источнику тока. В данном случае металлоизделие выполняет функцию катода. А анодами являются инертные дополнительные электроды. Эта методика обычно применяется для защиты трубопроводов, металлических сварных оснований, платформ для бурения.
  2. Катодная поляризация гальванического типа. При такой схеме металлическая конструкция контактирует с металлом, который имеет больший электроотрицательный потенциал (алюминий, магний, алюминиевые сплавы, цинк). При этом под анодом понимают оба металла (основной и защитный). Растворение (имеется в виду сугубо электрохимический процесс) электроотрицательного материала приводит к протеканию через предохраняемое изделие необходимого катодного тока. С течением времени происходит полное разрушение металла-"защитника". Гальваническая поляризация эффективна для конструкций, на которых есть изоляционный слой, а также для металлоизделий относительно малых размеров.

Первая методика нашла широкое применение по всему миру. Она достаточно проста и экономически целесообразна, дает возможность предохранять металл от общей коррозии и от многих ее разновидностей – межкристаллитной коррозии "нержавейки", питтинговой, растрескивания латунных изделий, обусловленного напряжениями, при которых они работают.

Гальваническая схема нашла большее применение в США. В нашей стране она используется реже, хотя ее эффективность высока. Ограниченное применение протекторной защиты металлов в России связано с тем, что на многие трубопроводы у нас не наносят специальное покрытие, а это является обязательным условием для реализации антикоррозионной гальванической методики.

2 Как работает стандартная катодная поляризация металлов?

Катодная защита от коррозии производится посредством использования наложенного тока. Он поступает на конструкцию от выпрямителя либо иного источника (внешнего) тока, где промышленный по частоте переменный ток модифицируется в требуемый постоянный. Объект, который защищается, подключают к выпрямленному току (к "минусовому" полюсу). Конструкция, таким образом, является катодом. Анодное заземление (второй электрод) подключают к "плюсу".

Важно, чтобы между вторичным электродом и конструкцией имелся хороший электролитический и электронный контакт. Первый обеспечивается грунтом, куда погружают анод и объект защиты. Грунт в данном случае выполняет роль электролитической среды. А электронного контакта добиваются с помощью проводников из металлических материалов.

Регулирование катодной антикоррозионной защиты осуществляется посредством поддержания защитного потенциала между электролитической средой и индикатором потенциала поляризации (либо непосредственно конструкцией) на строго определенной величине. Замеряют показатель вольтметром с высокоомной шкалой.

Здесь необходимо понимать, что у потенциала есть не только поляризационный компонент, но и еще одна составляющая – падение (омическое) напряжения. Такое падение возникает из-за протекания через эффективное сопротивление катодного тока. Причем качество катодной защиты зависит исключительно от поляризации на поверхности изделия, которое предохраняется от ржавления. По этой причине выделяют две характеристики защищенности металлоконструкции – наибольший и наименьший потенциалы поляризации.

Эффективное регулирование поляризации металлов, учитывая все сказанное, становится возможным в том случае, когда показатель омического компонента исключается из величины полученной разности потенциалов. Добиться этого можно при помощи особой схемы замера потенциала поляризации. Описывать ее в рамках данной статьи мы не будем, так как она изобилует множеством специализированных терминов и понятий.

Как правило, катодная технология применяется совместно с нанесением на внешнюю поверхность предохраняемых от коррозии изделий специальных защитных материалов.

Для защиты неизолированных трубопроводов и других конструкций необходимо использовать существенные токи, что экономически невыгодно и технически сложно.

3 Катодная защита элементов автомобиля

Коррозия – активный и весьма агрессивный процесс. Качественная защита узлов автомобиля от ржавления вызывает немало проблем у автолюбителей. Коррозионному разрушению подвергаются все без исключения транспортные средства, ведь ржавление начинается даже тогда, когда на лакокрасочном покрытии машины появляется маленькая царапина.

Катодная технология предохранения автомобиля от коррозии достаточно распространена в наши дни. Ее применяют наряду с использованием и всевозможных мастик. Под такой методикой понимают подачу электрического потенциала на поверхность той или иной детали автомобиля, что приводит к эффективному и длительному замедлению ржавления.

При описываемой защите транспортного средства катодом являются специальные пластинки, которые накладывают на наиболее уязвимые его узлы. А роль анода играет корпус автомобиля. Подобное распределение потенциалов обеспечивает целостность корпуса машины, так как разрушению подвергаются только катодные пластины, а основной металл не корродирует.

Под уязвимыми местами транспортного средства, которые можно защитить по катодной методике, понимают:

  • заднюю и переднюю части днища;
  • арку заднего колеса;
  • области фиксации подфарников и непосредственно фар;
  • стыки крыла с колесом;
  • внутренние зоны дверей и порогов;
  • пространство за щитками колес (передних).

Для защиты автомобиля необходимо приобрести специальный электронный модуль (некоторые умельцы изготавливают его самостоятельно) и протекторы-пластины. Модуль монтируют в салоне машины, подсоединяют к бортовой сети (он должен быть запитанным при отключении автодвигателя). Установка устройства занимает буквально 10–15 минут. Причем энергии оно берет минимум, а антикоррозионную защиту гарантирует весьма качественную.

Защитные пластины могут иметь разный размер. Их число также отличается в зависимости от того, в каких местах автомобиля они монтируются, а также от того, какие геометрические параметры имеет электрод. На практике пластин нужно тем меньше, чем больший размер имеет электрод.

Защита от коррозии автомобиля по катодной методике производится и иными сравнительно простыми способами. Самый элементарный – подсоединить проводом "плюс" аккумулятора автомобиля к обычному металлическому гаражу. Обратите внимание – для подключения необходимо обязательно использовать резистор.

4 Защита трубопроводов методом катодной поляризации

Разгерметизация различных по назначению трубопроводов происходит во многих случаях из-за их коррозионного разрушения, вызываемого появлением разрывов, трещин и каверн. Особенно подвержены ржавлению подземные коммуникации. На них образуются зоны с разным потенциалом (электродным), что обуславливается гетерогенностью грунта и неоднородным составом металлов, из которых изготавливаются трубы. За счет появления указанных зон начинается процесс активного формирования коррозионных гальванических компонентов.

Катодная поляризация трубопроводов, выполняемая по схемам, описанным в начале статьи (гальваника или внешний источник энергии), базируется на уменьшении скорости растворения материала труб в процессе их эксплуатации. Достигается подобное уменьшение посредством смещения коррозионного потенциала в зону, имеющую по отношению к естественному потенциалу более отрицательные показатели.

Еще в первой трети 20 столетия был определен потенциал катодной поляризации металлов. Его показатель равняется –0,85 вольт. В большинстве грунтов естественный потенциал металлических конструкций находится в диапазоне от –0,55 до –0,6 вольт.

Это означает, что для эффективной защиты трубопроводов требуется "передвинуть" коррозионный потенциал в отрицательную сторону на 0,25-0,3 вольт. При такой его величине практическое влияние ржавления на состояние коммуникаций почти полностью нивелируется (коррозия за год имеет скорость не более 10 микрометров).

Методика с применением источника тока (внешнего) считается трудоемкой и достаточно сложной. Зато она обеспечивает высокий уровень защиты трубопроводов, ее энергетический ресурс ничем не ограничивается, при этом сопротивление (удельное) грунта оказывает минимальное влияние на качество защитных мероприятий.

Источниками питания для катодной поляризации обычно являются воздушные электролинии на 0,4; 6 и 10 кВ. На местностях, где таковых нет, допускается использование газо-, термо и дизель-генераторов в качестве источников энергии.

Ток-"защитник" распределяется неравномерно по протяженности трубопроводов. Наибольшая его величина отмечается в так называемой точке дренажа – в месте, где производится подключение источника. Чем больше расстояние от этой точки, тем меньше защищены трубы. При этом и чрезмерный ток непосредственно в зоне подключения оказывает негативное влияние на трубопровод – высока вероятность водородного растрескивания металлов.

Метод с использованием гальванических анодов демонстрирует неплохую эффективность в грунтах с малым показателем омности (до 50 ом*м). В грунтах высокоомной группы его не применяют, так как особых результатов он не дает. Здесь стоит добавить, что аноды изготавливают из сплавов на основе, алюминия, магния и цинка.

5 Коротко о станциях катодной защиты (СКЗ)

Для антикоррозионной защиты трубопроводов, проложенных под землей, вдоль трассы их залегания устанавливают СКЗ, включающие в себя:

  • анодное заземление;
  • источник тока;
  • пункт контроля и измерения;
  • кабели и провода, выполняющие соединительные функции.

Станции подключают к сетям электрического тока либо к автономным устройствам. Разрешается устанавливать на СКЗ несколько заземлений и источников энергии тогда, когда в одном подземном коридоре проложено две и более ниток трубопровода. Это, правда, влечет за собой увеличение расходов на проведение антикоррозионных мероприятий.

Если монтируется всего одна установка на многониточные коммуникации, ее соединение с трубами осуществляется посредством особых блоков. Они не позволяют формироваться сильным гальваническим парам, возникающим при монтаже глухих перемычек на трубные изделия. Указанные блоки изолируют трубы друг от друга, а также дают возможность выбирать на каждом элементе трубопроводов требуемый потенциал, гарантирующий максимальную защиту конструкции от ржавления.

Выходное напряжение на катодных станциях может регулироваться автоматически (установка в этом случае оснащается тиристорами) или вручную (оператор переключает при необходимости трансформаторные обмотки). В ситуациях, когда СКЗ функционируют в изменяющихся во времени условиях, рекомендуется эксплуатировать станции с автоматической регулировкой напряжения.

Они сами следят за показателями сопротивления (удельного) грунта, появлением блуждающих токов и прочих факторов, оказывающих негативное воздействие на качество защиты, и автоматически корректируют работу СКЗ. А вот в системах, где защитный ток и показатель сопротивления в его цепи остаются неизменными, лучше использовать установки с ручной настройкой напряжения на выходе.

Добавим, что регулирование в автоматическом режиме производится по одному из двух показателей:

  • по току защиты (гальваностатические преобразователи);
  • по потенциалу объекта, который защищается (потенциостатические преобразователи).

6 Информация об известных станциях катодной защиты

Среди популярных отечественных СКЗ можно выделить несколько установок. Очень востребованной является станция Минерва–3000 – мощная система, разработанная французскими и российскими инженерами для объектов Газпрома. Достаточно одной Минервы, чтобы надежно защитить от ржавления до 30 километров трубопроводов. Станция обладает такими основными достоинствами:

  • уникальная технологичность выпуска всех ее комплектующих;
  • повышенная мощность СКЗ (можно предохранять коммуникации с очень плохим защитным покрытием);
  • самовосстановление (после аварийных перегрузок) режимов работы станции на протяжении 15 секунд;
  • наличие высокоточного цифрового оборудования для контроля рабочих режимов и системы терморегулирования;
  • наличие защитных схем от перенапряжения измерительных и входных цепей;
  • отсутствие подвижных узлов и герметичность электрошкафа.

Кроме того, к Минерва–3000 можно подключать установки для удаленного контроля над работой станции и дистанционного управления ее оборудованием.

Отличными техническими показателями обладают и системы АСКГ-ТМ – современные телемеханизированные адаптивные станции для защиты электрокабелей, городских и магистральных трубопроводов, а также емкостей, в которых хранят газ и нефтепродукты. Такие устройства выпускаются с разными показателями (от 1 до 5 киловатт) выходной мощности. Они располагают многофункциональным телеметрическим комплексом, позволяющим выбирать конкретный рабочий режим СКЗ, мониторить и изменять параметры станции, а также обрабатывать поступающую информацию и отправлять ее оператору.

Преимущества использования АСКГ-ТМ :

  • возможность встраивания в SCADA-комплексы за счет поддержки ОРС-технологии;
  • резервный и главный канал связи;
  • выбор значения мощности (выходной);
  • повышенная отказоустойчивость;
  • большой интервал рабочих температур;
  • уникальная точность настройки выходных параметров;
  • предохранение от напряжения силовых выходов системы.

Имеются СКЗ и других типов, сведения о которых несложно найти на специализированных сайтах в интернете.

7 Какие объекты можно защищать при помощи катодной поляризации?

Кроме защиты автомобилей и трубопроводов рассматриваемые методики поляризации активно используются для предохранения от коррозии арматуры, входящей в железобетонные конструкции (здания, дорожные объекты, фундаменты и так далее). Обычно арматура представляет собой единую электросистему, которая при попадании в нее хлоридов и воды активно корродирует.

Катодная поляризация в сочетании с операцией санации бетона останавливает коррозионные процессы. В данном случае необходимо применять два типа анодов:

  • основные – из титана, графита или их комбинации с покрытием металлооксидного вида, а также кремнистого чугуна;
  • распределительные – стержни из сплавов титана с добавочным слоем металлической защиты либо с неметаллическим электропроводящим покрытием.

Регулируя внешний ток, поступающий на железобетонную конструкцию, осуществляют выбор потенциала арматуры.

Поляризация считается незаменимой методикой для защиты стационарных строений, размещаемых на континентальном шельфе, в газовой и нефтяной промысловых сферах. Первоначальные защитные покрытия на таких объектах невозможно восстановить (требуется их демонтаж и транспортировка в сухие ангары), а значит, остается один выход – катодная защита металлов.

Для предохранения от морской коррозии применяется гальваническая поляризация гражданских кораблей посредством анодов из цинка, магния, алюминиевых сплавов. На берегу (во время ремонтов и стоянок) судна подключают к СКЗ, аноды для которых делают из платинированного титана.

Также катодная защита используется для предохранения от разрушения внутренних частей сосудов и емкостей, а также труб, которые контактируют со сточными промышленными водами и иными агрессивными электролитами. Поляризация в данном случае увеличивает время безремонтного применения указанных конструкций в 2–3 раза.

Пассивная защита подземных газопроводов изолиру-ющими покрытиями дополняется электрической защитой. Задачи электрической защиты следующие.

  1. Отвод блуждающих электрических токов с защищаемого газо-провода и организованный возврат их к электрическим установкам и сетям постоянного тока, являющимся источником этих токов.
  2. Подавление протекающих по газопроводу токов в местах их вы-хода в землю (анодные зоны) токами от внешнего источника, а также токов, возникающих за счет почвенной электрохимической коррозии, созданием гальванической цепи и защитного электрического потен-циала на трубах газопровода.
  3. Предотвращение распространения электрических токов по газопроводам путем секционирования последних изолирующими фланцами.

Задача отвода блуждающих токов может быть решена путем создания:

  1. дополнительных заземлений для отвода токов в землю. Недо-статок — возможность вредного влияния на соседние трубопроводы токов, стекающих с защищаемого газопровода;
  2. простой или прямой дренажной защиты, т.е. электрического соединения защищаемого газопровода с рельсами трамвая или элек-трической железной дороги с целью возврата через них токов к их источнику. Простой дренаж имеет двустороннюю проводимость, т.е. может пропускать ток туда и обратно, и поэтому применяется в устойчивых анодных зонах. Недостатком этой защиты является не-обходимость выключения дренажа, если изменилась полярность тока или если потенциал на газопроводе стал меньшим, чем на рельсах;
  3. поляризованной дренажной защиты, т.е. дренажа с односто-ронней проводимостью, исключающей обратное течение тока от рельсов к защищаемому газопроводу;
  4. усиленной дренажной защиты, т.е. такой защиты, в цепь кото-рой для повышения эффективности включен внешний источник тока. Таким образом, усиленный дренаж — это объединение поля-ризованного дренажа с катодной защитой.

Задача подавления токов, протекающих по защищаемому газо-проводу, может быть решена с помощью:

  1. Катодной защиты внешним током (электрозащита), т.е. при-соединением защищаемого газопровода к внешнему источнику тока — к его отрицательному полюсу в качестве катода. Положитель-ный полюс источника тока присоединяется к заземлению — аноду. Создается замкнутая цепь, в которой ток течет от анода через землю к защищаемому газопроводу и далее к отрицательному полюсу внешнего источника тока. При этом происходит постепенное разрушение анодных зазем-лений, но обеспечивается защита газопровода за счет его катодной поляризации и предотвращения стекания токов с труб в землю. В ка-честве внешнего источника могут применяться станции катодной защиты(СКЗ);
  2. Протекторной защиты, т.е. защиты путем использования в электрической цепи протекторов из металлов, обладающих в кор-розионной среде более отрицательным потенциалом, чем металл трубопровода. Электрический ток возникает в системе протекторной защиты, так же как в гальваническом элементе, причем электроли-том служит грунт, содержащий влагу, а электродами являются газопровод и металл протектора. Возникающий защитный ток подавля-ет токи электрохимической коррозии и обеспечивает создание за-щитного электрического потенциала на газопроводе.

Принципиальная схема катодной защиты подземного газопровода

1 — анодное заземление; 2,4 — дренажные кабели; 3 — внешний источник электри-ческого тока; 5 — точка при-соединения дренажного кабеля; 6 — защищаемый газопровод

Принципиальная схема протекторной защиты подземного газопровода

1 — защищаемый газопровод; 2 — изолированные кабели; 3 — контрольный вывод; 4 — протектор; 5 — заполнитель для протектора

Задача электрического секционирования трубопроводов решается установкой изолирующих фланцев с паронитовыми или текстолито-выми прокладками, текстолитовыми втулками и шайбами. Пример конструкции изолирующих фланцев представлен на рисунке ниже.

Устройство изолирующих фланцев

1— изолирующая текстолитовая или паронитовая втулка; 2— изолирующая шайба из текстолита, резины или хлорвинила; 3 — стальная шайба; 4 — свинцовые шайбы; 5— текстолитовое кольцо-прокладка

Основными факторами, характеризующими степень коррозион-ного воздействия на подземные стальные газопроводы, являются:

  • величина и направление блуждающих токов в грунте;
  • величина и полярность потенциала газопровода относительно других металлических подземных коммуникаций и рельсов электри-фицированного транспорта;
  • направление и сила токов, протекающих по газопроводу;
  • состояние противокоррозионной защиты газопроводов;
  • величина удельного электрического сопротивления фунта.

Все эти факторы подлежат периодическому контролю.

Периодичность элекфических измерений такова:

  • в районах установок электрозащиты газопроводов и других за-щищаемых сооружений, а также около тяговых подстанций и депо элекфотранспорта, вблизи рельсов фамвая и элекфифицированных железных дорог и в местах пересечений газопроводов с ними — не реже одного раза в 3 месяца, а также при изменениях режимов уста-новок электрозащиты, защищаемых сооружений или источников блуждающих токов;
  • в неопасных с точки зрения электрозащиты участках — не реже одного раза в год в летнее время, а также при всяких изменениях ус-ловий, могущих вызвать электрокоррозию.

Для протекторной защиты применяют протекторы из цветных металлов — обычно магния, цинка, алюминия и их сплавов.

Контроль работы электрозащитных установок и измерение по-тенциалов на контактах производятся (не реже): на дренажных уста-новках — 4 раза в месяц; на катодных установках — 2 раза в месяц; на протекторных установках — 1 раз в месяц.

МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ»


Теоретические основы

Катодная защита подземных металлических сооружений

Принцип действия катодной защиты

При контакте металла с грунтами, относящимися к электролитическим средам, происходит коррозионный процесс, сопровождаемый образованием электрического тока, и устанавливается определенный электродный потенциал. Величину электродного потенциала трубопровода можно определить по разности потенциалов между двумя электродами: трубопроводом и неполяризующимся медно-сульфатным элементом. Таким образом, значение потенциала трубопровода представляет собой разность его электродного потенциала и потенциала электрода сравнения по отношению к грунту. На поверхности трубопровода протекают электродные процессы определенного направления и стационарные по характеру изменения во времени.

Стационарный потенциал принято называть естественным потенциалом, подразумевая при этом отсутствие на трубопроводе блуждающих и других наведенных токов.

Взаимодействие корродирующего металла с электролитом разделяется на два процесса: анодный и катодный, которые проходят одновременно на различных участках поверхности раздела металла и электролита.

При защите от коррозии используют территориальное разделение анодного и катодного процессов. К трубопроводу подключают источник тока с дополнительным электродом-заземлителем, с помощью которого накладывают на трубопровод внешний постоянный ток. В этом случае анодный процесс происходит на дополнительном электроде-заземлителе.

Катодная поляризация подземных трубопроводов осуществляется с помощью наложения электрического поля от внешнего источника постоянного тока. Отрицательный полюс источника постоянного тока подключается к защищаемой конструкции, при этом трубопровод является катодом по отношению к грунту, искусственно созданный анод-заземлитель - к положительному полюсу.

Принципиальная схема катодной защиты показана на рис. 14.1. При катодной защите отрицательный полюс источника тока 2 подключен к трубопроводу 1, а положительный - к искусственно созданному аноду-заземлителю 3. При включении источника тока от его полюса через анодное заземление поступает в грунт и через поврежденные участки изоляции 6 на трубу. Далее через точку дренажа 4 по соединительному проводу 5 ток возвращается снова к минусу источника питания. При этом на оголенных участках трубопровода начинается процесс катодной поляризации.



Рис. 14.1. Принципиальная схема катодной защиты трубопровода:

1 - трубопровод; 2 - внешний источник постоянного тока; 3 - анодное заземление;

4 - точка дренажа; 5 - дренажный кабель; 6 - контакт катодного вывода;

7 - катодный вывод; 8 - повреждения изоляции трубопровода

Поскольку напряжение внешнего тока, приложенного между электродом-заземлителем и трубопроводом, значительно превышает разность потенциалов между электродами коррозионных макропар трубопровода, стационарный потенциал анодного заземления не играет определяющей роли.

С включением электрохимической защиты (j 0a.доп ) нарушается распределение токов коррозионных макропар, сближаются значения разности потенциалов «труба – земля» катодных участков (j 0к ) с разностью потенциалов анодных участков (j 0а ), обеспечиваются условия для поляризации.

Катодная защита регулируется путем поддержания необходимого защитного потенциала. Если наложением внешнего тока трубопровод заполяризован до равновесного потенциала (j 0к = j 0а ) растворения металла (рис. 14.2 а), то анодный ток прекращается и коррозия приостанавливается. Дальнейшее повышение защитного тока нецелесообразно. При более положительных значениях потенциала наступает явление неполной защиты (рис. 14.2 б). Оно может возникнуть при катодной защите трубопровода, находящегося в зоне сильного влияния блуждающих токов или при использовании протекторов, не имеющих достаточно отрицательного электродного потенциала (цинковые протекторы).

Критериями защиты металла от коррозии являются защитная плотность тока и защитный потенциал.

Катодная поляризация неизолированной металлической конструкции до величины защитного потенциала требует значительных токов. Наиболее вероятные величины плотностей токов, необходимых для поляризации стали в различных средах до минимального защитного потенциала (-0,85 В) по отношению к медно-сульфатному электроду сравнения, приведены в табл. 14.1

Рис. 14.2. Коррозионная диаграмма для случая полной поляризации (а) и

неполной поляризации (б)

Обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность трубопровода. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. Так, для катодной защиты стали с хорошим покрытием в почве требуется всего 0,01 ... 0,2 мА/м 2 .

Таблица 14.1

Плотность тока, необходимая для катодной защиты

неизолированной стальной поверхности в различных средах

Защитная плотность тока для изолированных магистральных трубопроводов не может стать надежным критерием защиты вследствие неизвестного распределения поврежденной изоляции трубопровода, определяющую фактическую площадь контакта металла с грунтом. Даже для неизолированной трубы (патрон на подземном переходе через железные и шоссейные дороги) защитная плотность тока определяется по геометрическим размерам сооружения и является фиктивной, так как остается неизвестной доля поверхности патрона, покрытая постоянно присутствующими пассивными защитными слоями (окалиной и др.) и не участвующая в процессе деполяризации. Поэтому защитная плотность тока как критерий защиты применяется при некоторых лабораторных исследованиях, выполняемых на образцах металла.



Поделиться