Время пребывания заявки в очереди. Средние число занятых каналов

В этом параграфе мы рассмотрим некоторые простейшие СМО и выведем выражения для их характеристик (показателей эффективности). При этом мы продемонстрируем основные методические приемы, характерные для элементарной, «марковской» теории массового обслуживания. Мы не будем гнаться за количеством образцов СМО, для которых будут выведены конечные выражения характеристик; данная книга - не справочник по теории массового обслуживания (такую роль гораздо лучше выполняют специальные руководства). Наша цель - познакомить читателя с некоторыми «маленькими хитростями», облегчающими путь сквозь теорию массового обслуживания, которая в ряде имеющихся (даже претендующих на популярность) книг может показаться бессвязным набором примеров.

Все потоки событий, переводящие СМО из состояния в состояние, в данном параграфе мы будем считать простейшими (не оговаривая это каждый раз специально). В их числе будет и так называемый «поток обслуживаний». Под ним разумеется поток заявок, обслуживаемых одним непрерывно занятым каналом.

В этом потоке интервал между событиями, как и всегда в простейшем потоке, имеет показательное распределение (во многих руководствах вместо этого говорят: «время обслуживания - показательное», мы и сами в дальнейшем будем пользоваться таким термином). В данном параграфе показательное распределение времени обслуживания будет само собой разуметься, как всегда для «простейшей» системы.

Характеристики эффективности рассматриваемых СМО мы будем вводить по ходу изложения.

1. n-канальная СМО с отказами (задача Эрланга).

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в начале нашего века датским математиком Эрлангом. Задача ставится так: имеется каналов (линий связи), на которые поступает поток заявок с интенсивностью К. Поток обслуживаний имеет интенсивность (величина, обратная среднему времени обслуживания ). Найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

А - абсолютную пропускную способность, т. е. среднее число заявок, обслуживаемых в единицу времени;

Относительную пропускную способность, т. е. среднюю долю пришедших заявок, обслуживаемых системой;

Ротк - вероятность отказа, т. е. того, что заявка покинет СМО необслуженной;

к - среднее число занятых каналов.

Решение. Состояния системы S (СМО) будем нумеровать по числу заявок, находящихся в системе (в данном случае оно совпадает с числом занятых каналов):

В СМО нет ни одной заявки,

В СМО находится одна заявка (один канал занят, остальные свободны),

В СМО находится к заявок каналов заняты, остальные свободны),

В СМО находится заявок (все каналов заняты).

Граф состояний СМО соответствует схеме гибели и размножения (рис. 20.1). Разметим этот граф - проставим у стрелок интенсивности потоков событий, Из систему переводит поток заявок с интенсивностью X (как только приходит заявка, система перескакивает из ).

Тот же поток заявок переводит систему из любого левого состояния в соседнее, правое (см. верхние стрелки на рис. 20.1).

Проставим интенсивности у нижних стрелок. Пусть система находится в состоянии (работает один канал). Он производит обслуживании в единицу времени. Проставляем у стрелки интенсивность Теперь представим себе, что система находится в состоянии (работают два канала). Чтобы ей перейти в нужно, чтобы либо закончил обслуживание первый канал, либо второй; суммарная интенсивность их потоков обслуживаний равна проставляем ее у соответствующей стрелки. Суммарный поток обслуживаний, даваемый тремя каналами, имеет интенсивность к каналами - Проставляем эти интенсивности у нижних стрелок на рис. 20.1.

А теперь, зная все интенсивности, воспользуемся уже готовыми формулами (19.7), (19.8) для финальных вероятностей в схеме гибели и размножения. По формуле (19.8) получим:

Члены разложения будут представлять собой коэффициенты при в выражениях для

Заметим, что в формулы (20.1), (20.2) интенсивности Яиц входят не по отдельности, а только в виде отношения Обозначим

и будем называть величину «приведенной интенсивностью потока заявок». Ее смысл - среднее число заявок, приходящее за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулы (20.1), (20.2) в виде:

Формулы (20.4), (20.5) для финальных вероятностей состояний называются формулами Эрланга - в честь основателя теории массового обслуживания. Большинство других формул этой теории (сегодня их больше, чем грибов в лесу) не носит никаких специальных имен.

Таким образом, финальные вероятности найдены. По ним мы вычислим характеристики эффективности СМО. Сначала найдем - вероятность того, что пришедшая заявка получит отказ (не будет обслужена). Для этого нужно, чтобы все каналов были заняты, значит,

Отсюда находим относительную пропускную способность - вероятность того, что заявка будет обслужена:

Абсолютную пропускную способность получим, умножая интенсивность потока заявок X на

Осталось только найти среднее число занятых каналов к. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями и вероятностями этих значений

Подставляя сюда выражения (20.5) для и выполняя соответствующие преобразования, мы, в конце концов, получили бы верную формулу для к. Но мы выведем ее гораздо проще (вот она, одна из «маленьких хитростей»!) В самом деле, нам известна абсолютная пропускная способность А. Это - не что иное, как интенсивность потока обслуженных системой заявок. Каждый занятый канал в единицу времени обслуживает в среднем заявок. Значит, среднее число занятых каналов равно

И какая доля каналов при этом будет простаивать?

Тут уже проглядывает некоторый намек на оптимизацию. В самом деле, содержание каждого канала в единицу времени обходится в какую-то сумму. Вместе с тем, каждая обслуженная заявка приносит какой-то доход. Умножая этот доход на среднее число заявок А, обслуживаемых в единицу времени, мы получим средний доход от СМО в единицу времени. Естественно, при увеличении числа каналов этот доход растет, но растут и раеходы, связанные с содержанием каналов. Что перевесит - увеличение доходов или расходов? Это зависит от условий операции, от «платы за обслуживание заявки» и от стоимости содержания канала. Зная эти величины, можно найти оптимальное число каналов, наиболее эффективное экономически. Мы такой задачи решать не будем, предоставляя все тому же «неленивому любопытному читателю» придумать пример и решить. Вообще, придумывание задач больше развивает, чем решение уже поставленных кем-то.

Более сложные задачи теории массового обслуживания

В этом параграфе мы кратко рассмотрим некоторые вопросы, относящиеся к немарковским СМО. До сих пор все формулы нами выводились или, по крайней мере, могли быть выведены читателем, вооруженным схемой гибели и размножения, формулой Литтла и умением дифференцировать. То, что будет рассказано в данном параграфе, читателю придется принять на веру.

До сих пор мы занимались только простейшими СМО, для которых все потоки событий, переводящий их из состояния в состояние, были простейшими. А как быть, если они не простейшие? Насколько реально это допущение? Насколько значительны ошибки, к которым оно приводит, когда оно нарушается? На все эти вопросы мы попытаемся ответить здесь.

Как это ни грустно, но надо признаться, что в области немарковской теории массового обслуживания похвастать нам особенно нечем. Для немарковских СМО существуют только отдельные, считанные результаты, позволяющие выразить в явном, аналитическом виде характеристики СМО через заданные условия задачи - число каналов, характер потока заявок, вид распределения времени обслуживания. Приведем некоторые из этих результатов.

1. n -канальная СМО с отказами, с простейшим потоком заявок и произвольным распределением времени обслуживания. В предыдущем параграфе мы вывели формулы Эрланга (20.4), (20.5) для финальных вероятностей состояний СМО с отказами. Сравнительно недавно (в 1959 г.) Б. А. Севастьянов доказал, что эти формулы справедливы не только при показательном, но и при произвольном распределении времени обслуживания.

^ 2. Одноканальная СМО с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания. Если на одноканальную СМО с неограниченной очередью поступает простейший поток заявок с интенсивностью λ, а время обслуживания имеет произвольное распределение с математическим ожиданием t об = 1/μ. и коэффициентом вариации v μ , то среднее число заявок в очереди равно

а среднее число заявок в системе

(21.2)

Где, как и ранее, ρ = λ/μ., a v μ - отношение среднего квадратического отклонения времени обслуживания к его математическому ожиданию. Формулы (21.1), (21.2) носят название формул Полячека - Хинчина.

Деля L оч, и L сист на λ, получим, согласно формуле Литтла, среднее время пребывания заявки в очереди и среднее время пребывания в системе:

(21.3)

(21.4)

Заметим, что в частном случае, когда время обслуживания - показательное, v μ = 1 и формулы (21.1), (21.2) превращаются в уже знакомые нам формулы (20.16), (20.20) для простейшей одноканальной СМО. Возьмем другой частный случай - когда время обслуживания вообще не случайно и v μ = 0. Тогда среднее число заявок в очереди уменьшается вдвое по сравнению с простейшим случаем. Это и естественно: если обслуживание заявки протекает более организованно, «регулярно», то СМО работает лучше, чем при плохо организованном, беспорядочном обслуживании.

^ 3. Одноканальная СМО с произвольным потоком заявок и произвольным распределением времени обслуживания. Рассматривается одноканальная СМО с неограниченной очередью, на которую поступает произвольный рекуррентный поток заявок с интенсивностью λ и коэффициентом вариации v λ интервалов между заявками, заключенным между нулем и единицей: 0 < v λ < 1. Время обслуживания Т об также имеет произвольное распределение со средним значением t об = 1/μ и коэффициентом вариации v μ , тоже заключенным между нулем и единицей. Для этого случая точных аналитических формул получить не удается;

можно только приближенно оценить среднюю длину очереди, ограничить ее сверху и снизу.

Доказано, что в этом случае

Если входящий поток - простейший, то обе оценки - верхняя и нижняя - совпадают, и получается формула Полячека - Хинчина (21.1). Для грубо приближенной оценки средней длины очереди М. А. Файнбергом (см. ) получена очень простая формула:

(21.6)

Среднее число заявок в системе получается из L оч простым прибавлением ρ - среднего числа обслуживаемых заявок:

L сист = L оч + ρ. (21.7)

Что касается средних времен пребывания заявки в очереди и в системе, то они вычисляются через L оч и L сист по формуле Литтла делением на λ.

Таким образом, характеристики одноканальных СМО с неограниченной очередью могут быть (если не точно, то приближенно) найдены и в случаях, когда потоки заявок и обслуживании не являются простейшими.

Возникает естественный вопрос: а как же обстоит дело с многоканальными немарковскими СМО? Со всей откровенностью ответим: плохо. Точных аналитических методов для таких систем не существует. Единственное, что мы всегда можем найти, это среднее число занятых каналов k = ρ. Что касается L оч, L сист, W оч, W сист, то для них таких общих формул написать не удается.

Правда, если каналов действительно много (4-5 или больше), то непоказательное время обслуживания не страшно: был бы входной поток простейшим. Действительно, общий поток «освобождений» каналов складывается из потоков освобождений отдельных каналов, а в результате такого наложения («суперпозиции») получается, как мы знаем, поток, близкий к простейшему. Так что в этом случае замена непоказательного распределения времени обслуживания показательным приводит к сравнительно малым ошибкам. К счастью, входной поток заявок вомногих задачах практики близок к простейшему.

Хуже обстоит дело, когда входной поток заведомо не простейший. Ну, в этом случае приходится пускаться на хитрости. Например, подобрать две одноканальные СМО, из которых одна по своей эффективности заведомо «лучше» данной многоканальной, а другая - заведомо «хуже» (очередь больше, время ожидания больше). А для одноканальной СМО мы худо-бедно уже умеем находить характеристики в любом случае.

Как же подобрать такие одноканальные СМО - «лучшую» и «худшую»? Это можно сделать по-разному. Оказывается, заведомо худший вариант можно получить, если расчленить данную n -канальную СМО на п одноканальных, а общий поступающий на них простейший поток распределять между этими одноканальными СМО в порядке очереди: первую заявку - в первую СМО, вторую - во вторую и т. д. Мы знаем, что при этом на каждую СМО будет поступать поток Эрланга n -го порядка, с коэффициентом вариации, равным 1/ . Что касается коэффициента вариации времени обслуживания, то он остается прежним. Для такой одноканальной СМО мы уже умеем вычислять время пребывания заявки в системе W сист; оно будет заведомо больше, чем для исходной n -канальной СМО. Зная это время, можно дать «пессимистическую» оценку и для среднего числа заявок в очереди, пользуясь формулой Литтла и умножая среднее время на интенсивность λ общего потока заявок. «Оптимистическую» оценку можно получить, заменяя n -канальную СМО одной одноканальной, но с интенсивностью потока обслуживании в n раз большей, чем у данной, равной . Естественно, при этом параметр ρ тоже должен быть, изменен, уменьшен в n раз. Для такой СМО время пребывания заявки в системе W сист уменьшается за счет того, что обслуживание продолжается в n раз меньше времени. Пользуясь измененным значением , коэффициентом вариации входящего потока v λ и времени обслуживания v μ , мы можем приближенно вычислить среднее число заявок в системе . Вычитая из него первоначальное (не измененное) значение ρ, мы получим среднее число заявок в очереди . Обе характеристики будут меньше, чем для исходной n -канальной СМО (будут представлять собой «оптимистические» оценки). От них, деля на λ, можно перейти к «оптимистическим» оценкам для времени пребывания в СМО и в очереди.

Рассмотрим n - канальную систему массового обслуживания с ожиданием.

Интенсивность потока обслуживания равна μ. Длительность обслуживания – случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий.

Размер очереди допускает нахождение в ней m заявок.

Для нахождения предельных вероятностей можно использовать следующие выражения.

(0‑1)

где.

Вероятность отказа в обслуживании заявки (отказ произойдет в случае, если все каналы заняты и в очереди находятся m заявок):

(0‑2)

Относительная пропускная способность .

(0‑3)

Абсолютная пропускная способность .

(0‑4)

Среднее число занятых каналов.

Для СМО с очередью среднее число занятых каналов не совпадает (в отличие от СМО с отказами) со средним числом заявок в системе. Отличие равно числу заявок, ожидающих в очереди.

Обозначим среднее число занятых каналов. Каждый занятый канал обслуживает в среднем μ заявок в единицу времени, а СМО в целом – А заявок в единицу времени. Разделив А на μ получим

(0‑5)

Среднее число находящихся в очереди заявок.

Для нахождения среднего числа ожидающих в очереди заявок в случае, если χ≠1, можно использовать выражение:

(0‑6)

(0‑7)

где = .

Среднее число находящихся в системе заявок.

(0‑8)

Среднее время ожидания заявки в очереди .

Среднее время ожидания заявки в очереди можно найти из выражения (χ≠1).

(0‑9)

Среднее время пребывания заявки в системе.

Так же как и в случае с одноканальной СМО имеем:

(0‑10)

Содержание работы .

Подготовка инструментария эксперимента .

Выполняется в соответствии с общими правилами.

Расчет на аналитической модели .

1. В приложение Microsoft Excel подготовьте таблицу следующего вида.

Параметры
СМО

Аналитическая
модель

Имитационная
модель

n

m

T a

Ts

ρ

χ

P0

P1

p2

Pотк

W

nож

q

A

Pотк

W

q

A

2. В столбцах для параметров СМО таблицы запишите свои исходные данные, которые определяются по правилу:

n =1,2,3

m=1,3,5

Для каждой комбинации { n ,m} необходимо найти теоретические и экспериментальные значения показателей СМО для таких пар значений:

= <порядковый номер в списке группы>

3. В столбцы с показателями аналитической модели впишите соответствующие формулы.

Эксперимент на имитационной модели .

1. Установите режим запусков с экспоненциально распределенным временем обслуживания, задав значение соответствующего параметра равным 1.

2. Для каждой комбинации n, m, и осуществите запуск модели.

Результаты запусков внесите в таблицу.

3. Внесите в соответствующие столбцы таблицы формулы для расчета среднего значения показателя Pотк, q и А.

Анализ результатов .

1. Проанализируйте результаты, полученные теоретическим и экспериментальным способами, сравнив результаты между собой.

2. Для одной из комбинаций {n,m} постройте на одной диаграмме графики зависимости Pотк от на теоретически и экспериментально полученных данных.

Оптимизация параметров СМО .

Решите задачу оптимизации размера числа мест в очереди m для двух приборов со средним временем обслуживания = с точки зрения получения максимальной прибыли. В качестве условий задачи возьмите:

- доход от обслуживания одной заявки равным 80у.е./час,

- стоимость содержания одного прибора - 1у.е./час,

- стоимость содержания одного места в очереди – 0.2у.е./час.

1. Для расчетов целесообразно создать таблицу:

Первый столбец заполняется значениями числа приборов n =1.

Второй столбец заполняется значениями чисел натурального ряда (1,2,3…).

Все клетки третьего и четвертого столбцов заполняются значениями.

В клетки столбцов с пятого по четырнадцатый переносятся формулы для столбцов таблицы раздела 0.

В столбцы с исходными данными разделов Доход, Расход, Прибыль внесите значения (см. выше).

В столбцах с вычисляемыми значениями разделов Доход, Расход, Прибыль запишите расчетные формулы:

- число заявок в единицу времени

N r =A

- суммарный доход в единицу времени

I S = I r *N r

- суммарный расход в единицу времени

E S =E s *n + E q *m

- прибыль в единицу времени

P = I S - E S

где

I r - доход от одной заявки ,

E s - расход на один прибор ,

E q - расход на одно место в очереди

2. Заполните строки таблицы для n=2 и n=3.


Найдите m опт для n =1 ,2,3.

3. Постройте на одной диаграмме графики зависимости C(m) для n=1,2,3.

Отчет по работе :

Отчет по работе должен включать:

- исходные данные,

- результаты расчетов и экспериментов с программной моделью,

Графики для P отк ,

- таблицу с данными для нахождения наилучшего m и значение m опт,

- графики зависимости прибыли в единицу времени от m для n=1,2,3.

Контрольные вопросы :

1) Дайте краткое описание многоканальной модели СМО с ограниченной очередью.

2) Какими показателями характеризуется функционирование многоканальной СМО с ограниченной очередью?

3) Как рассчитываются предельные вероятности многоканальной СМО с ограниченной очередью?

4) Как найти вероятность отказа обслуживания заявки?

5) Как найти относительную пропускную способность?

6) Чему равна абсолютная пропускная способность?

7) Как подсчитывается среднее число заявок в системе?

8) Приведите примеры многоканальной СМО с ограниченной очередью.

Задачи .

1) На автозаправочной станции установлены 3 колонки и площадка на 3 автомобиля для ожидания заправки. В среднем на станцию прибывает одна машина каждые 4 минуты. Среднее время обслуживания одной машины - 2,8 мин. Определить характеристики работы автозаправочной станции.

2) На станцию технического осмотра автомобилей, имеющего 3 смотровых поста, в среднем поступает 1 автомобиль за 0,4 часа. Стоянка во дворе вмещает 3 машины. Среднее время работы одного поста - 0,5 часа. Определить характеристики работы СТО.

3) В магазин осуществляется завоз товаров автомобилями. В течение дня прибывают в среднем 6 машин. Подсобные помещения для подготовки товаров к продаже позволяют обрабатывать и хранить товар, привезенный двумя машинами. В магазине работают посменно три фасовщика товаров, каждый из которых в среднем может обрабатывать товар одной машины в течение 5 часов. Продолжительность рабочего дня фасовщиков составляет 12 часов. Определить характеристики работы магазина, а также, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была больше 0,96.

4) В магазине работают три кассы. Среднее время обслуживания одного покупателя - 3 мин. Интенсивность потока покупателей - 7 человек в минуту. Число покупателей, стоящих в очереди к кассе, не может превышать 5 человек. Покупатель, пришедший в магазин, в котором в каждой очереди в кассу 5 человек, не ждет, а уходит из магазина. Определить характеристики работы магазина.

5) Оптовый склад производит отпуск товаров клиентам. Погрузку автомашины осуществляют три бригады грузчиков, каждая из которых состоит из 4 человек. Склад одновременно вмещает 5 автомашин и, если в это время прибывает новая автомашина, то она не обслуживается. Интенсивность входящего потока составляет 5 автомашин в час. Интенсивность по грузки составляет 2 автомашины в час. Дайте оценку работы склада и вариант его реорганизации.

6) Таможня располагает тремя терминалами. Интенсивность потока автомашин, перевозящих грузы и подлежащих прохождению таможенного контроля, составляет 30 шт. в сутки. Среднее время таможенной обработки на терминале одной автомашины составляет 3 часа. Если в очереди на прохождение таможенного контроля стоят 5 автомашин, то приезжающие автомашины уезжают на другую таможню. Найти показатели эффективности работы таможни.

7) На строительную площадку в среднем через 40 мин прибывают автомашины со строительным материалом. Среднее время разгрузки одной автомашины составляет 1,8 часа. В разгрузке принимают участие две бригады грузчиков. На территории строительной площадки может находиться в очереди на разгрузку не более 5 автомашин. Определить показатели эффективности работы строительной площадки.

8) На мойку, имеющую три рабочих места, в среднем в час приезжает 12 автомашин. Если в очереди уже находится 6 автомашин, вновь приезжающие автомобили не встают в очередь, а покидают мойку. Среднее время мойки автомашины составляет 20 мин, средняя стоимость услуг мойки - 150 руб. Определить показатели эффективности работы мойки и среднюю величину потери выручки в течение рабочего дня (с 9 до 19 часов).

9) Интенсивность потока автомашин, перевозящих грузы и подлежащих прохождению таможенного контроля, составляет 50 шт. в сутки. Среднее время таможенной обработки на терминале одной автомашины составляет 2,8 часа. Максимальная очередь на прохождение таможенного контроля должна быть не более 8 автомашин. Определить, какое количество терминалов надо открыть на таможне, чтобы вероятность простоя автомашин была минимальна.


Системы МО являются частью более широкого класса динамических систем, которые иногда называют системами потоков. Системой потоков называется система, в которой некоторые предметы перемещаются по одному или нескольким каналам с ограниченной пропускной способностью с целью перемещения из одной точки в другую. При анализе систем потоков их разбивают на два основных класса:

    регулярные системы, т. е. системы, в которых потоки ведут себя предсказуемым образом (известны величина потока и время его появления в канале). В случае, когда канал один, расчет системы тривиален. Очевидно, что между интенсивностью потока λ и скоростью обслуживания с есть соотношение λ < c ;

    нерегулярные системы, т. е. системы, в которых потоки ведут себя непредсказуемым образом.

Более интересным является случай регулярного потока, который распределяется по сети каналов. Очевидно, что условие λ < c сохраняется для каждого канала. При этом возникает сложная комбинаторная задача.

Имеется семь дорог:

  1. A→B→D→E→F

  2. A→C→B→ E→F

    A→C→B→D→E→F

    A→C→B→ D→F

Необходимо перевезти груз из А в F . Пропускная способность каждого канала известна. Какова пропускная способность сети и каким путем должен следовать поток? Решить эту задачу можно с помощью теоремы о максимальном потоке, которую мы рассматривали ранее (рис.6).

Ко второму классу относятся случайные вероятные потоки, в которых время поступления требования не определено, число требований непредсказуемо. Решением таких задач и занимается теория массового обслуживания.

В общем случае система массового обслуживания может быть представлена на рисунке 7.

Рис. 7.

Предметом теории массового обслуживания является установление зависимости между характером потока заявок, числом каналов, производительностью, правильностью работы и эффективностью.

В качестве характеристик эффективности могут применяться следующие величины и функции:

    среднее количество заявок, которые может обслужить СМО в единицу времени;

    среднее количество заявок, получающих отказ и покидающих СМО;

    вероятность того, что поступившая заявка немедленно будет обслужена;

    среднее время ожидания в очереди;

    среднее количество заявок в очереди;

    средний доход СМО в единицу времени и другие экономические показатели СМО .

Анализ СМО упрощается, если в системе протекает марковский процесс, тогда систему можно описать обыкновенными дифференциальными уравнениями, а предельные вероятности – линейными алгебраическими уравнениями.

Марковский процесс требует, чтобы все потоки были пуассоновскими (без последействий), но аппарат марковских процессов используется и тогда, когда процесс отличен от марковского. В этом случае характеристики СМО могут быть оценены приблизительно: чем сложнее СМО, тем точнее приближение.

Классификация систем массового обслуживания

СМО могут быть двух видов:

    СМО с отказами;

    СМО с ожиданием (т. е. с очередью).

Обслуживание в системах с очередью может иметь различный характер:

    обслуживание может быть упорядоченным;

    обслуживание в случайном порядке;

    обслуживание с приоритетом, при этом приоритет может быть с прерыванием и без прерывания.

Системы с очередью делятся на:

    системы с неограниченным ожиданием , при этом поступившая в СМО задача становится в очередь и ждет обслуживания. Рано или поздно она будет обслужена;

    системы с ограниченным ожиданием , при этом на заявку в очереди накладываются ограничения, например ограниченное время пребывания в очереди, длина очереди, общее время пребывания в СМО. В зависимости от типа СМО для оценки эффективности могут быть применены разные показатели.

Для СМО с отказами используются следующие показатели эффективности:

    абсолютная пропускная способность А – среднее число заявок, которое может быть обслужено в единицу времени;

    относительная пропускная способность Q – относительное среднее число заявок. При этом относительную пропускную способность можно найти по формуле

Где λ – это интенсивность поступления заявок в СМО.

Для СМО с ожиданием абсолютная пропускная способность А и относительная пропускная способность Q теряют смысл, но важными становятся другие характеристики:

    единица времени ожидания в очереди;

    среднее число заявок в очереди;

    среднее время пребывания в системе.

Для СМО с ограниченной очередью интересны обе группы характеристик.

Рассмотрим простейшую СМО с ожиданием - одноканальную систему , в которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (т. е. в среднем непрерывно занятый канал будет выдавать обслуженных заявок в единицу (времени). Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом , т. е. если заявка пришла в момент, когда в очереди уже стоят заявок, она покидает систему необслуженной. В дальнейшем, устремив к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

Канал свободен;

Канал занят, очереди нет;

Канал занят, одна заявка стоит в очереди;

Канал занят, заявок стоят в очереди;

Канал занят, т заявок стоят в очереди.

ГСП показан на рис. 5.8. Все интенсивности потоков событий, переводящих в систему по стрелкам слева направо, равны , а справа налево - . Действительно, по стрелкам слева направо систему переводит поток заявок (как только придет заявка, система переходит в следующее состояние), справа же налево - поток «освобождений» занятого канала, меющий интенсивность (как только будет обслужена очередная заявка, канал либо освободится, либо уменьшится число заявок в очереди).

Рис. 5.8. Одноканальная СМО с ожиданием

Изображенная на рис. 5.8 схема представляет собой схему размножения и гибели. Используя общее решение (5.32)-(5.34), напишем выражения для предельных вероятностей состояний (см. также (5.40)):

или с использованием :

Последняя строка в (5.45) содержит геометрическую прогрессию с первым членом 1 и знаменателем р; откуда получаем:

в связи с чем предельные вероятности принимают вид:

Выражение (5.46) справедливо только при (при она дает неопределенность вида ). Сумма геометрической прогрессии со знаменателем равна , и в этом случае

Определим характеристики СМО: вероятность отказа , относительную пропускную способность , абсолютную пропускную способность , среднюю длину очереди , среднее число заявок, связанных с системой , среднее время ожидания в очереди , среднее время пребывания заявки в СМО

Вероятность отказа. Очевидно, заявка получает отказ только в случае, когда канал занят и все т мест в очереди тоже:

Относительная пропускная способность:

Абсолютная пропускная способность:

Средняя длина очереди. Найдем среднее число заявок, находящихся в очереди, как математическое ожидание дискретной случайной величины - числа заявок, находящихся в очереди:

С вероятностью в очереди стоит одна заявка, с вероятностью - две заявки, вообще с вероятностью в очереди стоят заявок, и т. д., откуда:

Поскольку , сумму в (5.50) можно трактовать как производную по от суммы геометрической прогрессии:

Подставляя данное выражение в (5.50) и используя из (5.47), окончательно получаем:

Среднее число заявок, находящихся в системе. Получим далее формулу для среднего числа заявок, связанных с системой (как стоящих в очереди, так и находящихся на обслуживании). Поскольку , где - среднее число заявок, находящихся под обслуживанием, а известно, то остается определить . Поскольку канал один, число обслуживаемых заявок может равняться (с вероятностью ) или 1 (с вероятностью ), откуда:

и среднее число заявок, связанных с СМО, равно

Среднее время ожидания заявки в очереди. Обозначим его ; если заявка приходит в систему в какой-то момент времени, то с вероятностью канал обслуживания не будет занят, и ей не придется стоять в очереди (время ожидания равно нулю). С вероятностью она придет в систему во время обслуживания какой-то заявки, но перед ней не будет очереди, и заявка будет ждать начала своего обслуживания в течение времени (среднее время обслуживания одной заявки). С вероятностью в очереди перед рассматриваемой заявкой будет стоять еще одна, и время ожидания в среднем будет равно , и т. д.

Если же , т. е. когда вновь приходящая заявка застает канал обслуживания занятым и заявок в очереди (вероятность этого ), то в этом случае заявка не становится в очередь (и не обслуживается), поэтому время ожидания равно нулю. Среднее время ожидания будет равно:

если подставить сюда выражения для вероятностей (5.47), получим:

Здесь использованы соотношения (5.50), (5.51) (производная геометрической прогрессии), а также из (5.47). Сравнивая это выражение с (5.51), замечаем, что иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Среднее время пребывания заявки в системе. Обозначим матожидание случайной величины - время пребывания заявки в СМО, которое складывается из среднего времени ожидания в очереди и среднего времени обслуживания . Если загрузка системы составляет 100 %, очевидно, , в противном же случае

Пример 5.6. Автозаправочная станция (АЗС) представляет собой СМО с одним каналом обслуживания (одной колонкой).

Площадка при станции допускает пребывание в очереди на заправку не более трех машин одновременно . Если в очереди уже находятся три машины, очередная машина, прибывшая к станции, в очередь не становится. Поток машин, прибывающих для заправки, имеет интенсивность (машина в минуту). Процесс заправки продолжается в среднем 1,25 мин.

Определить:

вероятность отказа;

относительную и абсолютную пропускную способности АЗС;

среднее число машин, ожидающих заправки;

среднее число машин, находящихся на АЗС (включая обслуживаемую);

среднее время ожидания машины в очереди;

среднее время пребывания машины на АЗС (включая обслуживание).

иначе говоря, среднее время ожидания равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Находим вначале приведенную интенсивность потока заявок:

; .

По формулам (5.47):

Вероятность отказа .

Относительная пропускная способность СМО

.

Абсолютная пропускная способность СМО

машины в мин.

Среднее число машин в очереди находим по формуле (5.51)

т. е. среднее число машин, ожидающих в очереди на заправку, равно 1,56.

Прибавляя к этой величине среднее число машин, находящихся под обслуживанием

получаем среднее число машин, связанных с АЗС.

Среднее время ожидания машины в очереди по формуле (5.54)

Прибавляя к этой величине , получим среднее время, которое машина проводит на АЗС:

Системы с неограниченным ожиданием . В таких системах значение т не ограничено и, следовательно, основные характеристики могут быть получены путем предельного перехода в ранее полученных выражениях (5.44), (5.45) и т. п.

Заметим, что при этом знаменатель в последней формуле (5.45) представляет собой сумму бесконечного числа членов геометрической прогрессии. Эта сумма сходится, когда прогрессия бесконечно убывающая, т. е. при .

Может быть доказано, что есть условие, при котором в СМО с ожиданием существует предельный установившийся режим, иначе такого режима не существует, и очередь при будет неограниченно возрастать. Поэтому в дальнейшем здесь предполагается, что .

Если , то соотношения (5.47) принимают вид:

При отсутствии ограничений по длине очереди каждая заявка, пришедшая в систему, будет обслужена, поэтому ,

Среднее число заявок в очереди получим из (5.51) при :

Среднее число заявок в системе по формуле (5.52) при

Среднее время ожидания получим из формулы

(5.53) при :

Наконец, среднее время пребывания заявки в СМО есть

Многоканальная СМО с ожиданием

Система с ограниченной длиной очереди . Рассмотрим канальную СМО с ожиданием, на которую поступает поток заявок с интенсивностью ; интенсивность обслуживания (для одного канала) ; число мест в очереди .

Состояния системы нумеруются по числу заявок, связанных системой:

нет очереди:

Все каналы свободны;

Занят один канал, остальные свободны;

Заняты каналов, остальные нет;

Заняты все каналов, свободных нет;

есть очередь:

Заняты все n каналов; одна заявка стоит в очереди;

Заняты все n каналов, r заявок в очереди;

Заняты все n каналов, r заявок в очереди.

ГСП приведен на рис. 5.9. У каждой стрелки проставлены соответствующие интенсивности потоков событий. По стрелкам слева направо систему переводит всегда один и тот же поток заявок с интенсивностью , по стрелкам справа налево систему переводит поток обслуживании, интенсивность которого равна , умноженному на число занятых каналов.

Рис. 5.9. Многоканальная СМО с ожиданием

Граф типичен для процессов размножения и гибели, для которой решение ранее получено (5.29)-(5.33). Напишем выражения для предельных вероятностей состояний, используя обозначение : (здесь используется выражение для суммы геометрической прогрессии со знаменателем ).

Таким образом, все вероятности состояний найдены.

Определим характеристики эффективности системы.

Вероятность отказа. Поступившая заявка получает отказ, если заняты все каналов и все мест в очереди:

Относительная пропускная способность дополняет вероятность отказа до единицы:

Абсолютная пропускная способность СМО:

Среднее число занятых каналов. Для СМО с отказами оно совпадало со средним числом заявок, находящихся в системе. Для СМО с очередью среднее число занятых каналов не совпадает со средним числом заявок, находящихся в системе: последняя величина отличается от первой на среднее число заявок, находящихся в очереди.

Обозначим среднее число занятых каналов . Каждый занятый канал обслуживает в среднем заявок в единицу времени, а СМО в целом обслуживает в среднем заявок в единицу времени. Разделив одно на другое, получим:

Среднее число заявок в очереди можно вычислить непосредственно как математическое ожидание дискретной случайной величины:

Здесь опять (выражение в скобках) встречается производная суммы геометрической прогрессии (см. выше (5.50), (5.51)-(5.53)), используя соотношение для нее, получаем:

Среднее число заявок в системе:

Среднее время ожидания заявки в очереди. Рассмотрим ряд ситуаций, различающихся тем, в каком состоянии застанет систему вновь пришедшая заявка и сколько времени ей придется ждать обслуживания.

Если заявка застанет не все каналы занятыми, ей вообще не придется ждать (соответствующие члены в математическом ожидании равны нулю). Если заявка придет в момент, когда заняты все каналов, а очереди нет, ей придется ждать в среднем время, равное (потому что «поток освобождений» каналов имеет интенсивность ). Если заявка застанет все каналы занятыми и одну заявку перед собой в очереди, ей придется в среднем ждать в течение времени (по на каждую впереди стоящую заявку) и т. д. Если заявка застанет в очереди заявок, ей придется ждать в среднем в течение времени . Если вновь пришедшая заявка застанет в очереди уже заявок, то она вообще не будет ждать (но и не будет обслужена). Среднее время ожидания найдем, умножая каждое из этих значений на соответствующие вероятности:

Так же, как и в случае одноканальной СМО с ожиданием, отметим, что это выражение отличается от выражения для средней длины очереди (5.59) только множителем , т. е.

Среднее время пребывания заявки в системе, так же, как и для одноканальной СМО, отличается от среднего времени ожидания на среднее время обслуживания, умноженное на относительную пропускную способность:

Системы с неограниченной длиной очереди . Мы рассмотрели канальную СМО с ожиданием, когда в очереди одновременно могут находиться не более заявок.

Так же, как и ранее, при анализе систем без ограничений необходимо рассмотреть полученные соотношения при .

Вероятности состояний получим из формул (5.56) предельным переходом (при ). Заметим, что сумма соответствующей геометрической прогрессии сходится при и расходится при . Допустив, что и устремив в формулах (5.56) величину m к бесконечности, получим выражения для предельных вероятностей состояний:

Вероятность отказа, относительная и абсолютная пропускная способность. Так как каждая заявка рано или поздно будет обслужена, то характеристики пропускной способности СМО составят:

Среднее число заявок в очереди получим при из (5.59):

а среднее время ожидания - из (5.60):

Среднее число занятых каналов , как и ранее, определяется через абсолютную пропускную способность:

Среднее число заявок, связанных с СМО, определяется как среднее число заявок в очереди плюс среднее число заявок, находящихся под обслуживанием (среднее число занятых каналов):

Пример 5.7. Автозаправочная станция с двумя колонками () обслуживает поток машин с интенсивностью (машин в минуту). Среднее время обслуживания одной машины

В данном районе нет другой АЗС, так что очередь машин перед АЗС может расти практически неограниченно. Найти характеристики СМО.

Поскольку , очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы СМО. По формулам (5.61) находим вероятности состояний:

Среднее число занятых каналов найдем, разделив абсолютную пропускную способность СМО на интенсивность обслуживания :

Вероятность отсутствия очереди у АЗС будет:

Среднее число машин в очереди:

Среднее число машин на АЗС:

Среднее время ожидания в очереди:



Поделиться