Нужно ли гасить низкочастотные вибрации. Вибрация благотворная и вибрация вредная

Надежность работы турбины и генератора в значительной мере определяется их вибрационным со­стоянием.

Повышенная вибрация, возни­кающая вследствие некачественного изготовления, монтажа, ремонта или некачественной эксплуатации агре­гата, является источником всевоз­
можных аварийных ситуаций и да­же крупных аварий. Необходимо от­метить, «что вредные последствия да­же умеренных вибраций имеют свой­ство накапливаться и проявляться в самой различной форме. Это мо­жет найти выражение в появлении усталостных трещин в роторе тур­бины, штоках регулирующих клапа­нов, чугунных опорах, зубчатых пе­редачах и т. д. Под действием виб­рации расстраивается взаимное крепление частей, нарушается жест­кая связь статоров и подшипников с фундаментными плитами, уве­личивается расцентровка валов.

При повышенной вибрации воз­никает опасность повреждения ла­биринтных уплотнений турбины, во­дородных уплотнений и системы водяного охлаждения генератора. Значительные колебания вала на масляной пленке могут вызвать воз­никновение очагов полусухого тре­ния, что увеличивает опасность вы­плавления подшипников.

Неблагоприятное действие виб­рации оказывается также на работе системы регулирования турбины и приборов контроля. Необходимо от­метить также отрицательное воз­действие вибрации на обслуживаю­щий персонал. Это воздействие определяется как повышенным уровнем шума, так и непосредствен­ным, физиологическим действием вибрации на организм человека.

Все эти обстоятельства предъяв­ляют весьма жесткие требования к нормированию вибраций. Соглас­но ПТЭ вибрационное состояние турбоагрегата оценивается по сле­дующей шкале:

На турбогенераторах блочных установок мощностью 150 МВт и бо­лее вибрация не должна превышать 30 мкм.

Вибрация должна замеряться в трех направлениях: вертикальном, горизонтально-продольном и гори­зонтально-поперечном. Если вибра­ция хотя бы одного из подшипников в одном из трех направлений пре­вышает значение «удовлетворитель­но» для данного типа машин, то вибрационное состояние всего агре­гата признается неудовлетворитель­ным, и турбина должна быть выве­дена в ремонт для устранения виб­рации.

Вибрационное состояние агрега­та должно определяться при вводе его в эксплуатацию после монтажа, перед выводом агрегата в капиталь­ный ремонт и после капитального ремонта. При отличном и хорошем вибрационном состоянии агрегата периодичность замеров вибрации должна составлять 1 раз в 3 мес. При заметном повышении вибрации подшипников замеры должны произ­водиться по особому графику. Тур­боагрегаты с удовлетворительной оценкой вибрации могут быть вве­дены в эксплуатацию только с раз­решения главного инженера район­ного управления (энергокомбина­та), причем в самое ближайшее вре­мя должны быть приняты меры по улучшению вибрационного состоя­ния агрегата.

Для оценки вибрационного со­стояния турбоагрегата уровень виб­рации должен определяться не толь­ко на рабочих числах оборотов, но и при прохождении турбиной крити­ческого числа оборотов. Исследова­ния показали , что переход систе­мы «ротор - опоры» через критиче­ские скорости в процессе пуска и останова агрегата может сопровож­даться весьма значительным увели­чением амплитуды колебаний. Хотя в данном случае повышенная вибра­ция действует относительно кратко­временно, однако нескольких пусков и остановов машины с недопустимо большими амплитудами колебаний ротора на критических скоростях может оказаться достаточным для приведения в негодность паровых и масляных уплотнений. В худших случаях возникают задевания в про­точной части турбины, появляется остаточный прогиб ротора, разруша­ется баббит вкладышей подшипни­ков, появляются трещины в фунда­менте и т. п.

Значительный рост вибрации на кри­тических скоростях вызывается существен­ной неуравновешенностью ротора по соб­ственным формам динамического прогиба валов. Как показывает практика, и этот небаланс может быть устранен специаль­ными методами балансировки с доведением уровня вибрации подшипников на крити­ческих оборотах до величины порядка 30- 50 мкм. Поэтому вибрационное состояние турбоагрегата, проходящего критические скорости с повышенной вибрацией, не мо­жет считаться удовлетворительным, если даже на рабочей скорости вращения ви­брация подшипников «е превышает нор­мы.

Существующие допуски нормируют ам­плитуду колебаний подшипников только в за­висимости от скорости вращения роторов, не учитывая частотного состава этих колеба­ний. Однако многочисленные измерения по­казывают, что вибрация подшипников, ва­лов и других элементов машины часто ко­сит. несвнусоидальный характер. На коле­бания основной частоты, равной частоте вращения роторов, накладываются состав­ляющие высших, а иногда и низших ча­стот. В отдельных случаях наблюдаются колебания, близкие к синусоидальным, ио с частотами, отличными от основной .

У агрегатов с частотой вращения 3000 об/мин с основной частотой колеба­ний 50 Гц чаще всего обнаруживается высокочастотная составляющая 100 Гц, а также имеют место низкочастотные состав­ляющие с частотами, близкими, к низшей критической скорости системы «ротор - опоры» (обычно 17-21 Гц) или к полови­не рабочей частоты (~25 Гц).

Присутствие существенных по амплиту­де высших гармоник свидетельствует о дей­ствии на колеблющуюся систему значи­тельных нагрузок, которые могут в несколь­ко раз превышать нагрузки, вызывающие колебания основной частоты. Однако, по­скольку вопрос о связи между спектраль­ным составом вибрации и опасностью ее для турбины недостаточно изучен, можно ограничиться лишь указанием на необхо­димость принятия более жестких допусков на вибрацию в случае значительных высо­кочастотных составляющих. Что касается низкочастотных колебаний, то вследствие их неустойчивости, способности к внезапно­му и резкому возрастанию они представля­ют несомненную опасность для машины. Поэтому, если в колебаниях подшипников и роторов обнаруживаются заметные низ­кочастотные составляющие, вибрационное состояние турбоагрегата не может быть признано удовлетворительным.

Некоторый учет частотного состава ви­брации предусматривают нормы VDI, по­лучившие распространение в европейской практике. Согласно этим нормам в каче­стве основной характеристики вибрации принимается эквивалентная амплитуда ви­броскорости, измеренная при рабочей ско­рости вращения роторов

Если измеряемые колебания разлагают­ся на гармонические составляющие с угло­выми частотами сої, (02, ..., (о„ и соответст­вующими им амплитудами At, Аг,., .,Ап, то эквивалентная амплитуда внброскоро - сти может быть подсчитана по формуле

Vskb = К"Л^шг, + ЛЧсоЧ + . . . + AinP*„ = = VVh + V», + . . . + Wn, (3-14)

Где Vi, . . ., Vn - амплитудные значения виброскорости каждой из гармонических составляющих.

Для случая измерения биений с мак­симальными l/макс и минимальными Vrnui значениями виброскоростей

VSKB = К^макс + VW (3-15)"

В табл. 3-7 приводятся нормы допу­стимой вибрации подшипников турбоагре-

Гатов по данным VDI на основной частоте 50 Гц

В проекте международного стандарта на вибрацию машин предлагается исполь­зование в качестве критерия эффективной амплитуды виброскорости

Уэфф = l-"экв (3-16>

Как величины, непосредственно измеряемой электроизмерительными приборами. Уровни

■оценки вибросостояния машин ПО Уэфф со­ответствуют подобным же уровням, при­веденным по Уэкв в нормах VDI. Эти нор­мы учитывают гармонический состав изме­ряемой вибрации за счет составляющих, имеющих частоту выше оборотной.

Оценка вибрационного состояния турбоагрегата будет не полной, если не учитывать уровень вибрации его фундамента. Обычно у правильно спроектированного и хорошо выпол­ненного фундамента двойная ампли­туда колебаний при хорошо отба­лансированном роторе не превышает 10-20 мкм. Заметное отклонение от приведенных значений в сторо­ну увеличения свидетельствует о де­фектах фундамента.

При рассмотрении вопросов виб­рации современных крупных турбо­агрегатов необходимо учитывать то обстоятельство, что колебания под­шипников в современных агрегатах все в меньшей степени отражают истинные колебания вала турбины. Это объясняется в первую очередь повышенной массой и жесткостью опор крупных турбоагрегатов. Не последнюю роль в этом явлении играют также демпфирующие свой­ства масляного клина, существую­щего между шейкой вала и подшип­ником.

Согласно экспериментальным данным на крупных агрегатах ам­плитуда вибрации концов валов мо­жет превосходить в 10-15 раз ам­плитуду колебаний подшипника, причем эти колебания могут быть смещены между собой по фазе. На­блюдались также случаи, когда вы­лет одной или нескольких рабочих лопаток не приводил к заметному увеличению вибрации подшипников, тогда как колебания вала сущест­венно возрастали. Это показывает, что для ряда турбоагрегатов вибра­ция подшипников не являтся надеж­ным критерием безопасности, и не­обходимо для этих агрегатов в каж­дом отдельном случае эксперимен­тально устанавливать связь между колебаниями валов и подшипников турбины. Переход к большим еди­ничным мощностям турбоагрегатов повышает требования к их вибра­ционной надежности, вследствие че­го устранение значительных вибра­ций и определение причины их появ­ления являются задачами первосте­пенной важности.

К основным причинам, вызываю­щим возникновение вибраций агре­гата, можно отнести следующие:

А) динамическая неуравновешен­ность роторов;

Б) нарушение центровки рото­ров;

В) ослабление жесткости систе­мы;

Г) работа в области резонансных чисел оборотов;

Д) потеря устойчивости вала на масляной пленке;

Е) появление возмущающих сил электромагнитного происхождения.

Возникновение динамической не­уравновешенности роторов может быть вызвано двумя причинами:

1) перераспределением масс по окружности ротора или приложе­нием к ротору новых неуравнове­шенных масс;

2) смещением главной централь­ной оси инерции ротора относитель­но оси его вращения.

В обоих случаях возникает не­уравновешенная центробежная си­ла, пропорциональная квадрату чис­ла оборотов, вызывающая вибрацию агрегата оборотной частоты.

Причинами возникновения не­уравновешенности роторов турбин и генераторов могут быть обрыв лопа­ток и бандажей, разрушение дисков, некачественная балансировка при перелопачивании роторов, перемот - іка роторов генераторов, неравно­мерный износ лопаток, .неравномер­ный занос солями лопаточного аппа­рата и т. д.

Смещение оси инерции ротора относительно оси вращения может возникнуть из-за ослабления "посад­ки деталей на валу или прогиба вала. Прогиб ротора при сборке мо­жет возникнуть в результате пере­коса шпонок относительно ШПОНОЧ­НЫХ пазов, некачественно выполнен­ной насадки дисков и т. д. В процессе эксплуатации прогиб ротора - мо­жет "вызываться тепловой разбалан - сировкой, термической нестабильно­стью металла, ротора, задеваниями в проточной части, а также непра­вильными режимами пуска - и оста­нова турбин, вызывающими прогиб ротора.

Рассмотренные выше явления приводят к появлению первичного прогиба, являюще­гося следствием первичной неуравновешен­ности ротора. Появление первичного проги­ба вызывает вторичную неуравновешен­ность, возникающую вследствие отклонения оси инерции от оси вращения при динами­ческом прогибе ротора. Эта вторичная не­уравновешенность трудно поддается опреде­лению из-за сложности измерения динами­ческого прогиба по длине роторов в эксплуа­тационных условиях, однако приближенные расчеты показывают, что она может в не­сколько раз превышать первичную неуравно­вешенность ротора.

Динамический прогиб на крити­ческих скоростях достигает, как пра­вило; максимальных значений, что приводит к значительному росту суммарной неуравновешенности и как следствие к усилению вибрации подшипников. Преобладающее влия­ние динамического прогиба на виб­рацию наблнрдается главным обра­зом у роторов современных генера­торов средней и большой мощности, работающих вблизи второй критиче­ской скорости. Вследствие этого критерием оценки уравновешенно­сти роторов генераторов является амплитуда вибрации подшипников и вала на рабочей и критической ско­ростях вращения.

Одной из причин повышения ви­брации агрегата может явиться рас - центровка "роторов. Влияние расцен - тровки на вибрацию турбин суще­ственно зависит от степени уравно­вешенности роторов и носит различ­ный характер в зависимости от типа соединительных муфт. При жестких или полужестких муфтах сболчива - ние муфты восстанавливает нор­мальную центровку роторов. При этом возникает перераспределение нагрузки на подшипники от веса со­единенных роторов. Не являясь не­посредственным источником динами­ческих сил, возбуждающих колеба­ния, такое перераспределение стати­ческой нагрузки изменяет парамет­ры системы «ротор - опоры». Так, например, полная разгрузка одной промежуточной опоры увеличивает пролет вала между опорами и изме­няет его критическое число оборо­тов, что в свою очередь может при­вести к приближению одной из кри­тических скоростей к рабочей ско­рости вращения агрегата. Если в ре­зультате перераспределения стати­ческой нагрузки одна из опор ока­жется частично разгруженной, то это может способствовать возбужде­нию низкочастотных колебаний, вы­званных неустойчивостью вала на масляной лленке при малых ради­альных нагрузках на подшипник. Гибкие соединительные муфты мо­гут компенсировать значительную расцентровку валов (до 0,3 мм) без возникновения заметной вибрации. Однако в случае загрязнения масла, отложений шлама и наличия накле­па на рабочих поверхностях подвиж­ных элементов муфты происходит резкое увеличение коэффициента трения между этими элементами, что может привести к частичному или полному заклиниванию муфты. В этом случае соединенные роторы начинают работать со смещением центра тяжести относительно оси вращения, что является причиной возникновения вибрации.

В процессе эксплуатации расцен - тровки роторов или перераспределе­ние нагрузки на подшипники воз­можны вследствие нарушения пра­вильного теплового расширения цилиндров турбины. Это явление свя­зано с заклиниванием корпусов под­шипников или цилиндров на шпон­ках, упором в дистанционные болты, односторонним нагревом или охлаж­дением цилиндра и т. д.

Наряду с неравномерным обогре­вом цилиндров вибрация может воз­никнуть также вследствие неравно­мерного прогрева фундамента ма­шины. Такие явления наблюдались при эксплуатации турбин 300 МВт, у которых разность вертикальных тепловых расширений колонн фун­дамента достигала 2 мм.

Причиной, вызывающей неравно­мерный прогрев фундамента, может быть близкое расположение паро­проводов, клапанов, и подогревате­лей, имеющих недостаточную или поврежденную изоляцию. Характер­ным признаком возникновения рас - центровки агрегата по этой причине является постепенное нарастание вибраций в течение нескольких дней с момента пуска, поскольку, как по­казали наблюдения, нагрев фунда­мента длится несколько суток (у тур­бин К-300-240 до 7 суток). Для устранения вибраций, вызываемых этим явлением, необходимо тща­тельно изолировать находящиеся в непосредственной близости от фун­дамента высокотемпературные узлы и детали с установкой в наиболее обогреваемых местах водяных экра­нов, а также проверить и, если по­требуется, провести дополнительную балансировку роторов.

Еще одной причиной возникнове­ния вибрации при эксплуатации крупных агрегатов является просад­ка выхлопных патрубков турбины со "встроенными в них подшипника­ми при наборе вакуума и от веса на­ходящейся в водяных камерах кон­денсатора циркуляционной воды. Для турбин мощностью 100- 300 МВт просадка опор под дей­ствием вакуума оценивается вели­чиной порядка 0,1-0,15 мм. Эту причину можно обнаружить, заме­ряя уровень вибрации при измене­нии вакуума на турбине. При этом наибольшее изменение вибраций на­блюдается на подшипниках ЧНД.

На рис. 3-17 приводится зависи­мость поперечных колебаний задне­го подшипника ЦНД от вакуума для турбины ВК-100-2. Хотя виброграм­ма, представленная на графике, отражает целый ряд причин, вызы­вающих вибрацию, в том числе и тепловую расцентровку за счет ухудшения вакуума, однако влияние

Изменения вакуума прослеживается довольно четко. Подобное влияние вакуума можно в значительной мере устранить путем установки ротора низкого давления с некоторым за­вышением относительно остальных валов при центровке агрегата.

При постоянной величине неба­ланса или расцентровки ротора уве­личение амплитуды колебаний мо­жет явиться следствием уменьшения статической жесткости системы.

При эксплуатации турбоагрегата ослабление жесткости может "быть вызвано следующими причинами:

А) ослаблением взаимного креп­ления составных частей опоры рото­ра: вкладышей, корпусов подшипни­ков, фундаментных рам, ригелей фундамента;

Б) отрывом стула подшипника от фундаментной плиты («опрокидыва­ние» стула подшипника);

В) нарушением связи между сту­лом подшипника и опирающимся на него цилиндром турбины;

Г) нарушением связи между ци­линдром турбины и его опорами на фундаменте;

Д) появлением трещин у несу­щих элементов фундамента.

Указанные явления могут воз­никнуть в (результате недоброкаче­ственного монтажа или сборки пос­ле ремонта, а также в процессе экс­плуатации из-за нарушения нор­мальных тепловых расширений тур­бины. Отрыв стула подшипника от фундаментной плиты также вызы­вается конструктивными дефектами соединения его с цилиндром турби­ны. Уменьшение жесткости опор мо­жет вызвать, кроме того, изменение собственной частоты колебаний си­стемы «ротор-опоры» с приближе­нием ее к резонансу. Вибрация, воз­никающая в результате ослабления жесткости опор, имеет, как правило, синусоидальную форму и оборотную частоту. Иногда наблюдаются высо­кочастотные наложения, искажаю­щие синусоидальность колебаний, что связано с появлением микроуда­ров в трещинах или местах соеди­нений конструктивных элементов. Отличительной особенностью этой вибрации является ее зависимость от теплового состояния турбины.

Надежность работы турбоагрега­та во многом зависит от близости критических частот вращения систе­мы «ротор-опоры» к номинальной частоте вращения. В случае работы ротора в области критических час­тот даже незначительная неуравно­вешенность может привести к суще­ственному повышению уровня виб­рации. Для предотвращения подоб­ных явлений всеми заводами-изгото­вителями производится тщательный расчет роторов турбин и генерато­ров по всем собственным формам колебаний вала.

Однако выполнение расчетов весьма затрудняется из-за недостат­ка исходных данных о влиянии упру­гости масляной пленки, податливо­сти опор и т. л. Вследствие этого действительная критическая частота вращения турбоагрегата, определяе­мая экспериментальным путем, ино­гда оказывается в значительном не­соответствии с расчетной. Это при­водит к тому, что на ряде турбо­агрегатов рабочая частота вращения находится в области второй крити­ческой частоты, что существенно увеличивает уровень вибрации на рабочих частотах. В первую очередь это относится к генераторам, имею­щим весьма большой вес ротора, приходящийся на единицу длины вала. У этих агрегатов уже расчет­ная вторая критическая частота на­ходится вблизи рабочей частоты, и, если учесть, что неточность исход­ных данных влияет в первую оче­редь на высшие критические часто­ты вала, можно прийти к выводу, что попадание в резонанс на рабо­чих частотах у этих машин весьма вероятно.

Как показывает эксперимент, для ряда генераторов отстройка действительной второй критической частоты от рабочей не превышает 4-8% (ТВ2-150-2, ТВФ-200-2, ТГВ-200), что нельзя считать удов­летворительным.

У некоторых генераторов, а также у большинства турбии вторая критическая ча­стота лежит выше рабочих частот вращения. В этом случае существует опасность посте­пенного снижения резонаисиой частоты си­стемы за счет уменьшения жесткости опор в процессе длительной эксплуатации турбо­агрегата. Этому процессу в значительной ме­ре способствует повышенный уровень вибра­ции турбоагрегата.

Рассматривая вопрос о влиянии крити­ческих частот на работу агрегата, необходи­мо отметить, что с переходом в крупных аг­регатах на применение жестких муфт и ог­раниченного числа опор возрастает влияние жесткой связи между валами на критиче­скую частоту вращения всего валопровода. Хотя критические частоты валопровода и в этом случае определяются в основном ре­зонансными колебаниями отдельных валов, жесткая связь между роторами и отсутст­вие промежуточных опор вызывают допол­нительные резоиаисы. При этом наблюдается заметное повышение критических частот ва­лопровода относительно резонансов несвя­занных роторов. Все эти обстоятельства должны быть учтены при отстройке вала от резонансной частоты вращения. По дан­ным ряда наладочных организаций, мини­мально допустимая отстройка вала от резо­нансной частоты вращения при второй резо­нансной частоте должна быть не менее 10%.

Из всех причин, возбуждающих колебания турбоагрегата, наименее изученной и наиболее опасной счи­тается низкочастотная вибрация, обусловленная потерей устойчивости вала на масляной пленке. Эти коле­бания относятся к разряду автоко­лебаний и вызываются гидродина­мическими силами, возникающими

В масляном клине. подшипников, вследствие чего этот тип вибрации получил название «масляной» виб­рации.

Этот вид вибрации еще недостаточно изучен, и четких представлений о причине ее возникновения нет. Эксперименты показыва­ют, что она ие связана с механической не­уравновешенностью ротора, а зависит в ос­новном от динамических характеристик ма­сляного слоя, описывающих его упругие и демпфирующие свойства, а также от распо­ложения оси вала относительно расточки вкладыша. Как известно, у неподвижного ротора центр цапфы располагается под цен­тром расточки вкладыша О і со статическим эксцентриситетом бо (рис. 3-18,а). При вра­щении вала между цапфой и вкладышем об­разуется масляный слой, на котором вал всплывает в направлении вращения. С уве­личением скорости вращения центр цапфы перемещается по дуге О-Оь являющейся линией подвижного равновесия цапфы, и экс­центриситет б уменьшается. Теория и экс­перименты показывают, что в случае зна­чительного всплываиия вала, когда 6^0,7бо, вал теряет устойчивость и начинает переме­щаться относительно своего равновесного положения на линии подвижного равнове­сия О0-0\. Эта перемещения происходят по замкнутой траектории и носят название прецессии вала.

Угловая скорость этой прецессии, т. е. частота колебаний цапфы, близка к поло­винной частоте вращения или к первой кри­тической скорости вала. Обычно эта частота лежит между критическими скоростями си­стемы «ротор - опоры» в направлении ее осей максимальной и минимальной жестко­сти.

Прецессия может быть трех видов: зату­хающая, установившаяся и нарастающая (рис. 3-18,6). Первый вид прецессии (коле­бания в точке О") ие может считаться опас­ным, поскольку затухающий процесс колеба­ний приводит центр цапфы при любом на­чальном отклонении снова на кривую устой­чивого равновесия О-Оі. Второй вид пре - цесии (колебания в точке О") соответствует установившимся малым колебаниям цапфы вокруг положения устойчивого равно­весия. Возникновение таких колеба­ний свидетельствует о достижении гра­ницы устойчивости, переход через которук» приводит к возбуждению нарастающей пре­цессии (колебания в точке О""). Нарастаю­щая прецессия вызывает интенсивные коле­бания цапфы, амплитуда которых может до­стигнуть разрушительной величины. Колеба­ния вала, передаваясь через масляный слой, в свою очередь возбуждают значительную низкочастотную вибрацию подшипника.

Длительный опыт эксплуатации, а также результаты эксперимента показывают, что возбуждение низко­частотных колебаний зависит в ос­новном от температуры масла, окружной скорости шейки вала и удельного давления на подшипник. Уменьшение удельного давления на подшипник, а также увеличение вяз­кости масла и окружной скорости действуют благоприятно на возник­новение и развитие низкочастотной вибрации.

Уменьшение удельного давления на подшипник в процессе эксплуата­ции может "быть вызвано:

А) износом баббита нижней по­ловины вкладыша и увеличением вследствие этого площади опоры вала;

Б) уменьшением нагрузки от ро­тора на подшипник из-за неправиль­ной центровки роторов, дефектов соединительных муфт или непра­вильного теплового расширения ци­линдров;

В) неправильной очередностью1 открытия регулирующих клапанов* вследствие чего возникает паровое усилие, отжимающее ротор вверх и разгружающее тем самым подшип­ник от веса ротора.

Одной из распространенных при­чин, вызывающих «масляную» виб­рацию в крупных агрегатах, являет­ся заниженная температура масла на входе в подшипник. Испытания, проведенные на ряде машин, выяви­ли вполне определенную зависи­мость амплитуды низкочастотной
составляющей колебаний подшип­ников от температуры масла.

На рис. 3-19 представлен график зависимости амплитуды колебаний подшипников генератора ТГВ-200 от температуры масла. Как видно из графика, увеличение температуры масла с 43 д<э 53°С, что соответ­ствует изменению его вязкости при­мерно в 1,5 раза, снижает уровень низкочастотной вибрации в 5-6 раз. Проблема борьбы с низкочастот­ной вибрацией особенно остро воз­никла в связи с освоением турбо­агрегатов большой мощности, где высокая окружная скорость цапфы создает благоприятные условия для возникновения этого типа автоколе­баний. Для решения этой проблемы в последнее время в конструкцию опорных подшипников крупных ма­шин вносится ряд конструктивных изменений. Одним из мероприятий является уменьшение относительной длины подшипника для увеличения удельного давления на масляный клин. Вторым, весьма эффективным, мероприятием является замена ци­линдрической расточки вкладышей подшипника овальной («лимон­ной») расточкой (рис. 3-20). При та­кой расточке верхний зазор в под­шипнике делается примерно в 2 ра­за меньше бокового.

Это приводит к возникновению еще одного масляного клина, обра­зующегося на верхней половине вкладыша. Верхний масляный клин хорошо демпфирует возникшие ко­лебания и, кроме того, увеличивает давление на цапфу, устраняя перво­причину возникновения «масляной» вибрации. Дальнейшим развитием этой следует считать создание подшипников с разрезным верхним вкладышем, где удается создать не один, а несколько масляных клиньев.

Особую группу причин, вызываю­щих вибрацию турбоагрегата, со­ставляют возмущающие электромаг­нитные силы. Эти силы являются следствием нарушения электромаг­нитной симметрии генератора и су­щественно зависят от электрической нагрузки. На холостом ходу турбо­генератора при снятом возбуждении эти силы отсутствуют, что позволяет легко отличить их от возбуждающих сил, вызванных механическими при­чинами.

Нарушение электромагнитной симметрии генератора может быть выз"вано:

А) витковыми замыканиями в ро­торе;

Б) неравномерностью воздушно­го зазора между статором и бочкой ротора;

В) периодическим изменением силы магнитного притяжения меж­ду вращающимся ротором и стато­ром, обусловленным конечным чис­лом ПОЛЮСОВ."

Витковые замыкания в роторе генератора являются наиболее рас­пространенным источником колеба-

Ний, идущих от генератора. Практи­ка показывает, что многие генера­торы работают с витковыми замы­каниями в обмотке ротора. Наличие короткозамкнутых витков искажает распределение общего магнитного потока ротора, что приводит к появ­лению несимметричных сил притя­жения ротора к статору. Эти силы всегда направлены вдоль оси полю­сов и по своему характеру идентич­ны силам от механической "неурав­новешенности ротора. Односторон­няя электромагнитная сила притя­жения вызывает синусоидальные ко­лебания ротора и подшипников с оборотной частотой. Вторым след­ствием витковых замыканий в об­мотке ротора является несимметрич­ный нагрев ротора по сечению, что Может вызвать его тепловой прогиб и возбудить вибрацию чисто меха­нического характера.

Неконцентричное расположение бочки ротора в расточке статора также приводит к появлению перио­дической силы, вызывающей колеба­ния ротора и статора. Эта сила в от­личие от предыдущей имеет двой­ную оборотную частоту. Основными причинами появления неравномерно­го воздушного зазора являются есте­ственный прогиб ротора под дей­ствием собственного веса и смеще­ние его в процессе центровки с рото­ром турбины. При работе генерато­ра ротор всплывает на масляной пленке, и, кроме того, зазор может меняться вследствие вибрации рото­ра из-за механической неуравнове­шенности.

Все эти причины устранить нель­зя, однако практика показывает, что в нормальных условиях эти вибра­ции имеют малую амплитуду и опас­ности не представляют. Если же ак­тивная сталь сердечника запрессо­вана неудовлетворительно или кон­струкция корпуса статора не обла­дает достаточной жесткостью, мо­жет возникнуть значительная вибра­ция статора. По данным испытаний турбогенератора ТВ2-100-2 в отдель­ных случаях на корпусе статора и торцевых щитах наблюдались сину­соидальные колебания с частотой 100 Гц и двойной амплитудой 100- 150 мкм.

Ускорения, а следовательно, инерционные силы, действующие на элементы статора при наличии по­добных высокочастотных колебаний, весьма велики, и это может приве­сти к усталостному разрушению кре­пящих деталей, сварных швов, тру­бок газоохладителей и т. п. Вибра­ция статора еще более усиливается, если в обмотке ротора имеются ко- роткозамкнутые витки.

Рассматривая вопросы, связан­ные с колебаниями статоров генера­торов, нельзя не отметить еще один источник возбуждения колебаний - неравномерность сил взаимного при­тяжения ротора и статора по окруж - . ности.

Для двухполюсных генераторов сила взаимодействия между ротором и статором изменяется по окружно­сти на ±33%. ореднего значения, причем максимальная сила взаимо­действия превышает минимальную в 2 раза. С увеличением числа по­люсов неравномерность силы притя­жения ротора и статора уменьшает­ся. Так, для четырехполюсной маши­ны эта неравномерность по отноше­нию к средней величине составляет ±6,7%, а для восьмиполюсной - менее ±2%.

Для большинства современных турбогенераторов с рабочей часто­той вращения 3000 об/мин рассма­триваемая возбуждающая сила имеет двойную оборотную частоту. Повышенная вибрация статора (с ча­стотой 100 Гц) передается через фундамент подшипникам генерато­ра, накладываясь на колебания ос­новной оборотной частоты.

Определение причин, вызывающих ви­брацию современного турбоагрегата, - зада­ча весьма сложная. Эта работа обычно вы­полняется научно-исследовательскими, нала­дочными и ремонтными организациями, имеющими квалифицированный персонал и всю необходимую аппаратуру.

Для анализа источников повышенной вибрации снимаются характеристики: скоро­стные, режимные, контурные.

Скоростная характеристика (рис. 3-21) представляет собой зависимость амплитуды и фазы вибрации или отдельных ее состав­ляющих от частоты вращения ротора. Из полигармонических колебаний обязательно выделяются основная гармоника оборотной частоты и низкочастотные составляющие. По скоростной характеристике определяют вид неуравновешенности ротора и формы вынужденных колебаний при различных ча­стотах вращения. При помощи скоростных характеристик выявляются также нелиней­ные источники возбуждения повышенной ви­брации.

Режимные характеристики представляют собой зависимость вибрации от режима ра­боты машины: тепловой и электрической на­грузки, теплового состояния турбины, ваку­ума, температуры масла и т д. Некоторые из этих характеристик приведены на рис. 3-ІІ7 и 3-19. Подобные характеристики позволяют определить раздельное влияние каждого из режимных факторов иа вибра­цию машины.

Контурные характеристики (рис. 3-22) показывают изменение вибрации по контуру исследуемого элемента, что позволяет оце­нить ослабление жесткости вибрирующей системы. При помощи контурных характери­стик обнаруживается ослабление крепления подшипников к фундаментной плите или плиты к фундаменту. По виду характери­стики могут быть выявлены такие дефекты, как глубокие трещины в элементах опоры и фундамента. В программу исследований входит также контроль ряда узлов и эле­ментов машины, являющихся обычным источ­ником возбуждения колебаний. Проверке подвергаются центровка роторов, состояние соединительных муфт, шеек роторов и под­шипников. Если вибрационные характери­стики указывают на значительную неуравно­вешенность ротора, вал проверяется инди­катором иа прогиб, после чего производится балансировка роторов. В тех случаях, ког­да исследованиями выявлена заметная за­висимость вибрации от тока возбуждения или температуры ротора генератора, произ­водится контроль обмотки ротора на отсут­ствие витковых замыканий.

120 80 40 О 40 ВО 120 2Д, мкм 2А, мкм

I I.1___ 1-1_______ 1111 I L-l I "

240 W0 80 О 80 /80 240 f, грав <р, град

Рнс. 3-22. Контурная вибрационная харак­теристика (стрелками указаны места за­меров).

2А - двойная амплитуда колебаний; ф - угол сдвига фаз.

Отметим, что для определения причин вибрации первостепенную роль играет по­стоянный эксплуатационный контроль за вибрацией подшипников и других узлов аг­регата. Постоянный контроль позволяет учесть целый ряд режимных факторов, не­посредственно влияющих на величину ви­брации, а также проследить динамику на­растания вибраций в процессе эксплуатации в течение межремонтного периода.

В заключение следует сказать, что поскольку уровень вибрации яв­ляется важнейшим объективным по­казателем эксплуатационной надеж­ности , нормы допусти­мой вибрации постоянно пересмат­риваются в сторону уменьшения ам­плитуды колебаний.

Снижение низкочастотной вибрации

Низкочастотная вибрация (НЧ) – это вибрация с частотой, равной половине частоты вращения, т.е. w Вб =w ВР / 2. Основными источниками низкочастотной вибрации являются подшипники скольжения при нарушении в них гидродинамического процесса смазки в масляном клине из-за резкого изменения нагрузок в машине либо изменения температуры масла, или из-за увеличения внутренних конструктивных зазоров в подшипниках.

При этом цапфа ротора в подшипнике смещается от центра вращения на величину эксцентриситета, вокруг которого ротор получает дополнительное вращение с частотой, равной половине основной частоты вращения ротора.
Это дополнительное вращение называется прецессией с частой вращения W, которая и является причиной низкочастотной вибрации:

т.е. w Вб = w ВР / 2.

Например. Если частота вращения w ВР = 314 Гц, 3000 об/мин, то частота вибрации равна

w Вб = 157 Гц, 1500 об/мин.

Для снижения НЧ - вибрации следует:

* оптимизировать статические и динамические нагрузки на все подшипники скольжения роторов, не допуская резких изменений нагрузок в машине;

* не допускать изменений температур масла в системе смазки машины ниже нормированных значений;

* величины внутренних зазоров в подшипниках скольжения поддерживать нормативными;

* в случае появления низкочастотной вибрации даже при соблюдении пунктов 1, 2, 3 применять на конкретном подшипнике «лимонную» расточку внутреннего диаметра, при которой боковые зазоры Х Б выполняются увеличенными вдвое от величины верхнего зазора Х В, т.е. Х Б = 2Х в. Например, если
Х В = 0.002d , то Х Б = 0,004d (d – диаметр цапфы подшипника).

Снижение высокочастотной вибрации (ВЧ)

Высокочастотная вибрация ВЧ – это вибрация с частотой, вдвое превышающей частоту вращения, т.е.

w Вб = 2w ВР.

ВЧ возникает из-за нарушения поперечной жесткости в сечениях ротора, что приводит к неравенству осевых моментов инерции J X ¹ J Y , вызывающее двойное возмущение за один оборот ротора.

Например. Если частота вращения w ВР = 314 Гц (¦ = 50 Гц), то частота вибрации будет w Вб = 628Гц, (¦ = 100 Гц).

Например, в электроэнергетике часто источником высокочастотной вибрации являются роторы электрических машин, изготовленные с нарушением концентричности наружного диаметра или при ремонте их с заменой секций электрообмоток. В этом случае для выравнивания поперечной жесткости и снижения высокочастотной вибрации на бочке ротора в соответствующих сечениях выполняют фальшпазы.

5.4.2. Методы зашиты от вибрации на путях ее распространения

Применяются как для снижения вибрации самого оборудования, так и для снижения гигиенической вибрации на опорных поверхностных машинах.
Согласно ГОСТ 26568-85 методы защиты от вибрации на путях распространения подразделяются на:

* вибродемпфирование;

* виброгашение;

* виброизоляцию;

* организационные мероприятия и средства индивидуальной защиты от вибрации.

Вибродемпфирование

Снижение вибрации происходит за счет перевода колебательной энергии в тепловую при помощи увеличения активного сопротивления системы m, в основном за счет. увеличения внешнего и внутреннего трения h (5.5).

На стадии проектирования метод реализуется при выборе материалов, из которых изготавливаются детали ротора и статора. Коэффициенты внутреннего трения (внутренних потерь) h конструкционных материалов чугуна и стали имеют низкие значения, изменяются в диапазоне: h = 0,001-0,01 для СтЗ...Ст40, Cr10...Cr45.

Эти материалы виброактивны и практически не снижают вибрацию. Применение легированных материалов с высоким коэффициентом h = 0,02 – 0,1 с использованием марганца Мn, хрома Сr, никеля Ni, титана Ti, кобальта Со, а также полимерных материалов приводит к погашению колебательной энергии этими материалами и снижению вибрации оборудования. На стадии эксплуатации применяются листовые или мастичные материалы на резиновой основе для покрытия ими наружных поверхностей машин, такие как лента «Изол» , антивибрит, мастика ВД-17 , батил-каучук.

Надежность покрытия и эффективность работы этих материалов зависит от качества обработки наружных поверхностей оборудования перед покрытием. Хорошими вибродемпфированными свойствами обладает гальванопокрытие
(h = 0,01) и различные смазки (h = 0,02 – 0,04). Эффективность вибродемпфирования достигается на всех режимах работы, но особенно в резонансной области при равенстве нулю реактивного сопротивления колебательной системы.

Виброгашение

Снижение вибрации осуществляется за счет увеличения реактивного сопротивления системы

В дорезонансной области эффект достигается за счет увеличения жесткости колебательной системы К , например корпуса машины, путем выбора соответствующей конфигурации корпуса (сферическая форма обладает максимальной жесткостью) или введением дополнительных ребер жесткости.

В зарезонансной области виброгашение реализуется увеличением массы колебательной системы, как правило за счет увеличения массы фундамента машины М . Выбор массы фундамента производится по формуле:


где М – масса фундамента машины, кг; т – масса самой машины, кг; f ф – собственная частота фундамента, Гц; f p – рабочая (вынужденная) частота машины, Гц.

Анализ формулы (5.8.) показывает:

если ¦ ф / ¦ р = l – резонанс на фундаменте. Недопустимый режим работы, М ³ ¥ ;

если f ф / f р = 1,41 – тяжелый режим работы фундамента, M = 40m .

если f ф / f р = 3...4 – оптимальная область работы фундамента, при f ф /f р = 3,
М ³ 5 т , при f ф / f р = 4, M ³ 2.7 m ;

В теплоэнергетике для снижения вибрации паровых турбин могут применяться динамические виброгасители в виде вертикальных удлиненных шпилек, устанавливаемые на противоположенных разъемах машин. Некоторое уменьшение вибрации достигается за счет противофазного колебательного процесса шпилек при работе турбины. Эффект зависит от правильного выбора масс виброгасящих шпилек с соответствующими частотами собственных колебаний.

Виброизоляция

где f р – рабочая (вынужденная) частота вращения машины; f о – собственная частота колебания машины на виброизоляторах, определяется по известному выражению:

где k – жесткость виброизолятора (резины, пружины), Н/м; m – масса машины, кг.

Если, например, станок стоит на пружинных виброизоляторах, то жесткость колебательной системы принимается равной жесткости пружин.

Анализ формулы (5.9.) показывает:

если f р / f о = 1 – наступает резонанс. К п = ¥ . Применение виброизоляции бессмысленно;

если f р / f о = 1,41, К п = 1. Эффект от применения виброизоляции отсутствует;

если f р / f о = 3..4, К п = 1/8 .. 1/15, оптимальная область применения виброизоляции. При этом, если К п < 1/15, наступит потеря устойчивости из-за того, что низкое значение К п достигается при малой жесткости виброизолятора. Если
К п > 1/8, то виброизоляторы будут иметь большие габариты и металлоемкость. Если коэффициент передачи известен, то можно определить снижение вибрации на фундаменте машины, дБ.

"...- низкочастотные вибрации (с преобладанием максимальных уровней в октавных полосах частот 1 - 4 Гц для общих вибраций, 8 - 16 Гц - для локальных вибраций);..."

Источник:

"СН 2.2.4/2.1.8.566-96. 2.2.4. Физические факторы производственной среды. 2.1.8 физические факторы окружающей природной среды. Производственная вибрация, вибрация в помещениях жилых и общественных зданий. Санитарные нормы" (утв. Постановлением Госкомсанэпиднадзора РФ от 31.10.1996 N 40)

  • - Защитная арматура для гашения вибрации провода и молниезащитного троса Смотреть все термины ГОСТ 17613-80. АРМАТУРА ЛИНЕЙНАЯ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ Источник: ГОСТ 17613-80. АРМАТУРА ЛИНЕЙНАЯ...

    Словарь ГОСТированной лексики

  • - механические колебания двигателя или отдельных его узлов и деталей...

    Энциклопедия техники

  • - "...Ускорение: составляющая ускорения вдоль измерительной оси, определенной соответствующим стандартом на методы оценки общей или локальной вибрации..." Источник: " ГОСТ ИСО 8041-2006. Межгосударственный стандарт...

    Официальная терминология

  • - "...- высокочастотные вибрации..." Источник: "СН 2.2.4/2.1.8.566-96. 2.2.4. Физические факторы производственной среды. 2.1.8 физические факторы окружающей природной среды...

    Официальная терминология

  • - "...3.2...

    Официальная терминология

  • - "...3.3. - одночисловая характеристика вибрации, определяемая как результат энергетического суммирования уровней вибрации в октавных полосах частот с учетом октавных поправок..." Источник: "СН 2.2.4/2.1.8.566-96. 2.2.4...

    Официальная терминология

  • - ".....

    Официальная терминология

  • - "...- среднечастотные вибрации;..." Источник: "СН 2.2.4/2.1.8.566-96. 2.2.4. Физические факторы производственной среды. 2.1.8 физические факторы окружающей природной среды...

    Официальная терминология

"Низкочастотные вибрации" в книгах

Вибрации

Из книги Листы дневника. В трех томах. Том 3 автора Рерих Николай Константинович

Вибрации Д-р Фредерика Бленкнер (Кливленд) произвела интересную работу, наблюдая значение вибраций в областях искусства, науки, всего связанного с космическим творчеством. О значении ритма и вибраций говорилось немало, но все эти аксиомы оставались в пределах досужих

Принцип вибрации

Из книги Развитие сверхспособностей. Вы можете больше, чем думаете! автора Пензак Кристофер

Принцип вибрации Принцип вибрации утверждает: «Ничто не остается в покое; все движется; все вибрирует». Даже если нечто кажется нам статичным, на деле это не так. Герметические философы знали это еще тысячи лет назад, но наука лишь недавно догнала их. До открытия атомов

Всё есть вибрации

Из книги Жизнь как она есть, или Счастье без компромиссов автора Аваков Михаил Г.

Всё есть вибрации Тот, в ком отсутствует внутренний диалог, испытывает потребность заполнить образовавшуюся пустоту. Посмотрите на молодых людей: они нуждаются в постоянном допинге, которым для них является «музыка». Почему сейчас таких масштабов достиг шоу-бизнес?

Вибрации и лучи

Из книги Сокровенное знание. Теория и практика Агни Йоги автора Рерих Елена Ивановна

Вибрации и лучи 23.04.38 Вы спрашиваете: «Какими вибрациями можно отвратить сильный припадок боли?» Вибрациями, посылаемыми Учителями, которые еще не известны науке. Приведенный в 380-м и 422-м [параграфах] случай относится к моему переживанию. Во сне я видела состояние своего

Новые вибрации

Из книги Последние времена автора Кэрролл Ли

Новые вибрации Для учителей: Сейчас вы должны понимать, что отныне будете встречаться с людьми, имеющими статус "выпускников" или "дипломников" (находящимися в процессе перехода). Какими вы их "увидите"? Каков будет их инкарнационный цвет или аурический узор? Вы привыкли к

Результаты вибрации

Из книги Реальность астрального плана автора Ледбитер Чарлз Уэбстер

Результаты вибрации Если мы возьмём современную книгу по физике, то найдём в ней обычно даваемую таблицу октав колебаний; и нас не может не поразить тот факт, что лишь незначительная их часть вообще воздействует на наши чувства. А поскольку вся информация о внешнем мире,

Вибрации

автора Радуга Михаил

Вибрации AlexПроснулся и ощутил, что нахожусь в фазовом состоянии. Первым делом решил выкатиться из ощущаемого тела. И в тот же миг ощутил сильные вибрации по всему телу. Будто разряды электричества, начинающиеся с головы и угасающие в ногах. По ощущению времени вибрации

Вибрации

Из книги Выход из тела для ленивых автора Радуга Михаил

Вибрации СметанаВо сне пришло осознание, и я оказалась сидящей на краю кровати, рукой касаясь своего тела. В голове слышались голоса и всплывала вся прочитанная мной информация о фазе. По телу волной шли сильные вибрации. Они были настолько сильными, что, казалось, это

Вибрации

Из книги Выход из тела для ленивых автора Радуга Михаил

Вибрации HroniKДнем, после обеда, прилег вздремнуть и почти сразу почувствовал мощные вибрации. Я ощущал их и раньше, они немного пугали меня. В этот раз я впервые открыл глаза при вибрациях и увидел свою комнату. Она вся светилась тусклым оранжевым светом. Я оглядел комнату

Вибрации

Из книги Фаза. Взламывая иллюзию реальности автора Радуга Михаил

Ставка на низкочастотные запросы

Из книги Раскрутка: секреты эффективного продвижения сайтов автора Евдокимов Николай Семенович

Ставка на низкочастотные запросы Главным козырем в продвижении интернет-магазина будут низкочастотные запросы. Дело в том, что высокочастотники требуют больших расходов, к тому же нередко бьют из пушки по воробьям. Не всегда тот, кто ищет «паркет», хочет его купить. С

2.3.1. Вибрации

Из книги Внетелесный опыт автора Аарон

2.3.1. Вибрации Вы этого достигнете, рано или поздно. Это ощущается, как будто электричество идёт через ваше тело. Сначала это пугает большинство людей. Далее, это становится подобно неосознанному страху, как будто вы увидели ползущую змею. Вы просто хотите убить её, и не

5 Вибрации

Из книги Ментальная химия: Наука исполнения желаний автора Энел Чарльз

5 Вибрации Прежде чем будет создана какая-либо среда, будь то гармоничная или не очень, необходимо совершить целый ряд определенных действий. В свою очередь, каждому такому действию предшествует мысль - сознательная или бессознательная. А поскольку мысли являются

Вибрации

Из книги Сверхвозможности человеческого мозга. Путешествие в подсознание автора Радуга Михаил

Вибрации Часто фазе сопутствует необычное ощущение, которое невозможно забыть и можно удачно применять для самого входа в фазу, углубления и удержания ее. Наиболее точно его можно описать как прохождение сквозь все тело сильного тока, не причиняющего боли. При этом

Приложение 4. Нормы допустимого уровня локальной вибрации и суммарное время воздействиялокальной вибрации ручных машин за смену

Из книги Межотраслевые правила по охране труда при эксплуатации газового хозяйства организаций в вопросах и ответах. Пособие для изучения и подготовки к провер автора Красник Валентин Викторович

Приложение 4. Нормы допустимого уровня локальной вибрации и суммарное время воздействиялокальной вибрации ручных машин за смену Нормы допустимого уровня локальной вибрации и суммарное время воздействия локальной вибрации ручных машин за смену Примечание. Допустимое

К.т.н. М.А. Биялт, начальник участка вибрационной диагностики и наладки, ООО «КВАРЦ Групп», г. Омск;
к.т.н. А.В. Кистойчев, доцент,
А.В. Балеевских, студент,
Е.Ф. Ковальчук, студент, ФГАОУ ВПО «УрФУ имени первого Президента России Б.Н. Ельцина», г. Екатеринбург

Гибкие муфты обычно используют для передачи небольших по величине крутящих моментов. Ранее они устанавливались в турбинах единичной мощностью до 100 МВт. В современных же мощных турбоагрегатах гибкие муфты уже не применяются из-за возникающих больших сопротивлений при передаче значительных крутящих моментов. Однако в небольших приводных агрегатах и различных вспомогательных механизмах (насосы, нагнетатели, компрессоры) они находят широкое применение благодаря своим свойствам:

1. Способность смягчать толчки и удары.

2. Упругие муфты могут служить средством защиты от резонансных крутильных колебаний, возникающих в механизме вследствие неравномерности вращения.

3. Упругие муфты допускают сравнительно большие смещения осей соединяемых валов. При этом, за счет деформации упругих элементов, валы и опоры нагружаются сравнительно малыми силами и моментами.

Вместе с тем, гибким муфтам присущи следующие недостатки: сложность (невозможность) точной подгонки ее рабочих элементов для равномерной передачи ими крутящего момента; повышенный вследствие этого износ элементов муфты в эксплуатации. Нарушения в работе гибкой муфты могут стать причиной появления зависимости вибрации агрегата от нагрузки (величины крутящего момента), разрушения элементов муфты или даже ее заклинивания.

В статье нами на основании собственного опыта, а также опыта наших коллег, был рассмотрен еще один аспект вибрационного поведения агрегата, имеющего в составе валопровода гибкую муфту - это склонность таких агрегатов к низкочастотной вибрации при наличии дефектов гибкой муфты. В данной работе хотелось бы подойти к обозначенной проблеме несколько с другой стороны и рассмотреть низкочастотную вибрацию как диагностический признак развитого дефекта гибкой муфты. О необходимости этого красноречивее всего говорит следующий пример.

В статье , пожалуй, впервые было отмечено, что неправильная работа гибкой муфты может приводить к возникновению низкочастотных колебаний. К такому выводу автор приходит после длительных комплексных испытаний агрегата ПТ-50-90/16, вышедшего из капитального ремонта, которые включали в себя исследования зависимости вибрации:

1. от величины расхода пара в производственный отбор при постоянной электрической нагрузке;

2. от электрической нагрузки в конденсационном режиме;

3. от электрической нагрузки при постоянном расходе пара в отбор;

4. от расхода свежего пара;

5. от температуры масла, поступающего на подшипники.

В ходе испытаний была выявлена зависимость величины низкочастотной вибрации от мощности, вырабатываемой ЦВД . После нормализации работы муфты низкочастотная вибрация исчезла.

Рассмотренный случай хорошо иллюстрирует, что отсутствие четких диагностических признаков того или иного дефекта ведет к увеличению времени и затрат на вибрационную наладку агрегата. По этой причине одним из направлений научной деятельности специалистов УрФУ является разработка и уточнение диагностических признаков наиболее характерных дефектов валопроводов . Диагностические признаки нарушения работы гибких муфт, которые проявляются в вибрационном сигнале, достаточно хорошо известны:

■ рост оборотной вибрации;

■ появление «нагрузочного вектора» (табл.);

■ возникновение в спектрах вибрации опорных подшипников ряда высокочастотных гармоник (рис. 1 и 2).

Как показывает опыт наладки т/а ПТ-60-130 , данные диагностические признаки могут довольно ярко проявляться в вибрационном поведении агрегата, однако низкочастотная вибрация при этом может отсутствовать или ее уровень может оставаться незначительным. Срыв агрегата в низкочастотную вибрацию происходит после некоторой наработки, если не были своевременно предприняты меры по нормализации работы гибкой муфты. Это правило лучше всего прослеживается на примере нашего опыта диагностики и наладки компрессорной установки К-1700 мощностью 10 МВт .

Таблица. Результаты измерений вибрации на передних подшипниках турбоагрегата ПТ-60-130 при наличии дефекта гибкой муфты.

Длительное время агрегат работал без особых замечаний, но в дальнейшем на рабочем режиме работы периодически стали возникать самовозбуждающиеся низкочастотные колебания ротора электродвигателя, что однозначно указывало на потерю устойчивости.

При пуске агрегата и нагружении уровни вибрации скачкообразно возрастали (за счет амплитуды НЧВ), но общий уровень вибрации не превышал уровня срабатывания защит. Обычно в таких случаях агрегат останавливали и запускали вновь, до тех пор, пока НЧВ не возникала (иногда для этого требовалось несколько пусков). На определенном этапе такой эксплуатации возникла технологическая необходимость не отключать компрессор даже при возникшей НЧВ. В таком режиме (с уровнями вибрации до 10,0 мм/c) агрегат проработал почти 10 суток и после этого был выведен в ремонт. При ревизии подшипников электродвигателя было обнаружено разрушение баббита в виде сколов на нижних и верхних половинах вкладышей обоих подшипников, в связи с чем подшипники были заменены.

Таким образом, изложенные выше случаи, на наш взгляд, позволяют утверждать, что наличие в спектре вибрации опор агрегатов, имеющих в составе валопровода гибкую муфту, следов НЧВ, а тем более их срыв в НЧВ, может указывать на появление значительных отклонений в работе гибкой муфты. Данные отклонения могут быть не только результатом развития дефектов самой муфты, но и следствием воздействия внешних факторов (нарушения в тепловых расширениях, режимные расцентровки). Данное утверждение может быть легко подтверждено и приведенным в объяснением роли гибкой муфты в механизме возникновения НЧВ.

Как известно, надежная работа гибких муфт даже при отсутствии расцентровки в значительной степени зависит от равномерности передачи крутящего момента по окружности. Неравномерность тангенциальных зазоров между передаточными элементами и зубцами полумуфт, износ и деформации передаточных элементов, разношаговость зубцов на полумуфтах или «коронке», пригары, некачественная смазка и многие другие причины приводят к неравномерной передаче крутящего момента по окружности муфты, что визуально подтверждалось и в рассмотренных выше случаях.

В результате неравномерности передачи крутящего момента в плоскости муфты возникает поперечная сила, равная равнодействующей сил, передаваемых передаточными элементами, схематично изображенная на рис. 3.

Сила, которая может быть условно названа «поводковой», подобна силе от дисбаланса и вызывает повышенную оборотную вибрацию. Такая сила по мере ее возникновения и увеличения «разматывает» ротор в расточках подшипников и увеличивает прецессию. Изменение крутящего момента, а значит и передаваемой мощности, приводит к изменению указанной силы, что и отражается ростом оборотной вибрации при увеличении нагрузки, т.е. появлением «нагрузочного» вектора. И самое главное - при резком нагружении или разгрузке агрегата эта сила является той самой дестабилизирующей силой, которая, смещая шейки ротора в расточках вкладышей подшипников, может привести к возникновению прецессионного движения с угловой скоростью, равной половине угловой скорости ротора, т.е. к срыву в НЧВ. Причем, чем более развит дефект гибкой муфты, тем выше значение «поводковой» силы, а значит и выше склонность агрегата к срыву в НЧВ. Это точно соответствует классическому механизму появления циркуляционной силы в расточке подшипника, который обычно используется для объяснения данного процесса.

Выводы

Анализ многочисленных случаев возникновения НЧВ на турбоагрегатах, имеющих гибкую муфту в составе валопровода, а также других роторных машин (компрессоров, нагнетателей, насосов и пр.), показывает, что причина срыва, в большинстве случаев, заключается в неудовлетворительной работе именно гибкой муфты. Т.о. при прочих усугубляющих факторах, а именно близости собственной частоты ротора к половине от оборотной частоты (25 Гц), увеличенных зазорах в подшипниках и т.д., агрегаты с гибкими муфтами следует рассматривать склонными к срыву в НЧВ (естественно при ухудшении условий работы гибкой муфты) и уделять особое внимание к ревизии данного узла в процессе ремонта.

На основе обобщения опыта диагностики и вибрационной наладки роторных машин рассмотрены особенности срыва в НЧВ агрегатов, имеющих в своей конструкции гибкую муфту, а также предложен механизм потери устойчивости и показана определяющая роль в этом механизме появления отклонений в работе муфты.

Предложено рассматривать появление НЧВ на опорах роторных машин как диагностический признак появления значительных отклонений в работе гибкой соединительной муфты.

Литература

1. Биялт М.А. Роль гибких муфт в возникновении низкочастотной вибрации / М.А. Биялт, А.В. Кистойчев, Е.А.Зонов, Е.В. Урьев // Тяжелое машиностроение. 2012. № 2. С. 40-48.

2. Трунини Е.С. Автоколебания ротора высокого давления // Электрические станции. 1964. № 3. С. 80-81.

3. Кистойчев А. В. О диагностических признаках наличия жидкости в центральной расточке роторов // А. В. Кистойчев, Е.В. Урьев, М.А. Биялт/Электрические станции. 2012. № 6. С. 57-62.

4. Kistoychev A., Uriev E. Diagnostic of Transversal NonCircular Crack in Turbomachine Rotors // 12th International Scientific and Engineering Conference «HERVIC0N-2008». Poland, Kielce-Przemysl, 2008. P. 56-62.

5. Биялт М.А. Роль гибких муфт в возникновении низкочастотной вибрации / М.А. Биялт, А.В. Кистойчев, Е.А.Зо- нов, Е.В. Урьев// Тяжелое машиностроение. 2012. № 2. С. 40-48.

Вибрация.
Неблагоприятные воздействия вибрации на организм человека

Определение вибрации:

Вибрация - это физический фактор, действие которого определяется передачей человеку механической энергии от источника колебаний; основными характеристиками вибрации являются амплитуда смещения, скорость и ускорение.

Основные виды вибрации:

Общепринятым является деление вибраций на общие и местные.

Общая вибрация - это колебание всего тела, передающееся с рабочего места.

Локальная вибрация (местная вибрация) - это приложение колебаний только к ограниченному участку поверхности организма.

На производстве распространены оба вида вибрации: локальная - через руки (чаще всего при работе с ручными машинами), общая (по всему телу) - при положении сидя или стоя на рабочем месте (у машины и технологического оборудования). Все виды вибрации, действующие на производстве, объединяются термином «производственная вибрация».

Вибрация автомобилей, средств транспорта и самоходной техники, рабочих мест водителей имеет преимущественно низкочастотный характер, отличается высокими уровнями интенсивности в октавах 1-8 Гц. Вибрация автомобиля и автомобильной техники зависит от скорости передвижения, типа сиденья, амортизирующих систем, степени изношенности машины и покрытия дорог.

Вибрация рабочих мест технологического оборудования имеет средне- и высокочастотный характер спектров с максимумом интенсивности в октавах 20-63 Гц.

Ручные машины, особенно ударного, ударно-поворотного и ударно-вращательного действия, получили широкое распространение в различных отраслях народного хозяйства (строительстве, машиностроении, авиации, лесной и горнорудной промышленности). Изучение условий труда работающих на этих машинах показало, что выполнение многообразных трудовых операций сопровождается наряду с воздействием вибрации значительным физическим напряжением. Рабочие удерживают в руках машины весом до 15 кг, прикладывая при этом дополнительные усилия нажима на рукоятку инструмента в 10-40 кг. Неудобные рабочие позы, различные усилия нажима на инструмент создают значительное статическое напряжение мышц плеча и плечевого пояса, что усугубляет неблагоприятное воздействие вибрации.

Влияние общей вибрации на организм человека:

Исследования особенностей механического эффекта общей вибрации показали следующее. Тело человека благодаря наличию мягких тканей, костей, суставов, внутренних органов представляет собой сложную колебательную систему, механическая реакция которой зависит от параметров вибрационного воздействия. При частоте менее 2 Гц тело отвечает на общую вибрацию как жесткая масса. На более высоких частотах тело реагирует как колебательная система с одной или несколькими степенями свободы, что проявляется в резонансном усилении колебаний на отдельных частотах. Для сидящего человека резонанс находится на частотах 4-6 Гц, в положении стоя обнаружены 2 резонансных пика: в 5 и 12 Гц. Собственная частота колебаний таза и спины - 5 Гц, а системы грудь-живот - 3 Гц.

При длительном воздействии общей вибрации возможны механические повреждения тканей, органов и различных систем организма (особенно при возникновении резонанса собственных колебаний тела и внешних воздействий). Вот почему механическое воздействие вибрацией часто ведет к возникновению многообразных патологических реакций у водителей грузовых машин, трактористов, летчиков и т. д.

Влияние локальной вибрации на организм человека:

При исследовании особенностей механического эффекта воздействия локальной вибрации на организм человека было установлено, что вибрация, приложенная к любому участку, генерируется по всему телу. Зона распространения при воздействии низкой частоты вибрации больше, так как поглощение колебательной энергии при ней в структурах тела меньше. При систематическом вибрационном воздействии низкочастотных колебаний в первую очередь поражаются мышцы, и тем сильнее, чем большего мышечного напряжения требует работа с инструментом.

У рабочих, длительное время использующих ручные машины, возникают, разнообразные изменения в мышцах плечевого пояса, рук и кистей. Связано это как с непосредственной травматизацией мышц, так и с нарушениями регуляции вследствие поражений ЦНС. Под влиянием локальной вибрации возникают также костно-суставные изменения, особенно в локтевых и лучезапястных суставах, в мелких суставах кистей. Костно-суставные деформации происходят из-за нарушения дисперсности тканевых коллоидов, в результате чего кость теряет способность связывать соли кальция.

Действие вибрации на нервную систему вызывает нарушение равновесия нервных процессов в сторону преобладания возбуждения, а затем - торможения. Корковые отделы головного мозга чутко реагируют на вибрацию. Особенно чувствительными к действию локальной вибрации являются отделы симпатической нервной системы, регулирующие тонус периферических сосудов.

Обследования рабочих различных профессиональных групп: обрубщиков, клепальщиков, шлифовщиков, бурильщиков - позволили установить, что спазм капилляров чаще бывает при вибрациях с частотой свыше 35 Гц, а при меньших частотах у капилляров обычно наступает атоническое состояние. У больных, подвергавшихся воздействию локальной вибрации, в первую очередь наблюдаются изменения на реограммах пальцев и кисти, а вследствие общего воздействия вибрации - на реограммах стоп и на реоэнцефалограммах. У многих больных наблюдали изменения ЭКГ, частоты пульса, артериального давления, показателей мозгового кровообращения.

Действие вибрации на вестибулярный аппарат приводит к возникновению разнообразных вестибулосоматических и вестибуловегетативных реакций. Воздействие на зрение, особенно на резонансных частотах 20-40 и 60-90 Гц, увеличивает амплитуду колебаний глазного яблока и ухудшает остроту зрения, снижает цветовую чувствительность, суживает границы поля зрения.

Вибрационная болезнь:

Некоторые клиницисты выделяют самостоятельную нозологическую форму - вибрационную болезнь - и находят у нее 4 стадии:

1) начальная стадия вибрационной болезни, она протекает без выраженных симптомов. Нерезко выраженные боли и парастезии в руках возникают периодически. При объективном осмотре обнаруживается сниженная чувствительность кончиков пальцев;

2) умеренно выраженная стадия вибрационной болезни, при ней чувство онемения приобретает большую стойкость, снижение чувствительности распространяется на все пальцы и даже на предплечья, выражен гипергидроз и цианоз кистей рук;

3) выраженная стадия вибрационной болезни, когда значительно белеют пальцы рук, кисти обычно холодные и влажные, пальцы отечные, снижается чувствительность кистей, сильнее выражены изменения в мышцах;

4) стадия генерализованных расстройств; она встречается редко и лишь у рабочих с большим стажем. Сосудистые расстройства распространяются не только на руки, но и ноги, спазмы могут захватывать сердечные и мозговые сосуды. Эта стадия вибрационной болезни относится к малообратимым состояниям с заметным снижением работоспособности.

7 основных синдромов вибрационной болезни:

1) ангиодистонический синдром: отражает начальную фазу вибрационной болезни;

2) ангиоспастический синдром: наблюдается преимущественно при воздействиях вибраций высокой частоты и имеющий тенденцию к генерализации при выраженном заболевании;

3) синдром вегетативного полиневрита с преимущественной локализацией на руках: обычно возникает вследствие низкочастотной вибрации, может сопровождаться болевыми симптомами;

4) синдром вегетомиофасцита: выявляется при воздействии низкочастотной вибрации, характеризуется наличием дистрофических изменений в мышцах;

5) синдром поражения периферических нервов и мышц (невриты, плекситы, шейный радикулит): широко распространен, особенно при низкочастотной вибрации;

6) синдром вестибулопатии;

7) диэнцефальный синдром.

Влияние вибрации на женский организм:

Длительное воздействие вибрации на организм женщин способствует возникновению существенных сдвигов со стороны женской половой сферы. Нарушение менструальной функции было отмечено у трактористок, водителей автобусов и трамваев, проводниц железнодорожного транспорта. Вибрационное воздействие создает опасность недонашивания беременности, увеличения числа самопроизвольных выкидышей. Под влиянием низкочастотной вибрации у женщин развиваются выраженные изменения кровообращения органов малого таза с развитием застойных явлений.

Защита от производственной вибрации:

Основным путем борьбы с вредным влиянием производственной вибрации следует считать конструирование более совершенного оборудования с дистанционным управлением, замену ударных и вращательных процессов другими технологическими операциями (например, клепка может заменяться сваркой). В горнорудной промышленности на смену ручным отбойным молоткам и перфораторам должны прийти машины с дистанционным управлением (угольные комбайны, перфораторы на колонках и т. д.). У бетонщиков также возможно формование бетонной смеси без ручного труда. Защита водителя от вредного воздействия вибрации может быть достигнута путем совершенствования амортизации рабочего места (сиденья).

Обеспечение защиты от вибрации оператора ручных машин является сложной комплексной проблемой. Прежде всего необходимо добиваться снижения виброактивности в источнике за счет тщательной балансировки движущихся частей, совершенствования формы силовой диаграммы у машин ударного действия, оптимизации структуры ударной мощности и т. д. Важно произвести виброизоляцию рукояток и других мест контакта машины с руками оператора, оптимизацию рабочих параметров машин с целью уменьшения резонансных состояний, уменьшение теплопроводности места контакта с виброисточником. Среди средств индивидуальной защиты наибольшее распространение получили виброгасящие рукавицы с ладонной накладкой из эластичного материала, виброгасящая обувь с упругой подошвой или стелькой.

Медицинская профилактика неблагоприятного воздействия вибрации на организм человека:

Медицинская профилактика вибрационной болезни, а также общего неблагоприятного воздействия вибрации на здоровье человека заключается в недопущении к работам людей с синдромом Рейно, заболеваниями центральной и периферической нервной системы, сердечно-сосудистыми заболеваниями, хроническими заболеваниями опорно-двигательного аппарата, желудочно-кишечного тракта, половой сферы.

С целью профилактики вибрационной болезни, а также сохранения высокой работоспособности человека рекомендуются водные процедуры, массаж, производственная гимнастика, ультрафиолетовое облучение, витаминизация. При выявлении начальных признаков заболевания рекомендуется амбулаторное и санаторно-курортное лечение. При своевременном лечении и рациональном трудоустройстве прогноз вибрационной болезни благоприятен.



Поделиться