Технология производства полипропилена и полиэтилена низкого давления. Продажа ПНД по лучшим ценам от надежного поставщика

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Средний рост потребления ПЭ в Украине за последние 3 года составил 31% от всех видов полимеров. Действующее производство полиэтилена в Украине сосредоточено на ЗАО "Лукор" (г. Калуш Ивано-Франковской обл.). Ежегодно этим предприятием производится 70 тыс. тонн полиэтилена. Это показывает, что такой товар как полиэтилен является актуальным и потребляемым и сегодня. Основная часть изготовленного полиэтилена (50-60%) используется в производстве пленок и листов. Оставшаяся часть идет на изделия, полученные способом литья под давлением, покрытия, изоляционные материалы для кабельной промышленности, экструзионные изделия, изделия, полученные выдуванием и трубы. Но это лишь поверхностный обзор применения полиэтилена, который в данной работе будет рассмотрен подробнее.

Целью данной курсовой работы является:

· рассмотрение и анализирование научно-технической литературы, обретение навыков работы с ней;

· изучение основных материально-технических процессов технологии производства полиэтилена низкой плотности;

· рассмотрение сырьевой базы из которой он изготавливается, в том числе и всевозможные добавки, водимые в полиэтилен;

· исследование ассортимента полиэтилена, использование продукции, изготовленной из него и анализ положения полиэтилена на современном украинском рынке;

· рассмотрение основных методов оценки качества полиэтилена.

1. Ассортимент

Полиэтилен высокого давления (ПЭВД) представляет собой твердое эластичное вещество матового или перламутрового белого цвета, на ощупь напоминающий парафин; он не имеет запаха, не ядовит, горюч (продолжает гореть по вынесению из пламени). Полиэтилен, изготавливаемый при высоком давлении имеет разветвленную структуру и низкую плотность Полиэтилен относится к группе термопластичных полимеров. На рис. 1 изображена гранула полиэтилена.

Рис. 1 Гранула ПЭВД

Полиэтилен используется при наложении полиэтиленовой изоляции и оболочки на электрические кабели. Возможно выпрессовывание полиэтилена в смеси с порошкообразными веществами для получения пористого полиэтилена.

Благодаря химической инертности, легкости и прочности, в бутылях, флаконах из полиэтилена можно хранить сильнодействующие химические вещества (серную кислоту, плавиковую кислоту и т.п.), а также пищевые продукты (молоко, жиры, соки), парфюмерные изделия, лекарства.

Трубопроводы из полиэтилена значительно легче и дешевле. Трубы изготавливают диаметром от 0,012-0,15 м и до 1-1,5 м. Длина труб может достигаться 120 м. Гибкость и эластичность труб позволяет наматывать их на барабаны, что очень удобно при их транспортировании и прокладке. Трубы из полиэтилена совершенно не подвержены коррозии, не лопаются при замерзании в них воды. В химической промышленности используются при транспортировании коррозионных жидкостей. Фитинги, задвижки, вентили, подкладки и другая соединительная арматура также изготавливаются из полиэтилена.

Полиэтиленом покрывают дерево, бумагу, картон. Он наносится из горячих расплавов полиэтилена на бумагу и придает ей глянец, блеск печати, хорошую гибкость при низкой температуре. Из полиэтилена вырабатываются волокна, из которых могут изготавливаться морские канаты, фильтрующие сетки, полотна, обивочные ткани для автомобилей. В текстильной промышленности полиэтилен используется для пропитки тканей с целью создания водоотталкивающего материала, улучшения сопротивления разрыву, повышения прочности швов.

Из полиэтилена изготавливают медицинские инструменты, он применяется в пластической хирургии и протезной технике.

Основное литье под давлением не только отдельных деталей машины, но и корпусов к приборам и других фигурных изделий.

Значительная часть производимого полиэтилена (около 50%) перерабатывается в пленки толщиной 0,01-0,1 мм, используемые в качестве упаковочного материала, для хранения веществ легкоувлажняющихся или, наоборот, высыхающих, например удобрений, хлопка, силикагеля, пищевых продуктов (мяса, рыбы, хлеба, соли, муки, кофе, овощей, фруктов и т.д.), а также различных изделий, аппаратов, инструментов с целью защиты их от коррозии.

Благодаря отличным электроизоляционным свойствам, полиэтилен стал незаменимым материалом для изоляции телевизионных, телефонных и телеграфных кабелей.

Добавление низкомолекулярного полиэтилена к чернилам, лакам и краскам придает им повышенную стойкость к истиранию. В резиновой промышленности полиэтилен широко применяется в качестве смазок, отлично совмещающихся с каучуками разных типов.

Полиэтилен, как товарный продукт, выпускается в чистом виде и с добавками (различного рода термо- и светостабилизаторы, добавками против слипаемости пленки и др.). Они вводятся в полиэтилен в процессе переработки в небольших количествах (десятые доли процента). Добавки улучшают качества готового полиэтилена.

Так, в кабельной промышленности применяется полиэтилен, содержащий 0,5 и 2% сажи. Полиэтилен, используемый для изготовления труб питьевого и хозяйственного водоснабжения, содержит 2% сажи (технического углерода), а для дренажных труб до 35% сажи. Полиэтилен при наполнении его тальком, мелом, каолином и другими веществами (до 30-40% по массе) используются в качестве конструктивных материалов для производства канализационных и дренажных труб, некоррозионной и огнестойкой арматуры, а также для изделий культурно-бытового назначения, игрушек, посуды и т.п.

В зависимости от свойств и назначения полиэтилен выпускается различных марок, указанных в таблице 1.

Таблица 1. Марки полиэтилена, области их применения и способ переработки

Область применения

Способ переработки

Изоляция проводов и кабелей, оболочки кабелей

Технические изделия

Трубы и арматура к ним:

трубы напорные

трубы безнапорные фитинги

Пленки и пленочные изделия:

специального назначения

общего назначения (технические изделия, пленки для сельского хозяйства и др.)

для изготовления мешков под удобрения и других целей в сельском хозяйстве

для упаковки пищевых продуктов

Формовочные изделия:

с хорошими эластическими свойствами

с глянцевой поверхностью

общего назначения

открытого типа, контактирующие с пищевыми продуктами

общего назначения

сосуды и бутыли для дезинфицирующих средств с большим сопротивлением

Заливочные компоненты (для заполнения деталей электрооборудования)

Покрытие бумаги, ткани и др.

Покрытие для упаковки пищевых продуктов

Экструзия

Прессование

Экструзия

Экструзия

Выдувание

Экструзия

10203-003 10103-002 10702-020 10403-003

10003-002 10303-003

10103-002 10403-003

10203-003 15303-003

10603-007 17603-006

10702-020 15602-008

10903-020 17902-017

16902-020 15802-020

10802-020 11303-040

11502-070 11602-070

10203-006 17702-010

17602-006 10603-007

10802-020 15802-020

10903-020 17702-020

12002-200 18202-055

11903-080 12203-200

12103-200 12303-200

10702-020 11303-040

11102-020 11502-070

10702-020 11303-040

11702-010 18109-035

17902-017 11303-040

10203-003 11502-070

12402-700 16802-070

12502-200 18302-120

11502-070 16802-070

11802-070 18302-120

11502-070 16802-070

Обозначение базовых марок состоит из названия материала "полиэтилена" и восьми цифр. Первая цифра "1" указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах и реакторах с перемешивающим устройством в присутствии катализатора. Две следующие цифры обозначают порядковый номер базовой марки. Пятая цифра условно определяет группу плотности марки полиэтилена. Следующие три цифры, написанные через дефис, указывают десятикратное значение показателя текучести расплава.

После марки полиэтилена указывается сорт.

2. Исходное сырье для получения полиэтилена

2.1 Основное сырье

Этилен. Этилен -- химическое соединение, описываемое формулой С2H4, бесцветный газ со слабым запахом. Является простейшим алкеном (олефином). Содержит двойную связь и поэтому относится к ненасыщенным соединениям, обладает высокой реакционной способностью. В природе этилен практически не встречается. В незначительных количествах образуется в тканях растений и животных как промежуточный продукт обмена веществ. Играет чрезвычайно важную роль в промышленности, самое производимое органическое соединение в мире.

В настоящее время основным источником получения этилена является пиролиз газообразных и жидких предельных углеводородов: этана, пропана и бензинов прямой перегонки нефти.

Свойства этилена:

Химическая формула Н2С=СН2

Молекулярная масса 28,05

Состояние - газообразное

Температура плавления 103,8 К (-169,2°С)

Температура кипения 169,3 К (-103,7°С)

Плотность при нормальных условиях 1,26 кг/м 3

Плотность жидкого этилена при 163,2 К (-109,8°С) - 610 кг/м 3

Температура воспламеняемости 728 К (455°С)

Чистота этилена. Для полимеризации этилен должен быть тщательно очищен от примесей. Примеси к этилену делятся на две основные группы - инертные и активные. Инертная примесь, присутствующая в заметном количестве, например 5-10%, снижает концентрацию этилена на значительную величину, если учесть малую сжимаемость этилена.

Активные примеси к этилену, например соединения винильного типа, обычно сополимеризуются с этиленом, изменяют свойства образующегося полимера и влияют на скорость полимеризации.

В зависимости от содержания примесей техническими условиями предусматривается выпуск трех марок сжиженного этилена: А, Б и В. Этилен марки А и Б используется для производства полиэтилена и окиси этилена. Этилен марки В - для производства других органических продуктов. Этилен сжиженный должен соответствовать требованиям и нормам.

Катализаторы (инициаторы). В качестве катализаторов полимеризации этилена используют главным образом молекулярный кислород и органические перекиси. Из перекисей в промышленности наибольшее применение нашли перекись ди-трет-бутила, трет-бутилпербензоата и др. Эффект действия инициатора зависит от степени и скорости его разложения при данной температуре и от способности образовавшихся радикалов вступать в реакции с мономером.

Другим фактором, характеризующим инициатор, является содержание активного кислорода, т.е. теоретический процент активного кислорода в чистой перекиси.

В сухом виде перекиси взрывоопасны, растворы их в органических растворителях более стабильны и менее взрывоопасны. Хранение инициаторов должно проводиться в определенных температурных условиях.

Ниже описаны основные свойства наиболее распространенных перекисных инициаторов.

Перекись ди-трет-бутила (С8Н18О2)

Температура применения 513-553 К (240-280°С)

Молекулярная масса 146,2

Жидкость, плотность 793 кг/м 3

Температура кипения при 0,1 МПа - 463 К (190°С)

Перекись нерастворима в воде, растворима в большинствеорганических растворителей

Температура хранения 298 К (20°С).

Трет-бутилпербензоат (С11Н14О3)

Температура применения 453-513 К (180-240°С)

Молекулярная масса 194

Жидкость, плотность при 293 К (20°С) - 1040 кг/м 3

Температура кипения при 0,1 МПа - 397 К (124°С)

Температура хранения 293 К (20°С).

2.2 Вспомогательное сырье

Наполнители - преимущественно твердые неорганические или органические вещества, природного (минерального и растительного) и синтетического происхождения, которые вводятся в пластическую массу для придания ей соответствующих свойств.

Добавляют наполнители для улучшения свойств полиэтилена (физико-механических, теплофизических, электрофизических, оптических, эстетических, технологических и др.). А дешевые наполнители снижают себестоимость полиэтилена, например при утилизации полимеров и пластмасс, которые используют как наполнители.

Основные виды наполнителей, а также придаваемые ими свойства, представлены в таблице 2.

Таблица 2. Примеры наполнителей со специальными свойствами

Композиты

Примеры наполнителей

Абразивные

Антифрикционные

Биоразлагаемые

Высокогорючие

Электроизоляционные

Электропроводимые

Эстетические

Звуко- и теплоизоляционные

Конструкционные

Магнитные

Негорючие

Самозатухающие

Теплостойкие

Теплоаккумулирующие

Фрикционные

Химически стойкие

BN, SiC, алмаз, кварц, корунд

MoS2, NbSe2, TiSe2, WS2, WSe2, графит

Крахмал, хитозан

Al, Mg, нитраты, перманганаты, порох

Al2O3, асбест, кварц, слюда, стекло, тальк

Металлы (Al, Bi, Cd, Cu, Fe, Ni, Sn и др.) и их сплавы, графит

Деревянная тирса, мраморная крошка

Стекловата, полиамидное волокно

Металлические и керамические ферритные порошки

Al(OH)3, Ca(OH)2, Mg(OH)2, бораты натрия и цинка

Асбест, графит, углеродные волокна

Воск, стеариновая кислота, парафин, стеклосферы

BaSO4, асбест

Асбест, графит, политетрафторэтилен, тальк, технический уголь.

Пластификаторы - малолетучие, большей частью жидкие вещества, придающие смеси повышенную пластичность, в результате чего облегчается формование изделий, предотвращается появление хрупкости материала при низких температурах, увеличивается его гибкость и эластичность. При увеличении содержания пластификатора прочность полимера на растяжение и сжатие уменьшается, но зато резко увеличивается прочность на удар и способность к удлинению. Наиболее распространенными пластификаторами являются бутилкаучук, дибутилфталат, трикрезилфосфат, камфора, стеарат алюминия, олеиновая кислота, глицерин и др.

Красители применяютсядля придания изделию желаемой окраски.

Отвердители (например уротропин, известь, магнезию) вводят в состав пластической массы для ускорения перехода полимера в твердое неплавкое состояние, в котором они не плавятся и не растворяются. При этом у полимера образуется трехмерная структура.

Стабилизаторы, способствуют замедлению процесса старения и, как следствие - длительному сохранению полиэтилена своих первоначальных свойств. Стабилизаторы не влияют на первоначальные свойства полиэтилена.

Порообразователи - для получения пенно- и порополиэтиленов.

Связующие вещества связывают в монолитный материал другие компоненты смеси и обуславливают основные свойства полимера. В качестве связующих веществ чаще применяются синтетические смолы.

Смазывающие вещества позволяют улучшить физико-механические свойства полиэтилена, а именно повысить однородность расплава, увеличить его текучесть и относительное удлинение при разрыве. В пластическую массу в качестве смазывающих веществ добавляют стеариновую кислоту, окиси цинка, стеарат бария и др.

3. Производство полиэтилена

3.1 Теоретические основы процесса полимеризации этилена

Полимеризация этилена при высоком давлении протекает по радикальноцепному механизму, который состоит из стадий инициирования, роста цепей и обрыва цепей.

Инициирование процесса состоит в образовании активных радика

Началом реакции является присоединение этилена к образовавшемуся радикалу, в результате чего образуется новый радикал:

*СН3 + СН2=СН2 > СН3 -СН2-СН2*

К радикалу, образовавшемуся по реакции присоединяются последовательно молекулы этилена (реакция роста):

СН3 -СН2-СН2* + СН2=СН2 > СН3 -СН2-СН2-СН2-СН2*

Рост цепи заканчивается обрывом цепи. Обычно это происходит, когда из двух растущих радикалов образуется одна неактивная макромолекула:

СН3-CH2* + СН3-CH2* > СН3-СН2-СН2-CH3

Или, когда из двух растущих радикалов образуются две неактивные макромолекулы, одна из которых на конце имеет двойную связь:

СН3-(СН2-СН2)n-CH2* + СН3-(СН2-СН2)m-CH2* >

СН3-(СН2-СН2)n-1-CH=CH2 + СН3-(СН2-СН2)m-CH2*

Эти реакции уменьшают скорость процесса полимеризации.

При полимеризации этилена по изложенному выше механизму следует ожидать образование линейного насыщенного полимера.

Однако в действительности, в зависимости от реакционных условий, получают более или менее разветвленные макромолекулы, содержащие небольшое количество двойных связей (что также обусловлено протеканием реакции передачи цепи).

Различают два варианта реакции передачи цепи на полимер: внутримолекулярный и межмолекулярный.

При внутримолекулярной передаче цепи из растущего полимерного радикала один атом водорода переносится от вторичного углерода в конец цепи:

Вторичный радикал, образованный в результате внутримолекулярного переноса, дает началу роста новой боковой цепи. Конечный участок цепи, образованный в результате переноса, представляет собой разветвление в виде бокового бутильного ответвления. Таким образом, образуются короткие боковые цепи. Разветвление в виде длинных цепей происходит в результате межмолекулярного переноса водорода:

R1-CH2-CH2* + R2-CH2-CH2-CH3 > R1-CH2-CH2* + R2-CH*-CH2-CH3

3.2 Аппаратурное оформление производства полиэтилена при высоком давлении

Полимеризация этилена при высоком давлении осуществляется в реакторах трубчатого или автоклавного типа.

Полимеризация может происходить блочным способом ("в массе"), когда этилен высокой степени очистки, сжатый до давления 100-300 МПа, вводится в реактор одновременно с инициаторами процесса, или в растворе, когда реакция проводится в среде растворителя.

Полимеризация в блоке относительно трудно поддается регулированию из-за высокой экзотермичности процесса.

Во время полимеризации нужно точно регулировать температурный режим реакции а также вязкость реакционной массы, с целью улучшения массопередачи.

Отвод тепла через стенку реактора, охлаждение реакционный смеси свежим газом путем частичного дополнительного ввода в реактор, снижение температуры поступающую на полимеризацию этилена - все эти меры не обеспечивают достаточного теплоотвода для того, чтобы этилен заполимеризовался на 100%. Чтобы не допустить большого тепловыделения, при котором произойдет тепловое разложение этилена, производится искусственное торможение реакции на стадии, соответствующей 15-20% -ной степени превращения (в лучшем случае 30% -ной). Непрореагировавший этилен отделяют и возвращают в рецикл. Таким образом, принципы, на которых основана полимеризация этилена при высоком давлении, достаточно просты, но процесс специфичен и требует сложного оборудования, контрольно-измерительных приборов и автоматики.

3.3 Основная технологическая схема промышленной установки

Технологическая схема производства полиэтилена с использованием сжиженного этилена представлена на рис. 2

Рассматриваемая ниже технологическая схема производства полиэтилена осуществляются в одну стадию, когда все материальные потоки движутся непрерывно по одной нитке, включая и непрерывную переработку полимера в товарный полиэтилен.

Свежий этилен высокой степени чистоты, пройдя расходометр 1 и газоанализатор 2, сжимается поршневым компрессором 3, при этом плотность его достигает плотности легких жидких углеводородов (400-500 кг/м3), и направляется через концевой холодильник 4 в прибор конденсации этилена 5, откуда вместе с газом рецикла поступает в хранилище 6 сжиженного свежего и возвратного этилена.

Сжиженный этилен из хранилища забирается и направляется на пропиленовую холодильную установку для "переохлаждения". Переохлажденный этилен подается к многоступенчатому центробежному насосу 7, в котором он сжимается до промежуточного давления - давления всасывания насосов высокого давления. Перед поступлением в систему высокого давления этилен пропускается через ряд фильтров, в которых удаляются примеси. Во всасывающий трубопровод насосом высокого

давления вводят добавки, катализаторы и воздух (при кислородном инициировании). Этилен, содержащий добавки и катализатор, поступает в общий коллектор, питающий четыре одинаковых насоса высокого давления 8, работающие параллельно. Сжатие этилена производится до предельного давления 150-270 МПа. Этилен после сжатия в насосах высокого давления подается в реактор 9 в одну или несколько точек (200°С). На выходе из насосов и на выходе в реактор давление замеряется специальными тензиметрами. Они показывают и регистрируют давление. Для автоматического сброса этилена в атмосферу в случае повышения давления выше заданного устанавливается аварийно-выпускной клапан.

Реактор состоит из ряда длинных горизонтально расположенных труб высокого давления, снабженных водяными рубашками. Эти трубы имеют очень высокое отношение длины к диаметру. При превышении заданной температуры в реакторе автоматически приводится в действие система клапанов для ускорения отвода тепла, что практически исключает возможность теплового разложения этилена.

Отделение полученного полиэтилена от непрореагировавшего этилена производится в большом вертикальном сборнике полимера с паровой рубашкой 10. Уровень полимера в аппарате контролируется и регулируется специальным уровнемером с радиоактивным элементом.

Расплавленный полиэтилен из сборника поступает в экструдер 11 и пропускается через гранулятор, наполненный водой. Образующаяся суспензия гранул и воды направляется на сито 12 и затем на центробежную сушилку 13. Высушенный полимер самотеком поступает в один из двух сборников-бункеров.

Из сборника продукта горячий газ, пройдя котел-утилизатор 14, охлаждается в водяном холодильнике 15. Отделение от низкомолекулярных полимеров производится в сепараторах 16. Очищенный в ловушках, наполненных стеклянной ватой 17, газ поступает в колонку, в которой от него отделяется масло и добавки. После сжижения этилен 5 направляется в хранилище 6. Регенерированные добавки из колонны подаются на смешение с этиленом в насос высокого давления 8.

Существуют различные методы повышения эффективности производства полиэтилена. Оно должно осуществляться путем внедрения агрегатов большой единичной мощности и интенсификации производства на основе научно-технического прогресса. Увеличение производительности реакторов за счет интенсификации и повышения эффективности их работы не требует больших капитальных затрат и осуществляется путем совершенствования конструкции реакционных устройств и оптимизации технологического прогресса полимеризации.

Эффективное повышение производительности единицы реакционного объема возможно путем увеличения превращения этилена за проход, на которое в основном влияют следующие факторы:

1) снижение температуры газа, поступающего на полимеризацию;

2) повышение температуры в реакционной зоне;

3) повышения давления (для создания гомогенной реакционной среды и увеличения концентрации этилена);

4) лучший отвод тепла реакции, как за счет лучшей теплопередачи через стенку, так и за счет лучшей теплопередачи через стенку, так и за счет более совершенного распределения свежего газа по длине реактора;

5) Использование более эффективных инициаторов полимеризации;

6) Лучшее перемешивание реакционной массы;

7) Повышение чистоты исходного этилена;

8) Совершенствование конструкций реакционных устройств и технологических схем.

Интересно также утилизация и переработка отработанного полиэтилена, например тары. Полиэтиленовая тара используется во многих отраслях промышленности: косметической, химической, пищевой и др. Для вторичного использования полиэтилена, тару, из-под разных продуктов, необходимо измельчить, высушить, переплавить в условиях вакуума и гранулировать. Однако такой полиэтилен обладает меньшим показателем относительного растяжения, т.е. он менее прочен, а его состав менее однороден. Эти недостатки устраняются добавлением в него смазывающих веществ.

4. Контроль качества полиэтилена

4.1 Показатели качества полиэтилена

производство полиэтилен ассортимент рынок

Контроль качества полиэтилена проводят как при самом производстве материала (в реакторе, на выходе из реактора, в экструдоре-грануляторе), так и в лаборатории уже готового продукта. Оценивают качество полиэтилена по таким показателям:

· Плотность;

· Молекулярная масса;

· Показатель текучести расплава;

· Вязкость;

· Разброс показателей текучести расплава в пределах партии;

· Количество включений;

· Технологическая проба на внешний вид пленки;

· Стойкость к растрескиванию;

· Предел текучести при растяжении;

· Прочность при разрыве;

· Относительное удлинение при разрыве;

· Массовая доля экстрагируемых веществ;

· Запах и привкус водных вытяжек;

· Стойкость к термоокислительному старению;

· Стойкость к фотоокислительному старению (методом облучения, по массовой доле сажи, по равномерности распределения сажи);

· Массовая доля летучих веществ.

Основными, из перечисленных показателей, по которым проводится обязательный контроль качества, являются молекулярная масса полиэтилена, его плотность, вязкость, показатель текучести расплава. В таблице 3 представлены нормы показателей качества для нескольких базовых марок.

Таблица 3 Показатели качества базовых марок полиэтилена

Наименование показателя

Норма для марки

1. Плотность, г/см

2. Показатель текучести расплава (номинальное значение) с допуском, %, г/10 мин

3. Разброс показателей текучести расплава в пределах партии, %, не более:

Высшего сорта

1-го сорта

2-го сорта

4. Количество включений, шт., не более:

Высшего сорта

1-го сорта

2-го сорта

5. Технологическая проба на внешний вид пленки:

Высшего сорта

1-го сорта

2-го сорта

6. Стойкость к растрескиванию, ч, не менее

7. Предел текучести при растяжении, Па (кгс/см), не менее

8. Прочность при разрыве, Па (кгс/см), не менее

9. Относительное удлинение при разрыве, %, не менее

10. Массовая доля экстрагируемых веществ, %, не более:

высшего сорта

1-го и 2-го сорта

11. Запах и привкус водных вытяжек, балл, не выше

12 Стойкость к термоокислительному старению, ч, не менее

13. Стойкость к фотоокислитель- ному старению:

методом облучения ч, не менее:

по массовой доле сажи, %

по равномерности распределения сажи

14. Массовая доля летучих веществ, %, не более:

Высшего сорта

1-го и 2-го сорта

4.2 Методы определения качества

Определение молекулярной массы:

Полиэтилен имеет линейное строение и может растворяться в подходящих растворителях.

Молекулярная масса линейных полимеров лежит в интервале 103--107, причем образующиеся в процессе полимеризации макромолекулы полиэтилена имеют разные молекулярные массы, поэтому растворы полиэтилена представляют собой полидисперсные системы, а определяемая экспериментально молекулярная масса является только средней статистической величиной.

Молекулярная масса сшитых фракций полиэтилена может быть очень большой. Она определяется степенью сшивания, т.е. средней "молекулярной массой" между узлами сшивания. Степень сшивания можно оценить по степени набухания полимера в растворителях.

Молекулярную массу полимеров можно определить различными методами, причем каждый метод применим для измерения молекулярных масс, лежащих в соответствующих интервалах.

Все эти методы, за исключением метода "концевых групп", основаны на изменении каких-либо свойств разбавленных растворов полимеров пропорционально числу молекул растворенного вещества; для определения молекулярной массы такими методами требуется сложная аппаратура. Поэтому на заводах до настоящего времени обычно применяют наиболее простой и быстрый вискозиметрический метод и молекулярную массу вычисляют из найденного значения вязкости раствора.

Метод определения концевых групп. Если на концах макромолекулы имеются функциональные группы, которые можно определить химическим методом, то на основании данных химического анализа можно вычислять среднечисловую молекулярную массу полимера. Так как в образце полимера с высокой молекулярной массой относительное число концевых групп очень мало, то точность их определения невелика. Этим методом определяют молекулярную массу до 3·104.

Эбуллиоскопия и криоскопия. В этих методах молекулярная масса рассчитывается по повышению температуры кипения или понижению температуры замерзания растворов полимера. Поскольку изменения температуры здесь очень малы, то и точность этих методов также невелика.

При применении эбуллиоскопического метода применяют растворитель с невысокой температурой кипения во избежание деструкции полимера. Выбор растворителя для криоскопического метода еще более затруднен, так. как макромолекулы полимера могут выпадать из растворителя до достижения температуры замерзания растворителя или вместе с растворителем. Интервал определения молекулярной массы 2·104-3·104.

Метод осмотического давления. При использовании этого метода значительные сложности возникают при изготовлении полупроницаемых мембран, способных пропустить молекулы растворителя и задержать макромолекулы с молекулярной массой до 30 000 (применение осмотического метода для полимеров с более низкой массой не надежно). Интервал определения молекулярной массы 104-106.

Метод светорассеяния. Световой луч, проходя через прозрачную среду, частично рассеивается. Метод основан на том, что чистый растворитель и раствор полимера имеют разные степени светорассеяния. Полученная молекулярная масса является среднемассовой молекулярной массой. Интервал определения молекулярной массы 104-107.

Метод осаждения (или седиментации) в ультрацентрифуге. При отстаивании суспензии постепенное осаждение частиц и по скорости осаждения можно вычислить массу частиц суспензированного вещества, если использовать очень сильное центробежное поле, в ультрацентрифуге. Частота вращения ротора центрифуги должна быть не менее 1000 об/с. По скорости, осаждения можно вычислить не только молекулярную массу полимера, но и распределение по молекулярным массам. Интервал определения молекулярных масс 104-107.

Метод вискозиметрии. Наиболее простым и удобным методом определения молекулярной массы является вискозиметрический метод. Молекулярная масса вычисляется по эмпирическому уравнению, связывающему вязкость раствора, вязкость растворителя и концентрацию полимера. Вычисленная по вязкостной характеристике молекулярная масса называется средневязкостной молекулярной массой и выражается обычно значением ее логарифма.

Определение показателя текучести расплава: аппарат для определения ПТР (ГОСТ 11645--73) представляет собой шприцующий пластомер, внутренний диаметр сопла которого равен 2,09 мм, со штоком и грузом на нем, равным 2,16 кг, термопарой для замера температуры расплава, которая при определении индекса поддерживается постоянной 463 К ± 0,5 (190 ± 0,5°С). Масса материала в граммах, выдавленная в течение 10 мин при этих условиях, называется показателем текучести расплава. Низкий индекс расплава соответствует высокому внутреннему трению, присущему материалу с высокой молекулярной массой. Таким образом, определяемый данным методом показатель текучести расплава позволяет, с известным приближением вследствие недостаточной точности измерения, классифицировать сорта полиэтилена по размеру молекул полимера.

Определение кажущейся плотности (объемной массы):

Метод обмера и взвешивания. Метод заключается в определении плотности вещества по отношению массы образца к его объему, определенному непосредственным взвешиванием и обмером. Можно измерять объем другими методами, например по вытесненному объему жидкости для образцов неправильной или трудно измеряемой формы. Метод применяется для определения плотности (объемной массы) изделий и полуфабрикатов (стержни, бруски, трубы) и обеспечивает точность измерения до 0,5% при точности измерения объема 0,3% и массы 0,2%.

Метод гидростатического взвешивания. Метод заключается в сравнении масс одинаковых объемов испытуемого вещества и жидкости известной плотности (например, дистиллированной воды). Метод предназначен для определения плотности (объемной массы) формованных изделий (стержни, бруски, трубки); он обеспечивает точность измерения до 0,1%.

Пикнометрический метод. Метод состоит в сравнении масс одинаковых объемов испытуемого вещества и жидкости известной плотности. Метод применяется для определения плотности формованных изделий, пресс-порошковых гранул, хлопьев; он обеспечивает точность измерения до 0,05%.

Флотационный метод заключается в сравнении плотности образца с плотностью известной жидкости в момент перехода образца во взвешенное состояние. Метод применяется для определения плотности пластмасс (преимущественно полиолефинов) в виде гранул и любых формованных изделий, В качестве рабочей жидкости используют, смесь этиловый спирт -- вода. Метод пригоден для определения плотности полимеров от 910 кг/м 3 (0,9100 г/см 3) с точностью до 0,0002 г/см 3 .

Метод градиентной колонки основан на сравнении глубины погружения испытуемого образца и жидкости известной плотности в цилиндре или в трубке с раствором, у которого плотность изменяется по высоте ("градиентная колонка").

Метод применяется для определения плотности изделий в виде пленок, гранул, волокон, а также любых формованных изделий. Точность этого метода зависит от перепада плотности жидкости по высоте градиентной колонки. При "чувствительности" колонки 0,0001 к/см 3 на миллиметр точность метода достигает 0,05%.

В настоящее время полиэтилен, как низкой, так и высокой плотности широко распространен на рынке, основная часть которых приходится на тару и упаковку различных видов продукции. Поэтому необходимо уделять достаточно много внимания качеству и свойствам этого материала.

В ходе проделанной работы я узнала, что полиэтилен, изготавливаемый при высоком давлении имеет низкую плотность и относится к группе термопластичных полимеров. Он обладает химической инертностью, легкостью и прочностью, способностью растягиваться. Такие качества определили сферу его применения, где полиэтилен используется в виде пленок, упаковочного материала, антикоррозионных покрытий, электроизоляционным материалов для кабелей, им пропитывают ткань и бумагу.

Сырьем для полиэтилена служит этилен и катализаторы. Но в чистом виде он выпускается редко. Многообразие его марок объясняется введением в полиэтилен добавок, таких как наполнители, пластификаторы, связывающие вещества, отвердители, красители, стабилизаторы, смазывающие вещества. Добавки придают полиэтилену определенные специфические свойства и улучшают его качество.

Также я узнала, что полимеризация полиэтилена идет при повышенных температуре и давлении и, чтобы не допустить теплового разложения этилена либо торможения реакции, нужен постоянный контроль. Поэтому в производстве используется большое количество контрольно-измерительных приборов и автоматика.

Основными показателями, по которым характеризуется полиэтилен являются его молекулярная масса, плотность и текучесть расплава. По этим показателям определяют качество полиэтилена в лабораториях, а также на самом производстве: в реакторе, непосредственно на выходе из реактора, готовых гранул полиэтилена.

Технология полиэтилена требует точного соблюдения регламента производства, учета влияния технологических параметров на свойства готового продукта, строго организационного процесса. Только при таком подходе можно получить качественный материал.

Необычайно актуальной темой на сегодняшний момент стала утилизация отработанного полиэтилена, так как он сам не разлагается и загрязняет окружающую среду. Ученые уже разработали несколько методов вторичного применения полиэтилена, что возможно благодаря его термопластичным свойствам. Однако затруднение составляет необходимость наличия мощного оборудования и рассортировка отходов.

Список литературы

1. Шифрина В., Статский Н. Полиэтилен высокого давления. Справочное руководство - Гостхимиздат, 1975 г. - с. 45-50.

3. Каварновский С.Н., Козлов В.Н. Технологические схемы процессов основного органического синтеза. Методы производства исходных продуктов высокомолекулярных соединений. К.: Горький, 1968 г. - с. 122-124.

4. Т.М. Томилина, Л.М. Заболотникова, В.В. Вакуш, И.А. Мочальник, Н.П. Гришина. Основы технологии важнейших отраслей промышленности: в 2 ч. Ч. 2: Учеб. Пособие для вузов; Под ред. И.В. Ченцова, В.В. Вашука. - Мн.: Выш. шк., 1989 г. - с. 79

5. Ю. Ковальов. Обзор украинского рынка полиэтилена. Журнал "Полимеры-деньги". Под ред. В. Кузовенко. - 2006 г. №8 - с. 19-22.

6. О.П. Мантуло, И.М. Новиков. Вжита полімерна тара з ПЕТ, шляхи переробки. Журнал "Хімічна промисловість України" Под ред. Ю.М. Сидоренко - 2006 №1 - с. 51-53.

7. І.О. Мікульонок. Термопластичні композитні матеріали та їх наповнювачі, класифікація та загальні відомості. Журнал "Хімічна промисловість України" Под ред. Ю.М. Сидоренко - 2005 №5 - с. 30-39.

8. ГОСТ 16337-77 Полиэтилен высокого давления. Технические условия. Введ. 01.01.1979 - М.: ИПК Издательство стандартов - 1979 г. - с. 70

9. ГОСТ 11645-73 Пластмассы. Методы определения показателя текучести расплава термопластов. Введ. 01.01.1975 - М.: Издательство стандартов. 1975 г. - с. 12

Размещено на Allbest.ru

...

Подобные документы

    Основные способы производства полиэтилена. Получение полиэтилена при высоком давлении. Способ полимеризации в массе. Характеристические свойства полиэтилена. Технологический процесс разложения и отмывки катализатора. Оценка показателя текучести.

    реферат , добавлен 02.06.2012

    Методы производства полиэтилена низкого давления; выбор и обоснование технологии проектируемого производства. Характеристика продукции, ее применение; расчет и подбор оборудования; автоматизация процессов. Экологическая и экономическая оценка проекта.

    дипломная работа , добавлен 12.03.2011

    Историческая справка о методах получения и использования полиэтилена. Процесс полимеризации этилена. Техническая характеристика сырья полуфабрикатов и продукта. Расчет материального баланса производства полиэтилена низкого давления газофазным методом.

    дипломная работа , добавлен 26.01.2014

    Характеристика полиэтилена высокого давления. Физико-химические свойства. Нормативно-техническая документация. История возникновения и развития ОАО "Казаньоргсинтез". Назначение и особенности IDEF0-моделирования. Модель производства процессов "Как есть".

    курсовая работа , добавлен 03.05.2015

    Термопласты, применяемыми в производстве труб. Прочностные характеристики труб из полиэтилена. Формование и калибрование заготовки трубы. Технические требования, предъявляемые к трубным маркам полиэтилена и напорным трубам, методы контроля качества.

    курсовая работа , добавлен 20.10.2011

    Промышленное производство пленок из синтетических полимеров (полиэтилен, поливинилхлорид и др.) осуществляется непрерывным методом из расплавов полимеров двумя способами: каландровым и выдавливанием червячными прессами. Применение пленочных изделий.

    курсовая работа , добавлен 15.05.2008

    Технология производства промышленных полиэтиленов, исходное сырье. Полиэтиленовая продукция и способы влияния на ее свойства. Методика производства труб из полиэтилена низкого давления путем применения суперконцентратов для окрашивания в различные цвета.

    дипломная работа , добавлен 20.08.2009

    Общие свойства полимерных пленок. Технологический процесс производства рукавной пленки из полиэтилена низкой плотности. Расчет коэффициента геометрической формы головки и производительности одношнекового однозаходного экструдера для производства пленки.

    курсовая работа , добавлен 04.06.2014

    Технологические операции, используемые в процессе производства полимерных труб. Базовые марки полиэтилена и полипропилена, рецептуры добавок, печатных красок, лаков для производства полимерных труб. Типы труб и их размеры. Основные формы горлышка трубы.

    контрольная работа , добавлен 09.10.2010

    Выбор и обоснование способа производства изделия из полиэтилена низкого давления, характеристика основного и вспомогательного оборудования. Технологическая схема производства. Расчет количества сырья и материалов. Составление материального баланса.

ПЭНД имеет общее назначение и характеризуется линейной структурой с незначительными ответвлениями от основной цепи.

Отсутствие объёмных ограничений позволяет выработать материал с повышенной кристалличностью, которая может достигать 80%.

Благодаря этому достигаются высокие эксплуатационные свойства данного полимера.

Композиционными особенностями полиэтилена низкого давления является качественное улучшение модификации базового полиэтилена ПЭНД 276-73.

Для образования такого полиэтилена требуются определённые условия:

  • температурный режим на уровне 120–150 °C;
  • показатели давления ниже 0,1–2 МПа;
  • наличие катализаторов Циглера - Натта. Пример: смесь TiCl4 и AlR3.

Процесс полимеризации протекает в суспензии при условиях ионно-координационного механизма. В результате образуется полиэтилен со средним молекулярным весом 80–300 тыс.

Основные физические и химические свойства

Полиэтилен низкого давления соответствует формуле (-СН2-СН2-)n. Он химически стоек по отношению к агрессивным химическим элементам и обладает отличными диэлектрическими свойствами.

Гранулированная форма полиэтилена низкого давления изготавливается методом полимеризации. Показатель плотности при таком технологическом процессе составляет более 0,945 г/см³. Гранулы получаются более кристаллическими и с низкой степенью прозрачности. Температура плавления зависит от длины полимерных цепей.

Высокая температура плавления при изготовлении изделий из ПЭНД очень энергозатратна. Однако эксплуатационные характеристики таких изделий прекрасные. Они выдерживают довольно суровые условия и относительно высокие температурные режимы без образования механических повреждений.

Субъективными недостатками изделий из ПЭНД являются матовость поверхности, некоторая шершавость и недостаточная тягучесть. Кроме того, плёнка из полиэтилена низкого давления легко мнётся и шуршит.

Склонность к хладотекучести со временем изменяет размер плёнки при постоянной нагрузке.

Применение в промышленности

Особенности ПЭНД, характеризующиеся высокой прочностью, небольшим относительным удлинением при разрыве и повышенной морозостойкостью, делают сферу его применения достаточно широкой. В бытовом сегменте ПЭНД используется при производстве разнообразных кухонных принадлежностей и предметов быта.

В строительстве этот материал нашёл широкое применение в изготовлении водопроводных труб и различных строительных материалов. Наиболее часто используется в упаковочной промышленности в процессе производства упаковочной тары и бутылок.

Экструзия плёнки позволяет получить пакеты для фасовки, пакеты «майка» и пакеты с вырубной ручкой. Используется при выработке барьерного слоя для многослойных упаковочных материалов, воздушно-пузырьковой плёнки и мусорных пакетов.

Произведённые таким способом применяются в системах газоснабжения, холодного водоснабжения и с целью защиты электросетей. Применяются в дренажных системах, внешней и внутренней , а также в виде обсадных труб в скважинах. Кроме того, в процессе экструзии вырабатываются листы гидроизоляции, детали изделий для машиностроительной отрасли, мембраны для гидроизоляционных работ, конвейерные ленты и геоячейки.

Методом выдувания получают разнообразные плёнки и ёмкости. При помощи литья под давлением вырабатываются товары народного потребления, двусоставные и односоставные крышки, тарные ящики, мебельная фурнитура и почти 400 наименований автокомплектующих.

Результатом ротоформования является выпуск:

  • баков,
  • бочек,
  • мобильных туалетов,
  • детских игровых комплексов,
  • дорожных ограждений,
  • колодцев,
  • септиков,
  • мусоросборов и эстакад.

Страны - производители ПЭНД

Потребление полимерного сырья на территории Европы показывает ежегодный рост на уровне 6%. Объём рынка полиэтилена низкого давления в России составляет примерно 340 тыс. т/год, а средний ежегодный рост - 30%.

Эксперты «Лукойл-нефтехим» оценивают производство в РФ в 450 тыс. тонн ПЭНД, из которых 315 тыс. т/год приходится на внутреннее потребление. От 30 до 35% от общего объёма, произведённого в России ПЭНД, идёт на экспорт.

Почти 87% всего объёма ПЭНД, производимого в России, приходится на предприятия: «Ставролен» от «Лукойл-нефтехимия», «Томскнефтехим» от АК «Сибур», «Казаньоргсинтез», «Нижнекамскнефтехим» и «Газпромнефтехим Салавата». В прошлом году российскими предприятиями был сокращён выпуск ПЭНД на 18%. Основной причиной стал простой предприятия «Ставролен».

Лидирующие позиции на мировом рынке занимает фирма Univation Technologies. Она является совместным детищем компаний Exxon Mobil и Dow/Union Carbide, которые являются признанными мировыми лидерами по производству полиолефинов.

Если вы увлекаетесь интересными открытиями вам следует прочитать материал про .

Знания должны быть разнообразные! Многим будет интересно узнать, например, про химическое оружие. Познавательные сведенья о нем в .

Вторичная переработка

Многократная переработка ПЭНД изменяет вязкостные свойства на уровне 5–10%, а прочностные характеристики понижаются на 10–20%. Применение вторичной переработки полиэтиленов существенно не влияет на прочностные и вязкостные свойства ПЭНД. Свойства вязкости можно легко скорректировать изменением температурного режима при литье.

На данный момент большие денежные средства вкладываются в улучшение качественных характеристик ПЭНД. Именно в этом полиолефине видят будущее многие современные производители.

Этилен. Этилен -- химическое соединение, описываемое формулой С2H4, бесцветный газ со слабым запахом. Является простейшим алкеном (олефином). Содержит двойную связь и поэтому относится к ненасыщенным соединениям, обладает высокой реакционной способностью. В природе этилен практически не встречается. В незначительных количествах образуется в тканях растений и животных как промежуточный продукт обмена веществ. Играет чрезвычайно важную роль в промышленности, самое производимое органическое соединение в мире.

В настоящее время основным источником получения этилена является пиролиз газообразных и жидких предельных углеводородов: этана, пропана и бензинов прямой перегонки нефти.

Свойства этилена:

Химическая формула Н2С=СН2

Молекулярная масса 28,05

Состояние - газообразное

Температура плавления 103,8 К (-169,2°С)

Температура кипения 169,3 К (-103,7°С)

Плотность при нормальных условиях 1,26 кг/м 3

Плотность жидкого этилена при 163,2 К (-109,8°С) - 610 кг/м 3

Температура воспламеняемости 728 К (455°С)

Чистота этилена. Для полимеризации этилен должен быть тщательно очищен от примесей. Примеси к этилену делятся на две основные группы - инертные и активные. Инертная примесь, присутствующая в заметном количестве, например 5-10%, снижает концентрацию этилена на значительную величину, если учесть малую сжимаемость этилена.

Активные примеси к этилену, например соединения винильного типа, обычно сополимеризуются с этиленом, изменяют свойства образующегося полимера и влияют на скорость полимеризации.

В зависимости от содержания примесей техническими условиями предусматривается выпуск трех марок сжиженного этилена: А, Б и В. Этилен марки А и Б используется для производства полиэтилена и окиси этилена. Этилен марки В - для производства других органических продуктов. Этилен сжиженный должен соответствовать требованиям и нормам.

Катализаторы (инициаторы). В качестве катализаторов полимеризации этилена используют главным образом молекулярный кислород и органические перекиси. Из перекисей в промышленности наибольшее применение нашли перекись ди-трет-бутила, трет-бутилпербензоата и др. Эффект действия инициатора зависит от степени и скорости его разложения при данной температуре и от способности образовавшихся радикалов вступать в реакции с мономером.

Другим фактором, характеризующим инициатор, является содержание активного кислорода, т.е. теоретический процент активного кислорода в чистой перекиси.

В сухом виде перекиси взрывоопасны, растворы их в органических растворителях более стабильны и менее взрывоопасны. Хранение инициаторов должно проводиться в определенных температурных условиях.

Ниже описаны основные свойства наиболее распространенных перекисных инициаторов.

Перекись ди-трет-бутила (С8Н18О2)

Температура применения 513-553 К (240-280°С)

Молекулярная масса 146,2

Жидкость, плотность 793 кг/м 3

Температура кипения при 0,1 МПа - 463 К (190°С)

Перекись нерастворима в воде, растворима в большинствеорганических растворителей

Температура хранения 298 К (20°С).

Трет-бутилпербензоат (С11Н14О3)

Температура применения 453-513 К (180-240°С)

Молекулярная масса 194

Жидкость, плотность при 293 К (20°С) - 1040 кг/м 3

Температура кипения при 0,1 МПа - 397 К (124°С)

Температура хранения 293 К (20°С).

В этой статье:

Полиэтиленовые пакеты используются повсеместно: в супермаркетах и магазинах, для стандартной и подарочной упаковки, для хранения продуктов и выноса мусора.

Все сферы применения полиэтиленовых пакетов и не перечислить. Прошли уже те времена, когда наши соотечественники предпочитали пользоваться тряпичными сумками, а полиэтиленовые кульки бережно складывались и хранились. Сегодня полиэтиленовый пакет выполняет свое основное предназначение – быть одноразовым средством для упаковки и комфортной транспортировки продукции. А это значит, что спрос на них будет стабилен и к спаду не предрасположен.

Помимо очевидных функций, пакеты стали средством эффективной мобильной рекламы – ведь практически у каждой крупной компании, бутика или супермаркета имеется фирменный пакет с логотипом предприятия, перечнем услуг и контактными данными, которые раздаются в подарок. И клиенту приятно, и рекламы много не бывает.

Анализ спроса на продукцию (полиэтиленовые пакеты) и рынка сбыта

По данным статистики, на рынке отечественного производства хватает незаполненных ниш, ведь 20% полиэтиленовой продукции продолжает поступать от зарубежных производителей. При этом, главные конкуренты отечественных предпринимателей – кульки турецкого и китайского производства, отличающиеся крайне низкой ценой и соответствующим качеством. Рвущиеся ручки, не до конца пропаянные швы, вываливающиеся днища – лишь малый перечень «прелестей» от покупки подобной продукции. Но для нашего потребителя цена всегда была решающим фактором, поэтому подобная конкуренция имеет место быть, особенно в приграничных регионах.

Впрочем, это касается только прямых оптовых продаж готовой продукции. Гораздо выгоднее работать под заказ, заключая договора о поставках упаковочного материала и готовых пакетов для различных торговых, производственных, строительных и сельскохозяйственных предприятий. Здесь срабатывает правило «имиджа фирмы»: ни одна уважающая себя компания не предложит покупателю товар в низкокачественной упаковке.

Полиэтиленовая продукция востребована в любом регионе. Более того, даже если в вашем городе уже работает крупный завод, средний и мелкий бизнес свободно найдет свою нишу, изучив предложения конкурентов. Видов полиэтиленовых пакетов существует масса: пакеты «банан», «майка», пакеты для мусора, подарочные пакеты, рекламные упаковки с логотипом, однослойные, многослойные, различных размеров, цветов и форм. Задача предпринимателя – отыскать продукцию с наиболее высоким спросом, либо занять нишу, неохваченную другими производителями.

Выбор стратегии и юридическое оформление бизнеса

Открывая производство пакетов полиэтиленовых, можно пойти двумя путями:

  • производство полного цикла (от изготовления пленки до выпуска пакетов любых конфигураций);
  • частичное производство (от закупки готовой пленки, нанесением изображений, нарезки на формы с последующей спайкой).

Рассмотрим полный цикл, как более перспективный вид бизнеса. Хотя капитальных вложений такое предприятие потребует больше, возможности сбыта, разноплановость производимой продукции и, соответственно, прибыльность будет значительно выше. Кроме того, такое предприятие может стать тем самым поставщиком готовой пленки для производств неполного цикла.

Возможности применения готовой пленки:

  • универсальный упаковочный материал,
  • строительная гидроизоляция,
  • материал для теплиц, парников и других потребностей аграрного сектора,
  • защита от загрязнений при строительстве или ремонтных работах.

Оптимальная организационная форма для производства изделий из полиэтилена – юридическое лицо на упрощенной системе налогообложения.

При регистрации предприятия необходимо указать следующие коды ОКВЭД:

  • 25.2 — Производство пластмассовых изделий
  • 25.22 — Производство пластмассовых изделий для упаковывания
  • 51.47 — Оптовая торговля прочими непродовольственными потребительскими товарами.

Для запуска цеха потребуется сертификат на производство, разрешения, полученные в местной администрации, санитарно-эпидемиологической и экологической службе, энерго надзоре, пожарной охране. Производство пленки для полиэтиленовых пакетов должно пройти соответствие по ГОСТу 10354-82 (сертификация пищевой пленки обязательна к подтверждению каждые 3 месяца) . Но для того, чтобы получить такой сертификат, следует произвести запуск технологической линии (разумеется, после получения всех разрешений на производство), и полученные образцы предоставить для экспертного заключения.

Помещение для производства полиэтиленовых пакетов

Изготовление полиэтиленовой пленки относится к экологически вредному производству, поэтому к выбору помещения есть ряд определенных требований:

  • производственный цех или мини-завод должен располагаться в промышленной или загородной нежилой зоне;
  • наличие приточной и вытяжной вентиляции, отопления и контроля влажности в помещении цеха и на складе;
  • трехфазное электроподключение, заземление элементов питания;- высота потолков не менее 8 м (высота экструзионной машины ~6 м), внутренняя отделка стен, пола, потолка – из негорючих материалов;
  • размещение производственного оборудования в помещении цеха должно соответствовать ГОСТ 12.3.002-74;
  • наличие противопожарной системы, возможность безопасной эвакуации при пожаре;
  • организация рабочих мест должна соответствовать требованиям ГОСТов 12.2.061-81 и 12.3.002-74, а также эргономическим характеристикам по ГОСТам 12.2.033-78, 12.2.032-78.

Для размещения комплекса производственного оборудования понадобится помещение в 300 квадратов, которое будет разделено на три части: производственный цех (180 м 2), склад сырья и готовой продукции (80 м 2), офис и выставочный зал (40 м).

Оборудование для производства полиэтиленовых пакетов

Для изготовления полиэтиленовой пленки с последующим формированием пакетов, планируется приобрести производственную линию, состоящую из следующего оборудования:

1) Экструдер – преобразователь гранул сырья в пленку (шириной 300-550 мм, толщиной – 0,009 — 0,10 мм), методом раздува снизу-вверх. Производительность – 40 кг./час;

2) Флексопечатная машина – для печати рисунков, логотипов и прочих изображений;

3) Станок для изготовления пластиковых зажимов для упаковки ;

4) Пакетоделательная многофункциональная машина , со встроенным вырубным прессом, оснащенная сервоприводом, фотосенсором, конвейером, термоиглами, и позволяющая производить пакеты различных модификаций, в т.ч. «майка», «банан», пакеты с двойным донным швом, мешки для мусора, упаковку для продуктов с пластиковым зажимом и т.д.

Стоимость технологической линии с доставкой, настройкой, обучением персонала и сигнальным запуском – 3 840 000 руб.

Помимо станков, планируется приобретение офисного, выставочного и складского оборудования (стеллажей, ящиков, коробов, столов, стендов) для размещения сырья, готовой продукции и оборудования рабочих мест для персонала. Стоимость дополнительного оборудования для цеха – 60 000 руб.

Сырье для производства пакетов из полиэтилена

Полиэтиленовую пленку изготовляют из полимерных гранул первого сорта или вторичной переработки.

Используется два вида сырья:

  • ПНД (полиэтилен низкого давления, ГОСТ 16338-85), для контакта с сыпучими и сухими продуктами;
  • ПВД (полиэтилен высокого давления, ГОСТ 16337-77), предназначен для упаковки пищевых продуктов).

Самым дешевым сырьем, признан южнокорейский гранулят (~ $ 380 за тонну), но существует масса других видов отечественного или заграничного производства, с ценовым диапазоном от 420 $ до 750 $ за тонну. Чтобы произвести цветную пленку, к исходному сырью добавляют специальные красители ($ 15-50 за 1 кг).

При производстве мешков для мусора или других видов пленки непищевого предназначения можно использовать и вторичный гранулят, которой гораздо дешевле, потому что изготовлен из отходов полиэтилена, но и качество такого сырья соответственно невысокое.

Технология производства полиэтиленовых пакетов

1. Гранулы полимера загружаются в бункер экструдера , откуда их забирает питающий шнек. Здесь поддерживается температура от 180 0 C до 240 0 C и по мере продвижения гранулы разогреваются, переплавляясь в однородную массу. В результате экструзии, образуется полиэтиленовая пленка в форме трубы (рукава). Один экструдер позволяет изготовить пленку различной толщины и ширины путем специальной настройки.

2. Полиэтиленовая «труба» постепенно охлаждается, затем раскатывается валиками.

3. Рукав разрезают автоматическим ножом так, чтобы получились две одинаковые полосы нужной ширины.

4. Намотчик сматывает пленку в рулоны (обрезки упаковываются отдельно, для вторичной переработки). Когда ширина рулона достигает установленного размера, рулон отодвигается с помощью оператора и начинает наматываться следующий. И так до конца произведенной пленки.

5. Нанесение рисунка. Краска разводится спиртом и постоянно перемешивается, чтобы не потерять вязкость.

6. С помощью дозатора краситель поступает к специальным красящим валикам, которые и производят печать рисунка. После нанесения печати, пленку снова сматывают в рулоны.

7. Готовый рулон поступает в пакетоделательную машину, где формируется шаблон будущих пакетов, выделяется донная складка.

8. Клеймовочный пресс проделывает отверстия для ручек (вырезает «майку», отрезает верхнюю часть для прикрепления пластиковой застежки – все зависит от шаблона).

9. Сварочная поверхность соединяет края, запаивая нагреванием до 180 0 С. Готовые пакеты формируются в пачки по 100 штук.

10. Контроль качества. Проверка спайки швов и креплений застежек.

Бизнес план производства полиэтиленовых пакетов

Себестоимость изготовления полиэтиленовых пакетов рассчитывается под каждый заказ индивидуально, поскольку помимо цены на используемый гранулят, зависит от ряда дополнительных факторов:

  • размер, форма, дизайн пакета,
  • плотность пленки,
  • наличие укрепленной ручки и донной складки,
  • цветная печать (количество задействованных оттенков, площадь рисунка, наличие сложных совмещений, односторонняя, двухсторонняя печать и т.д.).

Возьмем для расчета окупаемости бизнес-проекта изготовление белых непрозрачных пакетов с вырубной ручкой, шириной 40 см, высотой 60 см и толщиной боковой складки 16 мкм.

Себестоимость такого пакета, изготовленного из гранул ПНД – 0,13 коп, а оптовая продажная цена – 0,70 коп. Учитывая, что производственные мощности позволяют изготовлять около 70 штук/минуту, то при односменной работе и 22 рабочим дням, прибыль составит: 60 мин * 8 ч * 22 руб./день * 70 штук (0,70 — 0,13 рублей) = 421 344 руб/месяц.

Расходная часть:

  • аренда производственного цеха (300 м 2 *150 руб./м 2) = 45 000 руб./месяц,
  • электроэнергия – 8 000 руб./месяц,
  • отопление (за 6 месяцев отопительного сезона, разбитого равными частями на все месяцы года),
  • вода и другие коммунальные услуги – 12 000 руб./месяц,
  • заработная плата персонала (6 человек: директор, бухгалтер, технолог, 3 рабочих) – 128 000 руб./месяц.,
  • налог на прибыль (15% от прибыли за вычетом расходов) – 34 252 руб./месяц.

Итого расходов: 227 252 руб./месяц.

Чистая прибыль: 421 344 – 227 252 = 194 092 руб./месяц.

Расчет рентабельности:

Начальные инвестиции (3 930 000 руб.):

  • покупка оборудования — 3 840 000 руб.,
  • дополнительное оборудование – 60 000 руб.,
  • затраты на документальное оформление производства (открытие юридической фирмы, получение необходимых разрешений и сертифицирование продукции) – 30 000 руб.

При расчетной прибыли в 194 092 руб/месяц первоначальные инвестиции окупятся через 1 год и 9 месяцев.

Следует учитывать, что в основе расчетов был один из самых простых вариантов готовой продукции, а ведь все зависит от спроса и возможностей сбыта в вашем регионе. К примеру, продажная цена цветных пакетов таких же параметров будет выше на 15 %, с одним центральным одноцветным изображением — на 34% (при увеличении себестоимости на 5 и 10 % соответственно). Кроме того, предприятие может принимать заказы на изготовление пакетов ПВД или ПНД по индивидуальным макетам, а прибыльность таких проектов значительно выше.


Изделия из полиэтилена (ПЭ) наряду с другими полимерными материалами нашли широкое распространение в мире как отличный заменитель таких традиционных материалов, как металлы, дерево, стекло, натуральные волокна, текстильной промышленности и других отраслях. Трубы из полипропилена стремительно вытесняют металлические трубы в коммунальном хозяйстве и промышленности. В связи с этим, мировое производство полипропилена растет очень быстрыми темпами.
Полиэтилен различных марок (LLDPE, LDPE, HDPE)продолжает удерживать лидирующие позиции среди крупнотоннажных пластиков . В 2012 мировое производство полимеров составило 211 млн. т, причем 38% или 80 млн.т. приходилось на ПЭ различных марок. Ожидается, что в 2015 году мировое производство ПЭ достигнет 105 млн.т.
Рисунок 1. Соотношение различных видов полимеров в мировом производстве, 2012г.

Можно считать ПЭ наиболее популярным полимерным материалом в первую очередь ввиду его сравнительной простоты, надежности и сравнительно низкой стоимости его изготовления. Так для производства 1 т ПЭ во всех современных технологиях требуется не больше 1,005 - 1,015 т этилена и 400-800 кВтч электроэнергии. В большинстве областей, где применяются пластики нет необходимости использования других материалов. По той же причине, второй наиболее популярный материал - полипропилен (25%).
Полипропилен и полиэтилен вместе можно назвать и наиболее «универсальными» пластиками. Посвоим характеристиками и тот и другой не являются лидерами. По оптическим свойствам все другие материалы оставляют за собой поликарбонаты, по механическим характеристикам - полиамиды, по электроизоляционным свойствам - ПВХ, а для продуктов выдувного формования идеально подходит ПЭТФ.Не являясь идеальным материалом по всем параметрам, ПЭ во всех областях показывает умеренный второй-третий результат, что дает ему возможность применяться для всех целей, а сочетание этих свойств с гораздо более низкой ценой и делает ПЭ наиболее востребованным полимерным материалом во всем мире.
Впервые ПЭ был получен в 1873 году, его отцом можно считать великого русского химика Александра Михайловича Бутлерова, который первым изучал реакции полимеризации алкенов. Другим отцом можно считать и его преемника, русского химика Гаврилу Гавриловича Густевсона, продолжавшего изучение реакций полимеризации. На западе первооткрывателем полиэтилена принято считать немецкого химика Ганса фон Пехмана, получившего ПЭ более продвинутым способом в 1899г, тогда его принято было называть «полиметилен».
Как и многие подобные открытия, ПЭ сильно опередил свое время, поэтому оказался не заслужено забыт более чем на 30 лет. Это можно понять, никто в начале века не мог предполагать, что непонятная желеобразная субсанция совершит настоящую технологическую революцию, серьезно ослабив позиции традиционных материалов.
Первой промышленной технологией получения ПЭ стала в 1935 г. газофазная технология английской компании ICI (ImperialChemicalIndustries ). Уже после этого в Европе и США стали появляться первые установки по производству ПЭ. Первоначально основным назначением этого полиэтилена стало производство проводов, благодаря хорошим электроизоляционным свойствам полиэтилена. Новые провода с полиэтиленовой изоляцией вытеснили резиновые и были широко распространены вплоть до того как их вытеснили провода из ПВХ. Однако настоящему триумфу ПЭ способствовало само время. Послевоенные годы характеризовались небывалом ростом покупательской способности граждан, повышенным спросом на продукты питания и товары легкой промышленности. Появились первые супермаркеты. Тогда-то полиэтиленовый пакет стал набирать огромную популярность во всем мире.
Примечательно, что одной из двух установок производства ПЭ, работающих на ОАО «Казаньоргсинтез» является как раз установка английской фирмы ICI , образца 1935 года ,она работает по настоящее время, являясь самой старой установкой, работающей в России.
Для уяснения различий технологий производства, важно понимание видового состава производимой продукции полиэтилена. Четко различают полиэтилены высокого давления и низкой плотности и полиэтилены низкого давления и высокой плотности.
Полиэтилен высокого давления ПЭВД/ LDPE
Полиэтилен высокого давления (ПЭВД) он же полиэтилен низкой плотности (ПЭНП), в англоязычном наименовании LDPE (Low-Density PE) получают при высокой температуре 200-260 0 С и давлении 150-300 Мпа в присутствии инициатора полимеризации (кислород или чаще органический пероксид). Эго плотность лежит в пределах 0,9 - 0,93 г/см 3 .
Полиэтилен низкого давления ПЭНД/ HDPE
Полиэтилен низкого давления (ПЭНД) он же полиэтилен высокой плотности (ПЭВП), в англоязычной наименовании HDPE (High-Density PE) получают при температуре 120-1500С, давлении ниже 0.1-2МПа в присутствии катализатора Циглера-Натта (смесь TiCl 4 и AlCl 3 ).
Таблица 1 . Сравнительные показатели различных видов полиэтилена.

Показатель ПЭВД ПЭСД ПЭНД
Общее число групп СН 3 на 1000 атомов углерода: 21,6 5 1,5
Число концевых групп СН 3 на 1000 атомов углерода: 4,5 2 1,5
Этильные ответвления 14,4 1 1
Общее количество двойных связей на 1000 атомов углерода 0,4—0,6 0,4—0,7 1,1-1,5
в том числе:
винильных двойных связей (R-CH=CH 2), % 17 43 87
винилиденовых двойных связей , % 71 32 7
транс-виниленовых двойных связей (R-CH=CH-R"), % 12 25 6
Степень кристалличности, % 50-65 75-85 80-90
Плотность, г/см³ 0,9-0,93 0,93-0,94 0,94-0,96

Иногда различают также полиэтилен среднего давления (ПЭСД), однако его принято относить к ПЭНД, т.к. эти продукты имеют одинаковую плотность и вес, а давление в процессе полимеризации при так называемых низком и среднем давлениях чаще всего одно и тоже. Нередко, особенно часто в зарубежной литературе, различного линейные продукты ПЭ высокого давления принято выделять отдельно, как это сделано на рисунке 1, однако в целом не будет ошибкой считать их вкупе с другими продуктами ПЭВД.
В ОАО «НИИТЭХИМ» исторически сложилась практика считать производство ПЭ как суммы производств ПЭВД и ПЭНД, относя ЛПЭВД к ПЭВД. Такой подход логичен, удобен и полностью обоснован. Таким же образом производство разделяет и Росстат, разделяя, продукты полимеризации этилена плотностью не менее 0,94 (имется в виду ПЭНД) и продукты полимеризации этилена плотностью менее 0,94 г/см 3 (ПЭВД).
Главное различие между ПЭВД и ПЭНД - плотность. При этом необходимо четко представлять что практически всегда применяется сополимер. Бутен-1, Гексен-1, октен-1 или другие. Чистыйгомоплимер сильно отличается от привычных нам современных полиэтиленов и имеет очень ограниченное применения ввиду очень высокой плотности и низкой текучести.
Существуют и другие более специальные виды полиэтилена. Так выделяют линейный ПЭ низкой плотности - ЛПЭНП или LLDPE , который применяется в основном для производства тары и упаковки.
Бимодальный ПЭ это полиэтилен, который синтезируется по двуреакторной каскадной технологии, т.е. там две крупных фракции с разной молекулярной массой - низкомолекулярная отвечает за текучесть, высокомолекулярная - за физико-механические характеристики.
Сшитый ПЭ (PE-X или XLPE, ПЭ-С) — полимер этилена с поперечно сшитыми молекулами (PE — PolyEthylene, X — Cross-linked). Сшивка представляет собой трехмерную сетку за счет образования поперечных связей.Металлоценовый ПЭ - полимер этилена, полученный с помощью катализаторов с единым центром полимеризации. Обычно обозначается mLLDPE , mMDPE или mHDPE .
Наиболее важный сополимер этилена - сэвилен , в зарубежной периодике принято название EVA - этиленвинилацетат.
Рисунок 2 . Структура потребления ПЭВД, ПЭНД, сэвилена, а также общее потребление ПЭ по секторам в России в 2014г. На рисунке 2 представлено соотношение ПЭНД, ПЭВД и наиболее важного из этиленовых сополимеров - сэвилена в структуре потребления в России. Из рисунка видно, что основными секторами потребления ПЭ в 2014 году были производители тары и упаковки, пленки, труб, изделий бытового и хозяйственного назначения на их долю приходилось более 86% всего объема потребляемого ПЭ.
При этом, разные виды ПЭ по-разному востребованы в секторах потребления. Так, например, сектор производства труб из ПЭ полностью представлен только ПЭНД (HDPE). Для производства труб используются ПЭНД марок ПЭ-100, ПЭ-100+.
Обратная картина видна в случае производства пленки. Если только 6% ПЭНД используется для производства пленки, то доля ПЭВД составляет уже 43%, что делает полиэтилен высокого давления и низкой плотности, наиболее подходящим для этого сектора потребления. То же касается и производства листового ПЭ, а также производства кабеля. В производстве тары и упаковки ПЭНД и ВЭВД представлены практически одинаково (30 и 28%). 13% ПЭНД идет на производство изделий бытового и хозяйственного назначения, в то время как ПЭВД на эту цель идет около 18%.
Соплолимер этилена и винилацетата - сэвилен представлен не так массово как ПЭНД и ПЭВД, его доля в общем производстве ПЭ составляет лишь 0,65%. При этом в два раза больше сэвилена приходит на российский рынок через импорт. Сэвилен идет на производство изделий бытового и хозяйственного назначения - 42%, тары и упаковки - 32%, пленки 15% и кабеля 6%.
Среди основных лицензиаров технологий производства полиолефинов давно наметилась тенденция консолидации и глобализации производителей. Количество участников рынка технологий сокращается, в конечном итоге, только крупнейшие игроки имеют возможность разработать собственную технологию. Основные лицензиары технологий производства представлены в таблице 2 .
Таблица 2 . Лицензиары технологий и основные технологии производства ПЭ.

Название Владелец Тип полимеризации Продукция
UNIPOL PE UnionCarbide Газовая фаза ЛПЭВД, ПЭНД
INNOVENE BP Chemicals Газовая фаза ЛПЭВД, ПЭНД
Innovene G BP Chem. Газовая фаза ЛПЭВД, ПЭНД
EXXPOL Exxon-Mobil Газовая фаза ЛПЭВД, ПЭНД
COMPACT (Stamylex) DSM Раствор ЛПЭВД, ПЭНД
SPHERILENE Basell Газовая фаза, каскадный ЛПЭВД, ПЭНД
HOSTALEN Basell Газовая фаза, каскадный ПЭНД
LUPOTECH T Basell В массе ПЭВД, сэвилен
ENERGX EastmanChemical Газовая фаза ЛПЭВД, ПЭНД
SCLAIRTECH NOVA Chemicals Газовая фаза ЛПЭВД, ПЭНД
BORSTAR PE Borealis Суспензия, каскадный ЛПЭВД, ПЭНД
PHILLIPS Phillips Суспензия ЛПЭВД, ПЭНД
CX Mitsui Chemicals Газовая фаза, каскадный ПЭНД

Лидирующими игроками на мировом рынке по существующим мощностям в мире являются Dow и Carbide , чья технология Unipol является самой популярной технологией в мире. Другой не менее популярной технологией является Innovene , принадлежащая BP . В результате слияния «Dow» и «UnionCarbide» в 2000 году под контроль Dow попал 50-процентный пакет акций компании Univation, которым владел UnionCarbide.
Все технологии производства можно разделить по принципу работы реактора синтеза полиэтилена . Технологии Unipol , Innovene , Exxpol , Spherilene , Hostalen , Sclairtech и CX (Mitsui ) основаны на газофазной реакции полимеризации этилена и сополимера. Реакция происходит при 70-110 0 С, давлении 15-30 бар в присутствии катализаторов Циглера-Натта.
Технологии Hostalen - Basell и CX - MitsuiChemicals предусматривают также второй реактор полимеризации по каскадной схеме. В этом реализуется возможность получения бимодального ПЭ высокой плотности, путем смешения двух крупных фракции с разной молекулярной массой - низкомолекулярной, отвечающей за текучесть, и высокомолекулярная - за физико-механические характеристики. Газофазный синтез полиэтилена отличается низкими капитальными и оперативными затратами и позволяет производить как ПЭВД, так и ПЭНД в широком диапазоне. Именно поэтому газофазные технологии наиболее популярны в России и в мире.
DSM предлагает технологию получения ПЭ, используя синтез в растворе. Она производит LLDPE, используя собственную технологию COMPACT Solution (Stamylex) в комбинации с катализаторами Ziegler. Технология COMPACT - очень гибкий процесс производства полимеров высокого качества. Синтез в растворе производится при температуре 150-300 0 и давлении 30-130 бар в присутствии катализаторов Циглера-Натта или металлоценового катализатора. В качестве растворителя используют октен. В случае использования второго жидкофазного реактора также возможно получение бимодального ПЭ. Технология отличается более высокими, по сравнению с газофазным синтезом капитальными затратами и оперативными расходами. Среди крупных производителей линейного полиэтилена технологию COMPACT применяют LG Chemicals, HyundaiPetrochemicalCo.
BorstarPE - Borealis и Philips предлагают технологию получения ПЭ низкой плотности в суспензии изобутана, при этом реакция происходит при 85-100 0 С, давлении 4,2 , после чего полученную смесь разделяют и дегазируют при 80-85 0 С. Применяют при этом специальный петлевой (slurryloop )реактор. Возможно применение каскадной схемы получения бимодального ПЭ, при использовании второго реактора.
Рисунок 3. Типы установок производства ПЭ. Принципы реактора в схемах.

Из Рисунков 3,4 видно, что нет универсального метода получения всех видов ПЭ. Каждый метод получения ПЭ перекрывает только часть продукции полиэтилена. Наиболее широкий ряд продукции можно получить в газофазном реакторе, Unipol, Innovene, Exxpol, Spherilene, Hostalen, Sclairtech иCX (Mitsui), однако каждая из этих технологий, в свою очередь, также имеет собственные ограничения. Наиболее полный перечень продуктов может предложить технология Unipol/UnipolII, однако даже у этой технологии есть существенные ограничения, касающиеся главным образом продуктов ПЭ высокой плотности с малым индексом текучести. Такие продукты применяются для изготовления продукции ПЭНД выдувного формования, пленок и труб, в этих случаях необходим бимодальный ПЭ, для производства которого, в свою очередь, применяют каскадный реактор, состоящих из двух последовательных реакторов с разными условиями полимеризации.

Рисунок 4. Принципы производства и виды производимой продукции.

Рисунок 5. Соответствие методов производства и видов производимой продукции ПЭ.

Каскадный реактор может быть реализован как для газофазного (Spherilene иHostalen, оба Basell), так и для суспезионного(Philips)способа полимеризации. Однако установки с двумя реакторами отличаются гораздо большими капитальными затратами и более сложны в обслуживании.
Для видов полиэтилена высокого давления, предназначенного для экструзионного формования необходим высокий индекс текучести. Такая продукция применяется для труб из полиэтилена. Так цифры в наиболее известных трубных марках ПЭ 60, ПЭ 80, ПЭ 100, ПЭ 100+ соответствуют своему индексу текучести.



Поделиться