Основы разработки месторождений нефти и газа. Связь нефтегазопромысловои геологии с другими геологическими и смежными науками

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

ВВЕДЕНИЕ

В начале XX века промышленную нефть добывали лишь в 19 странах мира. В 1940 г. таких стран было 39, в 1972 г. -- 62, в 1989 г. -- 79. Аналогично росло число стран, добывающих газ. Ныне нефть и газ добываются во всех частях света, кроме Антарктиды.

География нефтегазовых месторождений, а также объемы добычи энергоресурсов претерпели существенные изменения во времени.

В середине XIX века лидерами добычи нефти были Россия (район Баку) и США (штат Пенсильвания). В 1850 г. в России была добыта 101 тыс. т. нефти, а всего в мире -- 300 тыс. тонн.

В 1900 г. добывалось уже около 20 млн. т. нефти, в том числе в России -- 9.9 млн. т., в США -- 8.3, в Голландской Ост - Индии (Индонезии) -- 0.43, в Румынии и Австро-Венгрии -- по 0.33, в Японии -- 0.11, в Германии -- 0.05.

Накануне первой мировой войны добыча нефти в США резко возросла. В число ведущих нефтедобывающих держав вошла Мексика. Добыча нефти в странах мира в 1913 году составила: США -- 33 млн. т., Россия -- 10.3, Мексика -- 3.8, Румыния -- 1.9, Голландская Ост-Индия -- 1.6, Польша --1.1.

В 1920 году в мире добывалось 95 млн. т. нефти, в 1945 году -- свыше 350 т., в 1960 году -- свыше 1 млрд. тонн.

Во второй половине 60-х годов в число ведущих нефтедобывающих стран вошли Венесуэла, Кувейт, Саудовская Аравия, Иран и Ливия. Вместе с СССР и США на их долю приходилось до 80 % мировой добычи нефти.

В 1970 г. в мире было добыто около 2 млрд. т. нефти, а в 1995 -- 3.1. По ежегодной добыче нефти (данные 1996 г.) в мире лидирует Саудовская Аравия (392.0 млн. т.). За ней идут США (323.0 млн. т.), страны СНГ (352.2), Иран (183.8), Мексика (142.2), Китай (156.4), Венесуэла (147.8) и другие.

Ожидается, что к 2005 г. мировая суммарная нефтедобыча возрастет до 3.9 млрд. т./год.

Широкое применение природного газа началось лишь в середине прошлого столетия. В период с 1950 по 1970 гг. добыча газа в мире возросла со 192 млрд. м3 до 1 трлн. м3, т.е. в 5 раз. Ныне она составляет около 2 трлн. м3.Потребление энергоносителей в мире непрерывно растет. Естественно, возникает вопрос: надолго ли их хватит?Сведения о доказанных запасах нефти,а также их объемах в 1996 г. приведены в таблице 1.

Регион, страна

Доказанные запасы

Добыча нефти в 1996г.

Кратность запасов

%от мировых

%от мировых

Азия и Океания, всего

в том числе:

Индонезия

Северная и Латинская Америка всего

в том числе:

Венесуэла

Африка, всего

в том числе:

Ближний и Средний Восток

в том числе:

Саудовская Аравия

Восточная Европа, всего

в том числе:

Западная Европа, всего

в том числе:

Норвегия

Великобритания

Всего в мире

Одной из основных задач социально-экономического развития Российской Федерации является создание эффективной, конкурентоспособной экономики. При любых вариантах и сценариях развития экономики на ближайшие 10 - 20 лет природные ресурсы, в первую очередь ископаемые топливно-энергетические ресурсы, будут главным фактором экономического роста страны.

Располагая 2.8 % населения и 12.8 % территории мира, Россия имеет 11 - 13 % прогнозных ресурсов около 5 % разведанных запасов нефти, 42 % ресурсов и 34 % запасов природного газа, около 20 % разведанных запасов каменного и 32 % запасов бурого угля. Суммарная добыча за всю историю использования ресурсов составляет в настоящее время по нефти около 20 % от прогнозных извлекаемых ресурсов и по газу -- 5 %. Обеспеченность добычи разведанными запасами топлива оценивается по нефти и по газу на несколько десятков лет, а по углю и природному газу значительно выше.

В настоящее время добычу нефти осуществляют 37 акционерных обществ, входящих в вертикально-интегрированных компаний, 83 организации и акционерные общества с российским капиталом, 43 организации с иностранным капиталом, 6 дочерних предприятий ОАО «Газпром».

По состоянию на 01.2000 г. в разработке находятся более 1200 нефтяных и газонефтяных месторождений, расположенных в различных регионах страны -- от острова Сахалин на востоке до Калининградской области на западе, от Красноярского края на юге до Ямало-Ненецкого округа на севере.

Добыча нефти в нефтедобывающем комплексе с 1991 по 1993 гг. сократилась с 462 до 350 млн. т., т.е. на 112 млн. тонн. С 1993 по 1997 гг. -- с 350 до 305 млн. т., т.е. на 45 млн. тонн. С 1997 г. и по 2000 г. добыча нефти стабилизировалась на уровне 303 - 305 млн. т. за 6 месяцев 2002 года добыто 157 млн. тонн (Рисунок 1). Обводненность добываемой продукции составляет чуть более 82 %. Средний дебит нефти одной скважины составляет 7.4 тон/сутки. Степень выработки запасов нефти категорий А, В, С1 на разрабатываемых месторождениях в целом по России составляет 52.8 %. Наиболее высокая выработка запасов наблюдается по Северо-Кавказскому (82.2 %) и Поволжскому (77.8 %) регионам, наименьшая -- по Западной Сибири (42.8 %) и Дальнему Востоку (40.2 %). Значительная часть текущих извлекаемых запасов нефти рассредоточена в заводненных пластах, в пластах с низкой проницаемостью, в подгазовых и водонефтянных зонах, что создает значительные сложности при их извлечении.

Распределение текущей добычи нефти по регионам не в полной мере соответствует распределению текущих извлекаемых запасов. Так, Западная Сибирь обеспечивает почти 68 % добычи нефти по России (извлекаемые запасы 71.7 %), Поволжский регион -- 13.6 % (извлекаемые запасы 6.5 %), Уральский регион -- 13.1 % (извлекаемые запасы 8.5 %), Европейский Север -- 3.9 % (извлекаемые запасы 6.4 %), Дальний Восток -- 0.6 % (извлекаемые запасы 2.6 %).

За период с 1991 по 1998 гг. в России было ведено в эксплуатацию 251 нефтяное месторождения. Добыча нефти по всем введенным месторождениям в 1999 г. составила 15.5 млн. тонн.

В период с 2000 по 2015 гг. планируется ввести не менее 242 месторождений и обеспечить добычу из них в 2005 г. 17.4 млн. т. нефти, что составляет 4.8 % общей добычи нефти и газового конденсата по России. В 2010 г. добыча нефти по новым месторождениям должна составить59.2 млн. т. (15.7 % общей) и в 2015 г. -- 72.1 млн. т. (20.7 % общей).

Перспективные уровни добычи нефти в России будут определяться в основном следующими факторами -- уровнем мировых цен на топливо, налоговыми условиями и научно-техническими достижениями в разведке и разработке месторождений, а также качеством разведанной сырьевой базы.

Расчеты показывают, что уровни добычи нефти в России могут достичь в 2010 и 2020 гг. соответственно 335 и 350 млн. т. при неблагоприятных условиях, низкие мировые цены и сохранение действующих налоговых условий, эти показатели достигнуты не будут.

Основным нефтедобывающим регионом России во всю рассматриваемую перспективу останется Западная Сибирь, хотя ее доля к 2020 г. и снизится до 58 - 55 % против 68 % в настоящее время. После 2010 г. масштабная добыча нефти начнется в Тимано-Печорской провинции, на шельфе Каспийского северных морей, в Восточной Сибири. Всего на Восток России (включая дальний Восток) к 2020 г. будет приходиться 15 - 20 % нефтедобычи в стране.

Остается крайне острой проблема утилизации нефтяного газа, добыча которого остается убыточной. Его цена регулируется государством и в настоящее время составляет порядка 300 рублей за 1000 м3. В результате низкой цены на нефтяной газ, поставляемый на газоперерабатывающие заводы, нефтеперерабатывающие предприятия не заинтересованы в увеличении его поставок на переработку и либо изыскивают другие варианты его использования, либо сжигают газ на факелах, нанося вред окружающей среде. В связи с уменьшением объемов добычи нефти и, соответственно, ресурсов нефтяного газа подлежащего переработке, уменьшается выпуск товарной продукции на ГПЗ, что привело к уменьшению выработки сырья для нефтехимических производств.

Сведения о добыче жидких углеводородов различными нефтяными компаниями России приведены в таблице 2.

ДОБЫЧА НЕФТИ В РОССИИ В 1997 - 1999 ГОДА

Компании

Сургутнефтегаз

Татнефть

Сибнефть

Башнефть

Роснефть

Славнефть

Восточная НК

Всего по России

По объемам добычи нефти лидером среди отечественных нефтяных компаний является «ЛУКОЙЛ». В 2001 г. на территории России он добыл 76.1 млн. тонн; Казахстана, Азербайджана и Египта -- 2.2 млн. тонн.

Серьезную конкуренцию «ЛУКОЙЛу» может составить «ЮКОС». Согласно GAAP - отчетности «ЮКОСа» и «ЛУКОЙЛа» за 9 месяцев 2001 г., чистая прибыль «ЮКОСа» на баррель добытой нефть составляет $ 7.8, в то время как у «ЛУКОЙЛа» -- $ 3.8. Затраты «ЮКОСа» в три раза ниже, чем у «ЛУКОЙЛа», рентабельность -- вдвое выше. Кроме того, поскольку себестоимость нефти «ЮКОСа» самая низкая среди отечественных нефтяных компаний, от возможного очередного падения цен на нефть пострадает меньше других. Очевидно, поэтому по итогом 2001 года объем продаж «ЛУКОЙЛа» на внутреннем рынке сократился на 14 %, в то время как у «ЮКОСа» этот показатель на 10 % вырос.

В 2002 году «ЮКОС» планирует получить 71.5 млн. тонн нефти, превысив тем самым показатели прошлого года на 24.3 %. Объем инвестиций в разведку и добычу составит $ 775 млн. К 2005 году «ЮКОС» намерен добывать 80 млн. тонн нефти в год.

Россия -- одна из немногих стран мира, полностью удовлетворяющая свои потребности в газе за счет собственных ресурсов. По состоянию на 1.01.1998 г. ее разведанные запасы природного газа составляют 48.1 трлн. м3, т.е. около 33 % мировых. Потенциальные ресурсы газа в нашей стране оцениваются в 236 трлн. м3.

В настоящее время в стране имеется 7 газодобывающих регионов: Северный, Северо-Кавказский, Поволжский, Уральский, Западно-Сибирский, Восточно-Сибирский и Дальневосточный. Распределение запасов газа между ними таково: Европейская часть страны -- 10.8 %, Западно-Сибирский регион -- 84.4 %, Восточно-Сибирский и Дальневосточный регионы -- 4.8 %.

Добыча газа в России в последние годы сокращалась: в 1991 г. -- 643 млрд.3, в 1992 г. -- 641 млрд. м3, в 1993 г. -- 617 млрд. м3, в 1994 г. -- 607 млрд. м3, в 1995 г. -- 595 млрд. м3.

В 1999 г. добыча газа составила около 590 млрд. м3. Уменьшение газодобычи вызвано снижением спроса на газ, обусловленного в свою очередь снижением промышленного производства и падением платежеспособности потребителей.

Главной газодобывающей компанией России является РАО «Газпром», учрежденное в феврале 1993 года (до этого -- государственный концерн).

РАО «Газпром» -- крупнейшая газовая компания мира, доля которой в общемировой добыче составляет 22 %. Контрольный пакет акции РАО «Газпром» (40 %) находится в собственности государства.

Увеличение спроса на газ внутри России прогнозируется после 2000 г. Соответственно возрастет и его добыча: в период с 2001 г. по 2030 г. предполагается извлечь из недр 24.6 трлн. м3 газа, доведя к 2030 г. ежегодную добычу до 830 ... 840 млрд. м3. Перспективы увеличения добычи газа связаны с освоением месторождений севера Тюменской области (Надым-Пур-Тазовский район, п-ов Ямал), а также крупнейшего в Европе Штокмановского газоконденсатного месторождения (Баренцево море).

В Надым-Пур-Тазовском районе начата разработка Юбилейного, Ямсовейского и Харвутинского месторождений с суммарной годовой добычей 40 млрд. м3. В 1998 г. начата добыча газа на Заполярном месторождении, которую в 2005 г. планируется довести до 90 ... 100 млрд. м3.

На полуострове Ямал разведанные запасы газа в настоящее время составляют 10.2 трлн. м3. Ожидается, что максимальный уровень добычи газа на полуострове Ямал составит 200 ... 250 млрд. м3.

Широкомасштабное освоение Штокмановского газоконденсатного месторождения намечается после 2005 г. -- в соответствии с потребностями европейского рынка и северо-западного региона России. Прогнозируемый уровень добычи газа здесь -- 50 млрд. м3 в год.

Россия является крупнейшим в мире экспортером природного газа. Поставки «голубого золота» в Польшу начались в 1966 г. Затем они были организованы в Чехословакию (1967 г.), Австрию (1968 г.) и Германию (1973 г.). В настоящее время, природный газ из России поставляется также в Болгарию, Боснию, Венгрию, Грецию, Италию, Румынию, Словению, Турцию, Финляндию, Францию, Хорватию, Швейцарию, страны Балтии и государства СНГ (Белоруссию, Грузию, Казахстан, Молдавию, Украину). В 1999 г. в страны ближнего и дальнего зарубежья было поставлено 204 млрд. м3 газа, а прогноз на 2010 г. составляет 278.5 млрд. м3.

Важнейшими целями и приоритетами развития газовой промышленности России являются:

увеличение доли природного газа в суммарном производстве энергоресурсов;

расширение экспорта российского газа;

укрепление сырьевой базы газовой промышленности;

реконструкция Единой системы газоснабжения с целью повышения ее надежности и экономической эффективности;

глубокая переработка и комплексное использование углеводородного сырья.

1. ГЕОЛОГИЧЕСКИЕ ОСНОВЫ РАЗРАБОТКИ НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ

С древнейших времен люди использовали нефть и газ там, где наблюдались их естественные выходы на поверхность земли. Такие выходы встречаются и сейчас. В нашей стране -- на Кавказе, в Поволжье, Приуралье, на острове Сахалин. За рубежом -- в Северной и Южной Америке, в Индонезии и на Ближнем Востоке.

Все поверхностные проявления нефти и газа приурочены к горным районам и межгорным впадинам. Это объясняется тем, что в результате сложных горообразовательных процессов нефтегазоносные пласты, залегавшие ранее на большой глубине, оказались близко к поверхности или даже на поверхности земли. Кроме того, в горных породах возникают многочисленные разрывы и трещины, уходящие на большую глубину. По ним выходят на поверхность нефть и природный газ.

1.1 З алежи углеводородов в природном состоянии

Природный резервуар -- естественное вместилище нефти, газа и воды (внутри которого может происходить циркуляция подвижных веществ) форма которого обусловливается соотношением коллектора с вмещающими его плохо проницаемыми породами.

Виды: пластовый, массивный, линзовидный (литологически ограниченный со всех сторон).

Пластовый резервуар (Рисунок 1.1) представляет собой коллектор, ограниченный на значительной площади в кровле и подошве плохо проницаемыми породами. Особенностями такого резервуара является сохранение мощности и литологического состава на большой площади.

Под массивным резервуаром понимают мощные толщи пород, состоящие из многих проницаемых пластов, не отделенных один от другого плохо проницаемыми породами.

Большинство массивных резервуаров особенно широко распространенных на платформах, представлено известняково-доломитизированными толщами.

Слабо проницаемые породы покрывают всю эту толщу сверху. По характеру слагающих их пород массивные резервуары подразделяются на две группы:

1. однородные массивные резервуары -- сложены сравнительно однородной толщей пород, большей частью карбонатных (Рисунок 1.2а).

2. неоднородные массивные резервуары -- толща пород неоднородна. Литологически она может быть представлена, например, чередованием известняков, песков и песчаников, сверху перекрытых глинами. (Рисунок 1.2б)

Резервуары неправильной формы, литологически ограниченные со всех сторон В эту группу объединены природные резервуары всех видов, в которых насыщающие их газообразные и жидкие углеводороды окружены со всех сторон либо практически непроницаемыми породами, либо породами, насыщенными слабоактивной водой.

Каким бы ни был механизм образования углеводородов для формирования крупных скоплений нефти и газа необходимо выполнение ряда условий:

наличие проницаемых горных пород (коллекторов);

непроницаемых горных пород, ограничивающих перемещение нефти и газа по вертикали (покрышек);

а так же пласта особой формы, попав в который нефть и газ оказываются как бы в тупике (ловушке).

Ловушка -- часть природного резервуара, в котором благодаря различного рода структурным дислокациям, стратиграфическому или литологическому ограничению, а так же тектоническому экранированию создаются условия для скопления нефти и газа.

Гравитационный фактор вызывает в ловушке распределение газа, нефти и воды по удельным весам.

Структурная (сводовая) -- образованная в результате изгиба слоев;

Стратиграфическая -- сформированная в результате эрозии пластов -- коллекторов и перекрытия их затем непроницаемыми породами;

Тектоническая -- образованная в результате вертикального перемещения мест обрыва относительно друг друга, пласт-коллектор в месте тектонического нарушения может соприкасаться с непроницаемой горной породой.

Литологическая -- образованная в результате литологического замещения пористых проницаемых пород непроницаемыми.

Около 80% залежей в мире связано с ловушками структурного типа.

Скопление нефти, газа, конденсата и других полезных сопутствующих компонентов, сосредоточенные в ловушке, ограниченные поверхностями разного типа, в количестве, достаточном для промышленной разработки, называется залежью.

Поверхность, разделяющая нефть и воду или нефть и газ, называется соответственно водонефтяным или газонефтяным контактом. Линия пересечения поверхности контактов с кровлей пласта называется соответственно внешним контуром нефтеносности или газоносности, а с подошвой пласта -- внутренним контуром нефтеносности или газоносности (Рисунок 1.6). Кратчайшее расстояние между кровлей и подошвой нефтегазаносного пласта называют его толщиной.

Под месторождением нефти и газа понимается совокупность залежей, приуроченных территориально к одной площади и сведенных с благоприятной тектонической структурой. Понятия месторождение и залежь равнозначны, если на одной площади имеется всего одна залежь, такое месторождение называется однопластовым. Месторождение, имеющее залежи в пластах (горизонтах) разной стратиграфической принадлежности, принято называть многопластовыми .

В зависимости от фазового состояния и основного состава углеводородных соединений в недрах залежи нефти и газа подразделяются на нефтяные, содержащие только нефть, в различной степени насыщенную газом: газовые , если оно содержит только газовые залежи, состоящие более чем на 90 % из метана, газонефтяные и нефтегазовые (двухфазные). В газонефтяных залежах основная по объему часть нефтяная и меньшая -- газовая, в нефтегазовых -- газовая шапка превышает по объему нефтяную часть. К нефтегазовым, относятся так же залежи с крайне незначительной по объему нефтяной частью -- нефтяной оторочкой. Газоконденсатнонефтяные и нефтегазоконденсатные : в первых -- основная по объему нефтяная часть, а во вторых газоконденсатная (Рисунок 1.7).

К газоконденсатным относят такие месторождения, из которых при снижении давления до атмосферного выделяется жидкая фаза -- конденсат.

1.2 Ф акторы, определяющие внутреннее строение залежей

Емкостные свойства пород-коллекторов

Породы коллекторы и неколлекторы.

Одной из важнейших задач на стадии разведки и подготовке к разработке залежи является изучение внутреннего строения залежи нефти или газа.

Коллектором называется горная порода, обладающая такими геолого-физическими свойствами, которые обеспечивают физическую подвижность нефти или газа в ее пустотном пространстве. Порода-коллектор может быть насыщена как нефтью или газом, так и водой.

Породы с такими геолого-физическими свойствами, при которых движение нефти или газа в них физически невозможно, называются неколлекторами.

Внутреннее строение залежи определяется различным размещением неколлекторов и коллекторов, а также коллекторов с разными геолого-физическими свойствами как в разрезе, так и по площади залежи.

Соответственно емкостные свойства породы определяются ее пустотностью, которая слагается из объема пор, трещин и каверн.

По времени образования выделяются первичные пустоты и вторичные . Первичные пустоты формируются в процессе седиментогенеза и диагенеза, то есть одновременно с образованием самой осадочной породы, а вторичные образуются в уже сформировавшихся породах.

Первичная пустотность присуща всем без исключения осадочным породам, в которых встречаются скопления нефти и газа -- это прежде всего межзерновые поры, пространства между крупными остатками раковин и т.п. К вторичным пустотам относятся поры каверны и трещины, образовавшиеся в процессе доломитизации известняков и выщелачивания породы циркулирующими водами, а также трещины возникшие в результате тектонических движений.

Пористость и строение порового пространства

Выделяют полную , которую часто называют общей или абсолютной, открытую , эффективную и динамическую пористость.

Полная пористость включает в себя все поры горной породы, как изолированные (замкнутые), так и открытые, сообщающиеся друг с другом . Коэффициентом полной пористости называется отношение суммарного объема пор в образце породы к видимому его объему:

Открытая пористость образуется сообщающимися порами. Коэффициентом открытой пористости называется отношение объема открытых, сообщающихся пор к видимому объему образца:

Эффективная учитывает часть объема связанных между собой пор насыщенных нефтью .

Количественно пористость породы характеризуется коэффициентом пористости , который измеряется в долях или процентах от объема породы.

Пористость породы в большой степени зависит от размеров пор и соединяющих их поровых каналов, которые в свою очередь определяются гранулометрическим составом слагающих породу частиц и степенью их сцементированности.

При решении задач нефтегазопромысловой геологии используется коэффициент открытой пористости который определяется как по образцам в лаборатории, так и по данным геофизических исследований скважин.

Открытая пористость коллекторов нефти и газа изменяется в широких пределах -- от нескольких процентов до 35 %. По большинству залежей она составляет в среднем 12 - 25 %.

В гранулярных коллекторах большое влияние на пористость оказывает взаимное расположение зерен. Несложные расчеты показывают, что в случае наименее плотной кубической укладки зерен показанной на (Рисунке 1.9) коэффициент пористости будет составлять 47.6 %. Данное число можно считать теоретически возможным максимумом пористости для терригенных пород. При более плотной укладке идеального грунта (Рисунок 1.10) пористость будет составлять всего 25.9 %.

Кавернозность

Кавернозностьгорных пород обусловливается существованием в них вторичных пустот в виде каверн. Кавернозность свойственна карбонатным коллекторам. Следует различать породы микрокавернозные и макрокавернозные . К первым относятся породы с большим количеством мелких пустот, с диаметром каверн (пор выщелачивания) до 2 мм, ко вторым -- с рассеянными в породе более крупными кавернами -- вплоть до нескольких сантиметров.

Микрокавернозные карбонатные коллекторы на практике нередко отождествляют с терригенными поровыми, поскольку и в тех, и в других открытая емкость образована мелкими сообщающимися пустотами. Но и по происхождению, и по свойствам между ними имеются существенные различия.

Средняя пустотность микрокавернозных пород обычно не превышает 13 - 15 %, но может быть и больше.

Макрокавернозные коллекторы в чистом виде встречаются редко, их пустотность достигает не более 1 - 2 %. При больших толщинах продуктивных карбонатных отложений и при такой емкости коллектора запасы залежей могут быть весьма значительными.

Коэффициент кавернозности равен отношению объема каверн к видимому объему образца.

Поскольку в процессе дренирования залежи в основном могут участвовать макрокаверны, пересеченные макротрещинами, изучение макрокавернозности следует проводить вместе с изучением трещиноватости.

Трещиноватость

Трещиноватость горных пород (трещинная емкость) обусловливается наличием в них трещин, не заполненных твердым веществом. Залежи, связанные с трещиноватыми коллекторами, приурочены большей частью к плотным карбонатным коллекторам, а в некоторых районах (Восточные Карпаты, Иркутский район и др.) -- и к терригенным отложениям. Наличие разветвленной сети трещин, пронизывающих эти плотные коллекторы, обеспечивает значительные притоки нефти к скважинам.

Качество трещиноватой горной породы как коллектора определяется густотой и раскрытостью трещин.

По величине раскрытости трещин в нефтегазопромысловой геологии выделяют макротрещины шириной более 40 - 50 мкм и микротрещины шириной до 40 - 50 мкм

Трещинная емкость пород-коллекторов составляет от долей процента до 1 - 2 %.

Чаще всего трещины играют роль каналов фильтрации жидкости и газа, связывающих воедино все сложные пустотное пространство пород-коллекторов.

При одновременном участии в дренировании двух или всех трех видов пустот (пор, каверн, трещин) коллектор относят к типу смешанных.

Из числа коллекторов с одним из видов пустотности наиболее широко распространены поровые терригенные коллекторы -- на многочисленных месторождениях земного шара, в том числе и в России (Волго-Урал, Западная Сибирь, Северный Кавказ и др. районы).

Трещинные коллекторы в чистом виде встречаются весьма редко.

Из кавернозных пород в чистом виде распространены микрокавернозные (Волго-Урал, Тимано-Печорская провинция и др.). Макрокавернозные встречаются редко.

Коллекторы смешанного типа, наиболее свойственные карбонатным породам, характерны для месторождений Прикаспийской низменности, Тимано-Печорской провинции, Волго-Урала, Белоруссии и других районов.

Фильтрационные свойства пород-коллекторов. Проницаемость

Важнейшим свойством пород-коллекторов является их способность к фильтрации, т.е. к движению в них жидкостей и газов при наличии перепада давления. Способность пород-коллекторов пропускать через себя жидкости и газы называется проницаемостью.

Породы, не обладающие проницаемостью, относятся к неколлекторам.

В процессе разработки залежей в пустотном пространстве пород-коллекторов может происходить движение только нефти, газа или воды, т.е. однофазовая фильтрация. При других обстоятельствах может происходить двух- или трехфазовая фильтрация -- совместное перемещение нефти и газа, нефти и воды, газа и воды или смеси нефти, газа и воды.

Хорошо проницаемыми породами являются: песок, песчаники, доломиты, доломитизированные известняки, алевролиты, а так же глины, имеющие массивную пакетную упаковку.

К плохо проницаемым относятся: глины, с упорядоченной пакетной упаковкой, глинистые сланцы, мергели, песчаники, с обильной глинистой цементацией.

Проницаемость горных пород в случае линейной фильтрации определяется по закону Дарси . Согласно которому объемный расход жидкости, проходящий сквозь породу при ламинарном движении прямо пропорционально коэффициенту проницаемости, площади поперечного сечения этой породы, перепаду давления, и обратно пропорционально вязкости жидкости и длине пройденного пути.

где -- объемный расход жидкости в м3/с; -- коэффициент проницаемости в м2; -- площадь поперечного сечения в м2; -- вязкость флюида в Пас; -- длина пути в см; -- перепад давления в Па.

Единица коэффициента проницаемости называемая дарси, отвечает проницаемости такой горной породы, через поперечное сечение которой, равное 1см2, при перепаде давления в 1ат на протяжении 1 см в 1 сек проходит 1 см3 жидкости, вязкость которой 1 сп .

Проницаемость пород, служащих коллекторами для нефти, обычно выражают в миллидарси или мкм2 10-3 .

Физический смысл размерности (площадь) заключается в том, что проницаемость характеризует площадь сечения каналов пустотного пространства, по которым происходит фильтрация.

В разных условиях фильтрации проницаемость породы-коллектора для каждой фазы будет существенно иной. Поэтому для характеристики проницаемости нефтегазосодержащих пород введены понятия абсолютной , эффективной (фазовой) и относительной проницаемостей.

Под абсолютной проницаемостью понимается проницаемость, определенная при условии, что порода насыщена однофазным флюидом, химически инертным по отношению к ней. Для ее оценки обычно используются воздух, газ или инертная жидкость, так как физико-химические свойства пластовых жидкостей оказывают влияние на проницаемость породы. Величина абсолютной проницаемости выражается коэффициентом проницаемости и зависит только от физических свойств породы.

Эффективной (фазовая) называется проницаемость пород для данных жидкости или газа при движении в пустотном пространстве многофазных систем. Значение ее зависит не только от физических свойств пород, но и от степени насыщенности пустотного пространства каждой из фаз, от их соотношения между собой и от их физико-химических свойств.

Относительной проницаемостью называется отношение эффективной проницаемости к абсолютной проницаемости.

Проницаемость горных пород зависит от следующих основных причин: от размера поперечного сечения пор; от формы пор; от характера сообщения между порами; от трещиноватости породы; от минералогического состава пород.

Нефте-, газо-, водонасыщенность пород-коллекторов

Полагают, что нефтенасыщенные и газонасыщенные пласты первоначально были полностью насыщены водой. При образовании залежей нефть и газ вследствие их меньшей плотности мигрировали в повышенные части пластов, вытесняя оттуда воду. Однако вода из пустотного пространства вытеснялась не полностью, вследствие чего нефтегазонасыщенные пласты содержат некоторое количество воды, называемой остаточной. Относительное содержание этой воды в пустотном пространстве тем больше, чем меньше размер пустот и проницаемость коллектора.

Остаточная вода содержится в залежах в виде молекулярно-связанной пленки на стенах пор, каверн, трещин, в изолированных пустотах и в капиллярно-связанном состоянии в непроточной части пустот. Для разработки залежи интерес представляет остаточная вода, содержащаяся в открытом пустотном пространстве.

Коэффициентом нефтенасыщенности (газонасыщенности) называется отношение объема нефти (газа), содержащейся в открытом пустотном пространстве, к суммарному объему пустотного пространства.

Коэффициентом водонасыщенности коллектора, содержащего нефть или газ, называется отношение объема остаточной воды, содержащейся в открытом пустотном пространстве, к суммарному объему открытых пустот.

Указанные коэффициенты связаны следующими соотношениями:

для нефтенасыщенного коллектора -- ;

для газонасыщенного коллектора -- ;

для газонасыщенного коллектора, содержащего кроме остаточной воды еще и остаточную нефть

Изучение водонасыщенности имеет большое значение не только для количественной оценки нефтегазонасыщенности. Важно выяснить и качественную роль водонасыщенности. Содержание в породах-коллекторах остаточной воды и ее состояние оказывают большое влияние на процессы вытеснения углеводородов из пустотного объема при разработке залежей.

В зависимости от условий формирования залежей, характеристики пород-коллекторов, их емкостного объема и фильтрационных свойств и других параметров, значение начальной нефтегазонасыщенности продуктивных пластов находится в пределах 97 - 50 % при соответствующей начальной водонасыщенности 3 - 50 %.

1.3 П ластовые флюиды

Свойства и состояние углеводородов (УВ) зависят от их состава, давления и температуры. В залежах они могут находиться в жидком и газообразном состоянии или в виде газожидкостных смесей. В процессе разработки залежей в пластах и при подъеме на поверхность давление и температура непрерывно меняются, что сопровождается соответствующими изменениями состава газовой и жидкой фаз и переходом УВ из одной фазы в другую. Необходимо знать закономерности фазовых переходов, состояние и свойства УВ при различных условиях и учитывать их при подсчете запасов, проектировании и регулировании разработки проектировании и эксплуатации систем сбора и транспорта нефти и газа.

Нефть и газ представляют собой смесь УВ преимущественно метанового (парафинового) (С n Н2 n +2), нафтенового (CnH 2 n ) и в меньшем количестве ароматического (CnH 2 n -6) рядов .

По физическому состоянию в поверхностных условиях УВ от СН4 до С4Н10 -- газы; от С5Н12 до С16Н34 -- жидкости и от С17Н34 до С35Н72 и выше -- твердые вещества, называемые парафинами и церезинами.

При большом количестве газа в пласте он может располагаться над нефтью в виде газовой шапки в повышенной части структуры. При этом часть жидких УВ нефти будет находиться в виде паров также и в газовой шапке. При высоком давлении в пласте плотность газа становится весьма значительной (приближающейся по величине к плотности легких углеводородных жидкостей). В этих условиях в сжатом газе растворяются значительные количества легкой нефти (С5Н12+С6Н14) подобно тому, как в бензине или других жидких УВ растворяются нефть и тяжелые битумы. В результате нефть иногда оказывается полностью растворенной в сжатом газе. При извлечении такого газа из залежи на поверхность в результате снижения давления и температуры растворенные в нем УВ конденсируются и выпадают в виде конденсата.

Если же количество газа в залежи по сравнению с количеством нефти мало, а давление достаточно высокое, газ полностью растворяется в нефти и тогда газонефтяная смесь находится в пласте в жидком состоянии.

Газогидратные залежи содержат газ в твердом (гидратном) состоянии. Наличие такого газа обусловлено его способностью, при определенных давлениях и температурах соединяться с водой и образовывать гидраты. Газогидратные залежи по физическим параметрам резко отличаются от обычных, поэтому подсчет запасов газа и разработка их во многом отличаются от применяемых для обычных месторождений природного газа. Районы распространения газогидратных залежей в основном приурочены к зоне распространения многолетнемерзлых пород.

Пластовые нефти

Классификация нефтей Газожидкостная смесь УВ состоит преимущественно из соединений парафинового, нафтенового и ароматического рядов. В состав нефти входят также высокомолекулярные органические соединения, содержащие кислород, серу, азот.

малосернистые (содержание серы не более 0.5 %);

сернистые (0.5 - 2.0 %);

высокосернистые (более 2.0 %).

Асфальтосмолистые вещества нефти -- высокомолекулярные соединения, включающие кислород, серу и азот и состоящие из большого числа нейтральных соединений неизвестного строения и непостоянного состава, среди которых преобладают нейтральные смолы и асфальтены. Содержание асфальтосмолистых веществ в нефтях колеблется в пределах 1 - 40 %. Наибольшее количество смол отмечается в тяжелых темных нефтях, богатых ароматическими УВ.

малосмолистые (содержание смол ниже 18 %);

смолистые (18 - 35 %);

высокосмолистые (свыше 35 %).

Нефтяной парафин -- это смесь твердых УВ двух групп, резко отличающихся друг от друга по свойствам, -- парафинов C 17 H 36 - С35Н72 и церезинов С36Н74 - C 55 H 112 . Температура плавления первых 27 - 71 °С , вторых -- 65 - 88 °С . При одной и той же температуре плавления церезины имеют более высокую плотность и вязкость. Содержание парафина в нефти иногда достигает 13 - 14 % и больше .

малопарафинистые при содержании парафина менее 1.5 % по массе;

парафинистые - 1.5 - 6.0 %;

высокопарафинистые - более 6 %.

В отдельных случаях содержание парафина достигает 25 %. При температуре его кристаллизации близкой к пластовой, реальна возможность выпадения парафина в пласте в твердой фазе при разработке залежи.

Физические свойства нефтей

Нефти разных пластов одного и того же месторождения и тем более разных месторождений могут отличаться друг от друга. Их различия во многом определяются их газосодержанием. Все нефти в пластовых условиях содержат в растворенном (жидком) состоянии газ.

Растворимость газа -- это максимальное количество газа, которое может быть растворено в единице объема пластовой нефти, при определенных давлении и температуре. Газосодержание может быть равным растворимости или меньше ее.

Коэффициентом разгазирования нефти называется количество газа, выделяющееся из единицы объема нефти при снижении давления на единицу. нефтяной месторождение гидрат бурение

Промысловым газовым фактором называется количество добытого газа в м3, приходящееся на 1 м3 (т) дегазированной нефти. Он определяется по данным о добыче нефти и попутного газа за определенный отрезок времени. Различают начальный газовый фактор , обычно определяемый по данным за первый месяц работы скважины, текущий газовый фактор , определяемый по данным за любой промежуточный отрезок времени, и средний газовый фактор , определяемый за период с начала разработки до какой-либо даты. Величина промыслового газового фактора зависит как от газосодержания нефти, так и от условий разработки залежи. Она может меняться в очень широких пределах.

Если при разработке в пласте газ не выделяется, то газовый фактор меньше газосодержания пластовой нефти, так как в промысловых условиях полной дегазации нефти не происходит.

Давлением насыщения пластовой нефти называется давление, при котором газначинает выделяться из нее. Давление насыщения зависит от соотношения объемов нефти и газа в залежи, от их состава, от пластовой температуры.

В природных условиях давление насыщения может быть равным пластовому давлению или может быть меньше него. В первом случае нефть будет полностью насыщена газом, во втором -- недонасыщена.

Сжимаемость пластовой нефти обусловливается тем, что, как и все жидкости, нефть обладает упругостью, которая измеряется коэффициентом сжимаемости (или объемной упругости) :

где -- изменение объема нефти; -- исходный объем нефти. -- изменение давления. Размерность -- 1/Па, или Па-1.

Значение его для большинства пластовых нефтей лежит в диапазоне (1 - 5)*10-3 МПа-1. Сжимаемость нефти наряду со сжимаемостью воды и коллекторов проявляется главным образом при разработке залежей в условиях постоянного снижения пластового давления.

Коэффициент сжимаемости характеризует относительное приращение объема нефти при изменении давления на единицу.

Коэффициент теплового расширения показывает, на какую часть первоначального объема изменяется объем нефти при изменении температуры на 1 °С

Размерность -- 1/°С. Для большинства нефтей значения коэффициента теплового расширения колеблются в пределах (1 - 20)*10-4 1/°С.

Коэффициент теплового расширения нефти необходимо учитывать при разработке залежи в условиях нестационарного термогидродинамического режима при воздействии на пласт различными холодными или горячими агентами. Его влияние наряду с влиянием других параметров сказывается как на условиях текущей фильтрации нефти, так и на величине конечного коэффициента извлечения нефти. Особенно важную роль коэффициент теплового расширения нефти играет при проектировании тепловых методов воздействия на пласт.

Объемный коэффициент пластовой нефти показывает, какой объем занимает в пластовых условиях 1 м3 дегазированной нефти:

где -- объем нефти в пластовых условиях; -- объем того же количества нефти после дегазации при атмосферном давлении и t=20°С; -- плотность нефти в пластовых условиях; -- плотность нефти в стандартных условиях.

Объем нефти в пластовых условиях увеличивается по сравнению с объемом в нормальных условиях в связи с повышенной температурой и большим количеством газа, растворенного в нефти. Пластовое давление до некоторой степени уменьшает величину объемного коэффициента, но так как сжимаемость нефти весьма мала, давление мало влияет на эту величину.

Значения объемного коэффициента всех нефтей больше единицы и иногда достигают 2 - 3. Наиболее характерные величины лежат в пределах 1.2 - 1.8.

Пересчетный коэффициент

Под плотностью пластовой нефти понимается масса нефти, извлеченной из недр с сохранением пластовых условий, в единице объема. Она обычно в 1.2 - 1.8 раза меньше плотности дегазированной нефти, что объясняется увеличением ее объема в пластовых условиях за счет растворенного газа. Известны нефти, плотность которых в пласте составляет всего 0.3 - 0.4 г/см3. Ее значения в пластовых условиях могут достигать 1.0 г/см3.

По плотности пластовые нефти делятся на:

легкие с плотностью менее 0.850 г/см3;

тяжелые с плотностью более 0.850 г/.

Легкие нефти характеризуются высоким газосодержанием, тяжелые -- низким.

Вязкость пластовой нефти , определяющая степень ее подвижности в пластовых условиях, также существенно меньше вязкости ее в поверхностных условиях.

Это обусловлено повышенными газосодержанием и пластовой температурой. Давление оказывает небольшое влияние на изменение вязкости нефти в области выше давления насыщения. В пластовых условиях вязкость нефти может быть в десятки раз меньше вязкости дегазированной нефти. Вязкость зависит также от плотности нефти: легкие нефти менее вязкие, чем тяжелые. Вязкость нефти измеряется в мПас.

По величине вязкости различают нефти:

незначительной вязкостью -- мПа с;

маловязкие -- мПа с;

с повышенной вязкостью -- мПа с;

высоковязкие -- мПа с.

Вязкость нефти -- очень важный параметр, от которого существенно зависят эффективность процесса разработки и конечный коэффициент извлечения нефти. Соотношение вязкостей нефти и воды -- показатель, характеризующий темпы обводнения скважин. Чем выше это соотношение, тем хуже условия извлечения нефти из залежи с применением различных видов заводнения.

Физические свойства пластовых нефтей исследуют в специальных лабораториях по глубинным пробам, отобранным из скважин герметичными пробоотборниками. Плотность и вязкость находят при постоянном давлении, равном начальному пластовому. Остальные характеристики определяют при начальном пластовом и при постепенно снижающемся давлении. В итоге строят графики изменения различных коэффициентов в зависимости от давления, а иногда и от температуры. Эти графики и используются при решении геологопромысловых задач.

Пластовые газы

Природные углеводородные газы представляют собой смесь предельных УВ вида С n Н2 n +2 . Основным компонентом является метан СН4 . Наряду с метаном в состав природных газов входят более тяжелые УВ, а также неуглеводородные компоненты: азот N, углекислый газ СО2, сероводород H2S, гелий Не, аргон Аr.

Природные газы подразделяют на следующие группы.

Газ чисто газовых месторождений, представляющий собой сухой газ, почти свободный от тяжелых УВ.

Газы, добываемые из газоконденсатных месторождений, -- смесь сухого газа и жидкого углеводородного конденсата. Углеводородный конденсат состоит из С5+высш.

Газы, добываемые вместе с нефтью (растворенные газы). Это физические смеси сухого газа, пропанбутановой фракции (жирного газа) и газового бензина.

Газ, в составе которого УВ (С3, С4,) составляют не более 75 г/м3 называют сухим. При содержании более тяжелых УВ (свыше 150 г/м3 газ называют жирным).

Физические свойства газов

Газовые смеси характеризуются массовыми или молярными концентрациями компонентов. Для характеристики газовой смеси необходимо знать ее среднюю молекулярную массу, среднюю плотность или относительную плотность по воздуху.

Молекулярная масса природного газа:

где -- молекулярная масса i-го компонента; -- объемное содержание i-го компонента, доли ед. Для реальных газов обычно М = 16 - 20.

Плотность газа рассчитывается по формуле:

где -- объем 1 моля газа при стандартных условиях. Обычно значение находится в пределах 0.73 - 1.0 кг/м3. Чаще пользуются относительной плотностью газа по воздуху равной отношению плотности газа к плотности воздуха взятой при тех же давлении и температуре:

Если и определяются при стандартных условиях, то кг/м3 и кг/м3.

Объемный коэффициент пластового газа представляющий собой отношение объема газа в пластовых условиях к объему того же количества газа, который он занимает в стандартных условиях, можно найти с помощью уравнения Клайперона - Менделеева:

где,-- давление и температура соответственно в пластовых и стандартных условиях.

Значение величины имеет большое значение, так как объем газа в пластовых условиях на два порядка (примерно в 100 раз) меньше, чем в стандартных условиях.

Газоконденсат

Конденсатом называют жидкую углеводородную фазу, выделяющуюся из газа при снижении давления . В пластовых условиях конденсат обычно весь растворен в газе. Различают конденсат сырой и стабильный.

Сырой конденсат представляет собой жидкость, которая выпадает из газа непосредственно в промысловых сепараторах при давлении и температуре сепарации. Он состоит из жидких при стандартных условиях УВ. т.е. из пентанов и высших (C5+высш), в которых растворено некоторое количество газообразных УВ -- бутанов, пропана и этана, а также H2S и других газов.

Важной характеристикой газоконденсатных залежей является конденсатно-газовый фактор , показывающий содержание сырого конденсата (см3) в 1 м3 отсепарированного газа.

На практике используется также характеристика, которая называется газоконденсатным фактором , -- это количество газа (м3), из которого добывается 1 м3 конденсата. Значение газоконденсатного фактора колеблется для месторождений от 1500 до 25 000 м3/м3.

Стабильный конденсат состоит только из жидких УВ -- пентана и высших (C6+высш) Его получают из сырого конденсата путем дегазации последнего. Температура выкипания основных компонентов конденсата находится в диапазоне 40 - 200 °С. Молекулярная масса 90 - 160. Плотность конденсата в стандартных условиях изменяется от 0.6 до 0.82 г/см3 и находится в прямой зависимости от компонентного углеводородного состава.

Газы газоконденсатных месторождений делятся на газы с низким содержанием конденсата (до 150 см3/м3), средним (150 - 300 см3/м3), высоким (300 - 600 см3/м3) и очень высоким (более 600 см3/м3).

Большое значение имеет такая характеристика газа конденсатных залежей, как давление начала конденсации, т.е. давление, при котором конденсат выделяется в пласте из газа в виде жидкости. Если при разработке газоконденсатной залежи в ней не поддерживать давление, то оно с течением времени будет снижаться и может достигнуть величины меньше давления начала конденсации. При этом в пласте начнет выделяться конденсат, что приведет к потерям ценных УВ в недрах.

Газогидраты

Гидраты газов представляют собой твердые соединения (клатраты), в которых молекулы газа при определенных давлении и температуре заполняют структурные пустоты кристаллической решетки, образованной молекулами воды с помощью водородной связи (слабой связи). Молекулы воды как бы раздвигаются молекулами газа -- плотность воды в гидратном состоянии возрастает до 1.26 -1.32 см3/г (плотность льда 1.09 см3/г).

Один объем воды в гидратном состоянии связывает в зависимости от характеристики исходного газа от 70 до 300 объемов газа.

Условия образования гидратов определяются составом газа, состоянием воды, внешними давлением и температурой и выражаются диаграммой гетерогенного состояния. Для заданной температуры повышение давления выше давления, соответствующего равновесной кривой, сопровождается соединением молекул газа с молекулами воды и образованием гидратов. Обратное снижение давления (или повышение температуры при неизменном давлении) сопровождается разложением гидрата на газ и воду.

Плотность гидратов природных газов составляет от 0.9 до 1.1 г/см3.

Газогидратные залежи -- это залежи, содержащие газ, находящийся частично или полностью в гидратном состоянии (в зависимости от термодинамических условий и стадии формирования).

...

Подобные документы

    Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.

    отчет по практике , добавлен 20.03.2012

    Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа , добавлен 19.06.2011

    Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике , добавлен 30.05.2013

    Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений. Нефть: химический состав, физические свойства, давление насыщения, газосодержание, промысловый газовый фактор. Технологический процесс добычи нефти и природного газа.

    контрольная работа , добавлен 22.01.2012

    Изучение и оценка ресурсов углеводородного сырья в статическом и динамическом состоянии; геологическое обеспечение эффективной разработки месторождений; методы геолого-промыслового контроля. Охрана недр и природы в процессе бурения и эксплуатации скважин.

    курс лекций , добавлен 22.09.2012

    Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.

    отчет по практике , добавлен 23.10.2011

    Первичный, вторичный и третичный способы разработки нефтяных и газовых месторождений, их сущность и характеристика. Скважина и ее виды. Наклонно-направленное (горизонтальное) бурение. Искусственное отклонение скважин. Бурение скважин на нефть и газ.

    курсовая работа , добавлен 18.12.2014

    Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

    реферат , добавлен 14.07.2011

    Краткая история развития нефтегазового дела. Понятие и назначение скважин. Геолого-промысловая характеристика продуктивных пластов. Основы разработки нефтяных и газовых месторождений и их эксплуатация. Рассмотрение методов повышения нефтеотдачи.

    отчет по практике , добавлен 23.09.2014

    Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.

Скважина - цилиндрическая горная выработка, сооружаемая без доступа в нее человека и имеющая диаметр во много раз меньше длины. Начало скважины называется устьем, цилиндрическая поверхность - стенкой или стволом, дно - забоем. Расстояние от устья до забоя по оси ствола определяет длину скважины, а по проекции оси на вертикаль ее глубину. Максимальный начальный диаметр нефтяных и газовых скважин обычно не превышает 900 мм, а конечный редко бывает меньше 165 мм.

Бурение скважин - сложный технологический процесс строительства ствола буровых скважин, состоящий из следующих основных операций:

Углубление скважин посредством разрушения горных пород буровым инструментом;

Удаление выбуренной породы из скважины;

Крепление ствола скважины в процессе ее углубления обсадными колоннами;

Проведение комплекса геолого-геофизических работ по исследованию горных пород и выявлению продуктивных горизонтов;

Спуск на проектную глубину и цементирование последней (эксплуатационной) колонны.

По характеру разрушения горных пород различают механические и немеханические способы бурения . К механическим относятся вращательные способы (роторное, турбинное, реактивно-турбинное бурение и бурение с использованием электробура и винтовых забойных двигателей), при которых горная порода разрушается в результате прижатого к забою породоразрушающего инструмента (бурового долота), и ударные способы. Немеханические способы бурения (термические, электрические, взрывные, гидравлические и др.) пока не нашли широкого промышленного применения.

При бурении на нефть и газ порода разрушается буровыми долотами, а забой скважин обычно очищается от выбуренной породы потоками непрерывно циркулирующей промывочной жидкости (бурового раствора), реже производится продувка забоя газообразным рабочим агентом.

Скважины бурятся вертикально (отклонение до 2¸3°). При необходимости применяют наклонное бурение: наклонно-направленное, кустовое, много-забойное, двуствольное).

Cкважины углубляют, разрушая забой по всей площади (без отбора керна) или периферийной части (с отбором керна). В последнем случае в центре скважины остается колонка породы (керн), которую периодически поднимают на поверхность для изучения пройденного разреза пород.

Скважины бурят на суше и на море при помощи буровых установок.

Цели и назначение буровых скважин различные. Эксплуатационные скважины закладывают на полностью разведанном и подготовленном к разработке месторождении. В категорию эксплуатационных входят не только скважины, с помощью которых добывают нефть и газ (добывающие скважины), но и скважины, позволяющие организовать эффективную разработку месторождения (оценочные, нагнетательные, наблюдательные скважины).

Оценочные скважины предназначены для уточнения режима работы пласта и степени выработки участков месторождения, уточнения схемы его разработки.

Нагнетательные скважины служат для организации законтурного и внутриконтурного нагнетания в эксплуатационный пласт воды, газа или воздуха в целях поддержания пластового давления.

Наблюдательные скважины сооружают для систематического контроля за режимом разработки месторождения.

Конструкция эксплуатационной скважины определяется числом рядов труб, спускаемых в скважину и цементируемых в процессе бурения для успешной проводки скважин, а также оборудованием ее забоя.

В скважину спускают следующие ряды труб:

2. Кондуктор - для крепления верхних неустойчивых интервалов разреза, изоляции горизонтов с грунтовыми водами, установки на устье противовыбросового оборудования .

3. Промежуточная обсадная колонна (одна или несколько) - для предотвращения возможных осложнений при бурении более глубоких интервалов (при бурении однотипного разреза прочных пород обсадная колонна может отсутствовать).

4. Эксплуатационная колонна - для изоляции горизонтов и извлечения нефти и газа из пласта на поверхность. Эксплуатационную колонну оборудуют элементами колонной и заколонной оснастки (пакеры, башмак, обратный клапан, центратор, упорное кольцо и т.п.).

Конструкция скважин называется одноколонной, если она состоит только из эксплуатационной колонны, двухколонной - при наличии одной промежуточной и эксплуатационной колонны и т.д.

Устье скважины оснащено колонной головкой (колонная обвязка). Колонная головка предназначена для разобщения межколонных пространств и контроля за давлением в них. Ее устанавливают на резьбе или посредством сварки на кондукторе. Промежуточные и эксплуатационные колонны подвешивают на клиньях или муфте.

На месторождениях Западной Сибири распространено кустовое бурение. Кустовое бурение – сооружение групп скважин с общего основания ограниченной площади, на котором размещается буровая установка и оборудование . Производится при отсутствии удобных площадок для буровых установок и для сокращения времени и стоимости бурения. Расстояния между устьями скважин не менее 3 м.

Пластовая энергия - совокупность тех видов механической и тепловой энергии флюида (нефть, газ и вода в горных породах, характеризующиеся текучестью) и горной породы, которые могут быть практически использованы при отборе нефти и газа. Главные из них:

1. Энергия напора законтурных вод залежей нефти и газа .

2. Энергия упругого сжатия горной породы и флюида, в том числе газа , выделившегося в свободную фазу из растворенного состояния при снижении давления.

3. Часть гравитационной энергии вышележащих толщ, расходуемая на пластические деформации коллектора, вызванные снижением пластового давления в коллекторе в результате отбора флюида из него.

4. Тепло флюида, выносимое им на поверхность при эксплуатации скважин. Практически значима не вся энергия пласта, а лишь та ее часть, которая может быть использована с достаточной эффективностью при эксплуатации скважин.

Разработка месторождений полезных ископаемых - система организационно технических мероприятий по добыче полезных ископаемых из недр. Разработка нефтяных и газовых месторождений осуществляется с помощью буровых скважин. Иногда применяется шахтная добыча нефти (Ярегское нефтяное месторождение, Республика Коми).

Разработка нефтяных и газовых месторождений - интенсивно развивающаяся область науки. Дальнейшее ее развитие будет связано с применением новых технологий извлечения нефти из недр, новых методов распознавания характера протекания внутрипластовых процессов, использованием совершенных методов планирования разведки и разработки месторождений, применением автоматизированных систем управления процессами извлечения полезных ископаемых из недр, развитием методов детального учета строения пластов и характера протекающих в них процессов на основе детерминированных моделей, реализуемых на мощных компьютерах.

Разработка нефтяных месторождений - это самостоятельная комплексная область науки и инженерная дисциплина, имеющая свои специальные разделы, связанные с учением о системах и технологиях разработки месторождений, планированием и реализацией основного принципа разработки, проектированием и регулированием разработки месторождений.

Наукой о разработке нефтяных месторождений называют осуществление научно-обоснованного извлечения из недр содержащих в них углеводородов и сопутствующих им полезных ископаемых. Принципиальным отличием разработки нефтяных месторождений от других наук является то, что инженер-разработчик не имеет непосредственного доступа к нефтяным пластам. Вся информация идет через пробуренные скважины.

Нефтяные и нефтегазовые месторождения – это скопление углеводородов в земной коре, приуроченные к одной или нескольким локализированным геологическим структурам. Залежи углеводородов, входящие в месторождения, обычно залегают в пластах или массивах пористых и проницаемых горных пород, имеющих различное распространение под землей и различные геолого-физические свойства.

Нефть, залегая в пористых пластах, подвержена гидростатическому давлению и напору контурных вод. Пласты испытывают горное давление – вес вышележащих горных пород. Над залежью нефти может залегать газовая шапка, оказывающая давление на залежь. Внутри залежи действуют силы упругости нефти, газа, воды и породы пласта.

Нефть, вода, газ, насыщающие пласты обладают разной плотностью и распределены в залежах в соответствии с проявлением гравитационных сил. Несмешивающиеся жидкости – нефть и вода, находясь в контакте в мелких порах и капиллярах, подвержены действию поверхностно-молекулярных сил, а на контакте с твердой породой - натяжению смачивания. Когда начинается эксплуатация пласта, природное равновесие этих сил нарушается в связи со снижением давления в залежи и начинается сложнейшее их проявление в результате чего начинается движение жидкостей в пласте. В зависимости от того, какие силы, вызывающие это движение преобладают, различают различные режимы работы нефтяных пластов.

1. 2. Режимы работы нефтяных залежей

Режимом работы залежи называется проявление преобладающего вида пластовой энергии в процессе разработки.

Различают пять режимов работы нефтяных залежей: упругий; водонапорный; растворенного газа; газонапорный; гравитационный; смешанные. Такое деление на режимы в «чистом виде» весьма условно. При реальной разработке месторождений в основном отмечают смешанные режимы.

Упругий режим или замкнуто-упругий

При этом режиме нефть вытесняется из пористой среды за счет упругого расширения жидкостей (нефти и воды), а также уменьшения (сжатия) порового объема при снижении пластового давления. Суммарный объем жидкости. отбираемый из пласта за счет этих сил определяется упругой емкостью пород, насыщения этого объема жидкостью и величиной снижения пластового давления

Qж = (Рпл. нач – Ртек) Vп *

*= mп +ж где

* - упругая емкость

п- упругая емкость породы

ж- упругая емкость жидкости

m- пористость

Рпл нач и Р тек – начальное и текущее пластовое давление

Главное условие упругого режима - превышение пластового давления и забойного, над давлением насыщения, тогда нефть находится в однофазном состоянии.

Если залежь литологически или тектонически ограничена, запечатана, то проявляется замкнуто-упругий режим.

В объеме всего пласта упругий запас нефти составляет обычно малую долю (приблизительно 5- 10 %) по отношению к общему запасу, но он может выражать довольно большое количество нефти в массовых единицах.

Для данного режима характерно значительное снижение пластового давления в начальный период отбора нефти и уменьшения дебитов нефти

Упруговодонапорный или водонапорный режим

Если законтурная область нефтяного пласта имеет выход на дневную поверхность или водоносная область обширна и пласт в ней высокопроницаем. то режим такого пласта будет естественным упруговодонапорным. Нефть из пласта вытесняется напором контурной или подошвенной воды. Когда наступает равновесие (баланс) между отбором из залежи жидкости и поступлением в пласт краевых или подошвенных вод, проявляет себя водонапорный режим, который еще называют жестким водонапорным вследствие равенства количеств отобранной жидкости (нефти, воды} и вторгшейся в залежь воды.

Режим характеризуется несущественным снижением Рпл и постоянным сокращением контура нефтеносности.

Искусственно водонапорный режим

На современном этапе развития нефтяной промышленности преобладающее значение имеет разработка нефтяных залежей при заводнении, т. е. с помощью закачки воды. При искусственном водонапорном режиме основным источником пластовой энергии является энергия закачиваемой в пласт воды. При этом отбор жидкости из пласта должен быть равен объему закачанной воды, тогда устанавливается жесткий водонапорный режим, который характеризуется коэффициентом компенсации отбора закачкой.

Ккомп =

Компенсация отбора закачкой это отношение объема закачиваемой в пласт воды к объему отобранной в пластовых условиях жидкости из пласта.

Если Ккомп > или = 1, то в залежи устанавливается жесткий водонапорный режим.

Ккомп < 1. то упругий водонапорный режим.

Компенсация отбора закачкой бывает текущая (в данный момент времени) и накопленная (с начала разработки).

Режим растворенного газа

При низкой продуктивности пласта, ухудшенной связи с водонапорной зоной, пластовое давление, в конечном счете, снижается до давления насыщения и ниже. В результате из нефти начинает выделяться газ, который расширяется при снижении давления и вытесняет нефть из пласта, т.е. приток нефти происходит за счет энергии расширения растворенного в нефти газа. Пузырьки этого газа, расширяясь, продвигают нефть и сами перемещаются по пласту к забоям скважин.

В большинстве случаев газ выделившись из нефти всплывает под действием сил гравитации образуя газовую шапку (вторичную) и развивается режим газовой шапки.

Эффект процесса вытеснения нефти за счет энергии газа незначителен, т.к. запас энергии газа истощается намного раньше, чем успевают отобрать нефть.

Разработка залежей при этом режиме сопровождается:

быстрым снижением Р пластового и снижением дебитов скважин;

контур нефтеносности остается неизменным.

Газонапорный режим

проявляется в нефтяных залежах с большой газовой шапкой. Под газовой шапкой понимают скопление свободного газа над нефтяной залежью.

Нефть притекает к забою в основном за счет энергии расширения газа газовой шапки при Р пл меньше Р насыщения. Разработка залежей сопровождается перемещением газонефтяного контакта, прорывом газа в скважины и ростом газового фактора. Эффективность извлечения нефти из пласта изменяется в широких пределах в зависимости от коллекторских свойств пласта, наклона пласта, вязкости нефти и т.д. Жесткий газонапорный режим возможен только при непрерывной закачке в газовую шапку достаточного количества газа.

Гравитационный режим

Гравитационный режим развивается при полном истощении всех видов энергии. Нефть из пласта под действием гравитации (силы тяжести) падает на забой скважины, после чего ее извлекают.

Выделяют такие его разновидности:

1) гравитационный режим с перемещающимся контуром нефтеносности (напорно-гравитационный), при котором нефть под действием собственного веса перемещается вниз по падению крутозалегающего пласта и заполняет его пониженные части; дебиты скважин небольшие и постоянные;

2) гравитационный режим с неподвижным контуром нефтеносности (со свободной поверхностью), при котором уровень нефти находится ниже кровли горизонтально залегающего пласта. Дебиты скважин меньше дебитов при напорно-гравитационном режиме и со временем медленно уменьшаются.

Гравитационный режим и режим растворенного газа редко бывают основной движущей силой, однако сопутствуя процессу извлечения нефти, могут увеличивать нефтеотдачу до 0,2.

Смешанные режимы

В заключении необходимо отметить, что нефтяная залежь редко работает на каком-то одном режиме в течении всего периода эксплуатации.

Режим, при котором возможно одновременное проявление энергий растворенного газа, упругости и напора воды, газа называют смешанным. Природные условия залежи лишь способствуют развитию определенного режима работы. Конкретный режим можно установить, поддержать или заменить другими путем изменения темпов отбора и суммарного отбора жидкости, ввода дополнительной энергии в залежь и т. д.

Книга «Основы разработки нефтяных и газовых месторождений», выдержавшая двадцать переизданий, создана на основе курсов лекций, прочитанных автором в учебном центре компании Shell Internationale Petroleum Maatschappij B.V. (SIPM).
В издании освещен широкий круг вопросов, связанных с разработкой нефтяных и газовых месторождений. Характерной особенностью книги является ее практическая направленность. Физические основы разработки месторождений представлены с помощью простых и удобных для практического применения математических методов. Помимо теоретических материалов, почти в каждой главе приведены задания для развития практических навыков специалистов нефтегазовой отрасли. Для специалистов ценным дополнением будет приведенная в книге методика пересчета численных коэффициентов в формулах при переходе от одной системы единиц измерения к другим системам.
Рекомендуется для широкого круга специалистов нефтегазовой отрасли, преподавателям и студентам ВУЗов.

РАЗРАБОТКА ГАЗОВЫХ МЕСТОРОЖДЕНИЙ В УСЛОВИЯХ ГАЗОВОГО РЕЖИМА.
Разработка газовых месторождений в условиях газового режима рассматривается в начале книги из-за относительной простоты предмета. Ниже будет показано, как определяется коэффициент извлечения газа и рассчитывается продолжительность периода разработки.

Простота предмета объясняется тем, что газ - одна из немногих субстанций, состояние которых, определяемое давлением, объемом и температурой (PVT), может быть описано простой зависимостью, включающей в себя эти три параметра. Еще одной такой субстанцией является насыщенный пар. А, например, для нефти, содержащей растворенный газ, такой зависимости не существует. Как показано в главе 2, параметры PVT, определяющие состояние таких смесей, нужно получать эмпирическим путем.

СОДЕРЖАНИЕ
Предисловие
Выражение признательности В память о Лоренсе П. Дейке Номенклатура
1. Некоторые основные концепции, лежащие в основе разработки нефтяных и газовых месторождений
1.1. Введение
1.2. Подсчет начальных запасов углеводородов
1.3. Изменение давления в залежи по глубине
1.4. Нефтеотдача: коэффициент извлечения нефти
1.5. Разработка газовых месторождений в условиях газового режима
1.6. Применение уравнения состояния реального газа
1.7. Материальный баланс для газовой залежи: коэффициент извлечения газа
1.8. Фазовые состояния углеводородов Список литературы
2. Анализ PVT-свойств пластовых флюидов
2.1. Введение
2.2. Определение основных параметров
2.3. Отбор проб пластовых флюидов
2.4. Получение основных данных PVT в лаборатории и преобразование их для использования на месторождениях
2.5. Другой метод выражения результатов лабораторных исследований PVT
2.6. Полный комплекс исследований PVT Список литературы
3. Применение метода материального баланса при разработке нефтяных месторождений
3.1. Введение
3.2. Уравнение материального баланса для залежей нефти и газа в общем виде
3.3. Линейное уравнение материального баланса
3.4. Режимы работы залежи
3.5. Упругий режим, переходящий в режим растворенного газа
3.6. Газонапорный режим
3.7. Естественный водонапорный режим
3.8. Упруго-пластичный режим Список литературы
4. Закон Дарси и его применение
4.1. Введение
4.2. Закон Дарси. Потенциальная энергия флюидов
4.3. Присвоение знаков
4.4. Единицы измерения. Переход от одной системы единиц к другой
4.5. Потенциальная энергия реального газа
4.6. Приведенное давление
4.7. Установившаяся радиальная фильтрация. Интенсификация притока нефти в скважину
4.8. Двухфазный поток. Фазовая и относительная проницаемости
4.9. Методы повышения нефтеотдачи Список литературы
5. Основное дифференциальное уравнение радиальной фильтрации
5.1. Введение
5.2. Вывод основного дифференциального уравнения радиальной фильтрации
5.3. Начальные и граничные условия
5.4. Линеаризация основного дифференциального уравнения радиальной фильтрации флюидов с малой и постоянной сжимаемостью
Список литературы
6. Уравнения квазиустановившегося и установившегося притоков в скважину
6.1. Введение
6.2. Решение для квазиустановившегося потока
6.3. Решение для установившегося потока
6.4. Пример использования уравнений квазиустановившегося и установившегося притоков
6.5. Обобщенная форма уравнения квазиустановившегося притока
Список литературы
7. Решение уравнения пьезопроводности при постоянном дебите и использование его для исследования нефтяных скважин
7.1. Введение
7.2. Решение при постоянном дебите
7.3. Решение при постоянном дебите для условий неуста-новившейся и квазиустановившейся фильтрации
7.4. Безразмерные параметры 209
7.5. Принцип суперпозиции. Общая теория исследования скважин
7.6. Анализ результатов исследования скважин методом восстановления давления, предложенный Мэтьюзом, Бронсом и Хейзбреком
7.7. Практический анализ результатов исследования скважин методом восстановления давления_
7.8. Исследование методом многократного изменения режима работы скважины
7.9. Влияние несовершенства скважины по степени и характеру вскрытия
7.10. Некоторые практические аспекты исследования скважин
7.11. Учет притока в скважину после ее остановки Список литературы
8. Поток реального газа. Исследование газовых скважин
8.1. Введение
8.2. Линеаризация и решение основного дифференциального уравнения радиальной фильтрации реального газа
8.3. Метод Рассела, Гудрича и др.
8.4. Метод Аль-Хусейни, Рейми и Кроуфорда
8.5. Сравнение метода, использующего квадрат давления, и метода, использующего псевдодавление
8.6. Отклонение потока от закона Дарси
8.7. Определение коэффициента f, учитывающего отклонение от закона Дарси
8.8. Решение при постоянном дебите для случая фильтрации реального газа
8.9. Общая теория исследования газовых скважин
8.10. Исследование газовых скважин методом многократного изменения режима
8.11. Исследование газовых скважин методом восстановления давления
8.12. Анализ результатов исследования методом восстановления давления на нефтяных залежах, работающих на режиме растворенного газа
8.13. Краткий обзор методов анализа результатов
исследования скважин
Список литературы
9. Приток воды в залежь
9.1. Введение
9.2. Теория неустановившегося притока воды Херста и ван Эвердингена
9.3. Применение теории притока воды из водоносной области Херста и ван Эвердингена для воспроизведения истории разработки
9.4. Приближенная теория Фетковича притока воды в залежь для случая ограниченной водоносной области
9.5. Прогнозирование объема притока_
9.6. Применение методов расчета притока воды к _циклическим паротепловым обработкам
Список литературы
10. Несмешивающееся вытеснение
10.1. Введение
10.2. Физические допущения и их следствия
10.3. Уравнение для расчета доли флюида в потоке
10.4. Теория одномерного вытеснения Бакли-Леверетта
10.5. Расчет добычи нефти
10.6. Вытеснение в условиях гравитационной сегрегации
10.7. Учет влияния переходной зоны конечной высоты в расчетах вытеснения
10.8. Вытеснение из слоисто-неоднородных пластов
10.9. Вытеснение при полном отсутствии вертикального равновесия
10.10. Численное моделирование несмешивающегося вытеснения при фильтрации несжимаемых жидкостей
Список литературы
УПРАЖНЕНИЯ
1.1. Градиент гидростатического давления газа в залежи
1.2. Материальный баланс газовой залежи
2.1. Отобранный объем, приведенный к пластовым условиям
2.2. Преобразование данных дифференциального разгазиро-вания в промысловые PVT-параметры Bo, Rs и Bg
3.1. Упругий режим (недонасыщенная нефть)
3.2. Режим растворенного газа (давление ниже давления насыщения)
3.3. Закачка воды начинается после уменьшения пластового давления ниже давления насыщения
3.4. Газонапорный режим
4.1. Переход от одной системы единиц к другой
6.1. Учет изменения проницаемости призабойной зоны
7.1. Логарифмическая аппроксимация функции Ei(x)
7.2. Исследование скважины методом однократного изменения режима
7.3. Безразмерные параметры
7.4. Переход от неустановившейся фильтрации к квази-установившейся фильтрации
7.5. Получение зависимостей для безразмерного давления
7.6. Анализ результатов исследования методом восстановления давления. Бесконечный пласт
7.7. Анализ результатов исследования методом восстановления давления. Ограниченный дренируемый объем
7.8. Анализ результатов исследования методом многократного изменения режима работы скважины
7.9.Методы анализа дополнительного притока в скважину после ее остановки
8.1. Анализ результатов исследования газовой скважины методом многократного изменения режима с допущением о существовании условий квазиустановившейся фильтрации
8.2. Анализ результатов исследования газовой скважины методом многократного изменения режима с допущением о существовании условий неустановившейся фильтрации
8.3. Анализ результатов исследования методом восстановления давления
9.1. Применение решения при постоянном давлении
9.2. Подгонка модели законтурной водоносной области с использованием теории неустановившегося притока Херста и ван Эвердингена
9.3. Расчет притока воды в залежь по методу Фетковича
10.1. Расчет доли воды в притоке
10.2. Прогнозирование добычи при заводнении
10.3. Вытеснение в условиях гравитационной сегрегации
10.4. Построение кривых усредненных относительных фазовых проницаемостей для слоисто-неоднородного пласта (условия гравитационной сегрегации)
Предметный указатель.

Под разработкой газового месторождения понимается управление процессом движения газа в пласте к добывающим скважинам при помощи определенной системы размещения установленного числа скважин на площади, порядка и темпа ввода их в эксплуатацию, поддержания намеченного режима их работы, регулирования баланса пластовой энергии.

Основное требование к системе разработки - обеспечение минимума затрат на добычу заданных объемов газа при заданной системе степени надежности и соблюдении норм охраны недр. Достижение этих условий осуществляется на стадии проектирования системы разработки оптимальным выбором и учетом всех ее элементов, основными из которых являются:

Режим разработки залежи;

Схема размещения скважин;

Технологический режим эксплуатации скважин и их конструкция;

Схема сбора и подготовки газа.

Особенностью разработки газовых месторождений в том, что разработка месторождений фактически начинают до составления проекта разработки (это связано с тем, что ряд характеристик месторождения невозможно получить на стадии разведки, а также по экономическим соображениям - высокой стоимостью разведки газовых месторождений).

Разработка газовых месторождений осуществляется в два этапа:

На первом этапе проводят опытно-промышленную эксплуатацию месторождения;

На втором этапе осуществляют промышленную разработку по проекту, составленному на основе достаточно полных и достоверных данных опытно-промышленной разработки.

Основной метод добычи газа и газового конденсата - фонтанный, т.к газ в продуктивном пласте обладает достаточно большой энергией, обеспечивающей его перемещение по капиллярным каналам пласта к забоям газовых скважин.

Оборудование устья и забоя газовых скважин, а также конструкция газовой скважины практически аналогичны нефтяным скважинам.

При добыче газа главное - защита обсадных труб и оборудования от агрессивного воздействия сероводорода и углекислого газа, которое способствует развитию коррозии труб и оборудования. Наибольшее применение в практике эксплуатации газовых скважин нашли ингибиторы, т. е вещества, при введении которых в коррозионную среду скорость коррозии значительно снижается или коррозия полностью прекращается.

Сайклинг-процесс - способ разработки газоконденсатных месторождений с поддержанием пластового давления посредством обратной закачки газа в продуктивный горизонт. При этом используется газ, добываемый на данном месторождении (а в случае необходимости- из других месторождений), после извлечения из него высококипящих углеводородов (С5+В). Поддержание пластового давления препятствует происходящему вследствие ретроградной конденсации (см. Ретроградные явления) выделению в продуктивном горизонте из пластового газа высококипящих углеводородов, образующих газовый конденсат (который в противном случае является практически потерянным).

Сайклинг-процесс применяется в случае, когда имеется возможность консервации запасов газа данного месторождения в течение определённого времени. В зависимости от соотношения объёмов закачиваемого и добытого газов различают полный и частичный сайклинг-процесс. В первом случае в пласт закачивают весь добываемый на месторождении газ после извлечения из него углеводородов С 5 +В. Вследствие этого объёмы добычи газа, приведённые к пластовым условиям, превышают объёмы его закачки в пласт (в аналогичных условиях), поддерживать начальное пластовое давление не удаётся и оно снижается на 3-7%. Поэтому если давление начала конденсации пластовой смеси примерно равно начальному пластовому давлению в залежи, то в продуктивном пласте происходит частичная конденсация высококипящих углеводородов. Прогнозный коэффициент извлечения конденсата из пласта при полном сайклинг-процессе достигает 70-80% (см. также Конденсатоотдача). Для поддержания пластового давления на начальном уровне уменьшение объёма закачиваемого газа компенсируют за счёт привлечения газа из других месторождений. При частичном сайклинг-процессе в пласт закачивают часть добываемого газа (после извлечения из него высококипящих углеводородов). Соотношение объёмов (приведённых к пластовым условиям) закачанного и отобранного газов составляет 60-85%. В этом случае снижение пластового давления может достигать 40% от начального, однако большая часть высококипящих углеводородов остаётся в пластовом газе. Прогнозный коэффициент извлечения конденсата при частичном сайклинг-процессе 60-70%.

Полный и частичный сайклинг-процессы могут проводиться сразу после ввода месторождения в эксплуатацию, а также в случае разработки его в течение некоторого времени в режиме истощения. Однако чем позже начинается реализация сайклинг-процесса, тем ниже коэффициент конденсатоотдачи пласта. Целесообразность применения сайклинг-процесса определяется экономической эффективностью, достигаемой за счёт дополнительной добычи конденсата (по сравнению с разработкой месторождения в режиме истощения). Как правило, сайклинг-процесс осуществляется на месторождениях с начальным содержанием конденсата в пластовом газе свыше 200 г/м 3 . Эффективность применения сайклинг-процесса определяется также степенью изменения проницаемости продуктивного горизонта по вертикали. Для месторождений с высокой степенью неоднородности пласта-коллектора сайклинг-процесс может оказаться малоэффективным даже при большом содержании конденсата в газе.

Полный сайклинг-процесс рекомендуется применять на месторождениях, пластовые смеси которых имеют крутые изотермы пластовых потерь конденсата (строятся по результатам исследований процесса дифференциальной конденсации). В этом случае даже небольшое (на 10-15%) снижение пластового давления приводит к значительным потерям конденсата в пласте (до 50% от начальных запасов). Частичный сайклинг-процесс осуществляется на месторождениях, пластовые смеси которых имеют пологие кривые изотерм пластовых потерь конденсата; тогда при снижении пластового давления на 30-40% от начального из пластового газа выделяется до 20% конденсата (от его начальных запасов), а оставшийся в пластовом газе конденсат извлекается вместе с газом на поверхность. Выпавший ранее в продуктивном горизонте конденсат может быть частично извлечён из пласта за счёт его испарения при прохождении над ним свежих порций газа, нагнетаемого в пласт. Выбор варианта сайклинг-процесса, в т.ч. и соотношения объёмов закачанного и отобранного газов, проводится в результате технико-экономических расчётов, учитывающих также особенности месторождения, потребности данного региона в природном газе и конденсате. При осуществлении сайклинг-процесса для увеличения коэффициента охвата пласта нагнетаемым газом эксплуатационные и нагнетательные скважины размещают, как правило, в виде кольцевых батарей, расположенных на максимально большом расстоянии друг от друга. Т.к. приёмистость нагнетательных скважин зачастую превышает производительность эксплуатационных, число нагнетательных скважин на месторождении в 1,5-3 раза меньше числа эксплуатационных.

Стадии разработки залежи.

При разработке нефтяной залежи выделяют четыре стадии:

I - нарастающая добыча нефти;

II- стабилизация добычи нефти;

III - падающая добыча нефти;

IV - поздняя стадия эксплуатации залежи.

На первой стадии нарастание объемов добычи нефти обеспечивается в основном введением в разработку новых эксплуатационных скважин в условиях высоких пластовых давлений. Способ добычи нефти в этот период фонтанный, обводненность отсутствует. Продолжительность I стадии составляет около 4-6 лет.

Вторая стадия - стабилизация нефтедобычи - начинается после разбуривания основного фонда скважин. В этот период добыча нефти сначала несколько нарастает, а затем начинает медленно снижаться. Увеличение добычи нефти достигается:

1) сгущением сетки скважин; 2) увеличением нагнетания воды или газа в пласт для поддержания пластового давления; 3) проведение работ по воздействию на призабойные зоны скважин и по повышению проницаемости пласта и др.

Обводненность продукции может достигать 50 %. Продолжительность II стадии составляет около 5-7 лет.

Третья стадия - падающая добыча нефти - характеризуется снижением нефтедобычи, увеличением обводненности продукции скважин и большим падением пластового давления. В этот период все скважины работают на механизированных способах добычи. Этот этап заканчивается при достижении 80 - 90 % обводненности.

Четвертая стадия - поздняя стадия эксплуатации залежи -характеризуется сравнительно низкими объемами отбора нефти и большими отборами воды. Обводненность продукции достигает 90-95 % и более. Этот период является самым длительным и продолжается 15-20 лет.

Общая продолжительность разработки любого нефтяного месторождения составляет от начала до конечной рентабельности 40-50 лет.

На рис.43 показаны стадии разработки нефтяных месторождений.

Рис.43 Стадии разработки нефтяных месторождений.

Наиболее крупные месторождения нефти нашего региона-Удмуртской Республики (Чутырско-Киенгопское, Мишкинское, Ельниковское) и Пермского края - Кокуйское, Батырбайское, Павловское, Баклановское, Осинское, Уньвинское, Сибирское находятся на 3-ей или 4-ой стадии разработки.

При разработке газовых и газоконденсатных месторождений выделяются стадии:

I - нарастающая добыча газа;

II- постоянная добыча газа;

III- падающая добыча газа.

Для того чтобы избежать консервации значительных материальных ресурсов разработка газовых месторождений начинается еще во время разбуривания и обустройства. По мере ввода в эксплуатацию новых скважин, пунктов сбора, компрессорных станций, газопроводов добыча из месторождения возрастает. Поэтому стадию, совпадающую с разбуриванием и обустройством месторождения, называют стадией нарастающей добычи .

После ввода в эксплуатацию всех мощностей по добыче газа, которые определены технико-экономической целесообразностью, наступает стадия постоянной добычи . Из крупных месторождений за этот период отбирается более 60 % запасов газа.

По мере истощения запасов газа и пластовой энергии дебиты скважин снижаются, выводятся из эксплуатации обводненные скважины, добыча газа из месторождения уменьшается. Эту стадию разработки называют стадией падающей добычи . Она продолжается до снижения отборов газа ниже рентабельного уровня.

Такие стадии добычи газа характерны для крупных месторождений, при разработке средних по запасам месторождений стадия постоянной добычи газа часто отсутствует, а при разработке незначительных по запасам газовых и газоконденсатных месторождений отсутствуют стадии нарастающей и постоянной добычи газа.

Что касается гигантских газовых месторождений нашей страны (Уренгойское, Медвежье, Ямбургское), то они вступили в этап падающей добычи.



Поделиться