Чем определяется разрешающая сила прибора. Критерий Рэлея

R = mN

R ≡ δλ λ .

В результате получим:

. (13.13)

Разрешающая сила R есть величина, обратная относительной погрешности определения длины волны. Она показывает, во сколько раз длина волны λ больше минимально возможной абсолютной погрешности δλ.

Подчеркнем, что N в формуле для разрешающей силы – это число щелей, принимающих участие в образовании главного максимума порядка m.

§ 5. РАЗРЕШАЮЩАЯ СИЛА ОБЪЕКТИВА

Дифракция света лежит в основе расчетов разрешающей способности геодезических, фотограмметрических, оптических приборов. Поэтому для студентов всех специальностей СГГА важно рассмотреть такой вопрос, как разрешающая сила объектива.

Объектив представляет собой линзу, заключенную в круглую оправу. Разрешающая сила (способность) объектива оптических приборов характеризует их способность давать раздельные изображения двух близко расположенных точек. Из-за дифракции света изображение точки представляет собой не строго точку, а кружок (светлое пятно, окруженное кольцами). Основная часть световой энергии (84 %) приходится на центральное светлое пятно. Поэтому в первом приближении дифракционную картину можно считать состоящей из одного лишь светлого пятна (рис. 13.7). Расчет дифракции Фраунгофера на круглом отверстии показывает, что первый минимум отстоит от центра дифракционной картины на угловое расстояние:

ϕmin = arcsin1, 22λ , D

где D – диаметр линзы;λ – длина световой волны.

Если D>>λ,

тоϕmin ≈ 1,22λ / D. (13.14)

При очень малом угловом расстоянии между двумя точками их изображения, получающиеся с помощью какого-либо оптического прибора, наложатся друг на друга и не разрешаются прибором.

Наименьшее угловое расстояние между двумя точкамиδψ, при котором система

дает их раздельное изображение, называется пределом разрешения. Величина, обратная пределу разрешения, называется разрешающей сило й прибора:

δψ .

Найдем разрешающую силу фотоаппарата или зрительной трубы для случая, когда рассматрива ются или фотографируются удаленные объекты.

Воспользуемся рис. 13.8, где изображено распределение интенсивности света на экране или фотопластинке.

По критерию Релея: δ ψ = ϕ min .

Предел разрешения с учетом (13.14) равен:

δψ ≈ 1,22 λ . D

Разрешающая сила объектива по (13.15):

Из формулы (13.16) следует, что разрешающая сила объектива прямо пропорциональна его апертуре (диаметру). Поэтому для повышения разрешающей силы оптические телескопы имеют большой диаметр. Разрешающая сила зависит от длины волны, на которой работает прибор.

Поэтому разрешающая сила электронного микроскопа в 10 3 раз больше, чем разрешающая сила оптического микроскопа.

ИТОГИ ЛЕКЦИИ № 13

1. Дифракционная решетка – это совокупность большого числа одинаковых щелей, расположенных на одинаковом расстоянии друг от друга. Сумма ширины прозрачного и непрозрачного промежутков называется постоянной или периодом дифракционной решетки d.

2. Условие главных максимумов интенсивности для дифракционной решетки получается из учета интерференции от соседних щелей. Оно имеет вид

d sin ϕ = ±mλ, m = 0, 1, 2 ...,

где m – порядок максимума; ϕ – угол дифракции; λ – длина волны света. 3. Учет дифракции от N щелей приводит к зависимости интенсивности

главных максимумов от угла дифракции. Условие минимума для дифракционной решетки будет таким же, как условие минимума для щели

b sin ϕ = ±kλ, k = 1, 2 ...,

где b – ширина щели.

4. Учет интерференции от всей совокупности щелей приводит к образованию дополнительных максимумов и минимумов, расположенных между главными максимумами. Дополнительные максимумы имеют пренебрежимо малую интенсивность по сравнению с главными. Условие добавочных минимумов имеет вид (13.4):

d × sinj = ± (k" N)l , (k"= 1, 2, ...)– целое число, не кратное N,

где N – число щелей в решетке.

5. При наблюдении дифракции в сложном (немонохроматическом) свете главные максимумы, кроме центрального, будут представлять собой спектр, который состоит из спектральных линий. Таким образом, дифракционная решетка будет представлять собой спектральный прибор.

6. Дисперсия спектрального прибора характеризует ширину спектра. Угловая дисперсия спектрального прибора равна производной от углового отклонения светового луча по длине волны (13.6):

D = δϕ δλ .

Угловая дисперсия дифракционной решетки равна (13.7):

Линейная дисперсия дифракционной решетки равна произведению угловой дисперсии на фокусное расстояние собирающей линзы (13.10):

Dл = DF .

7. Разрешающая сила (способность) дифракционной решетки характеризует свойство разделять излучения, близкие по длине волны (13.11):

R = δλ λ .

По критерию Релея, две линии в спектре считаются разрешенными, если максимум одной линии приходится на минимум другой.

Вычисленная по этому критерию разрешающая сила дифракционной решетки равна (13.13):

R = mN .

8. Разрешающая сила оптического прибора равна величине, обратной наименьшему угловому расстоянию между двумя точками, при котором система дает их раздельное изображение (13.15):

R = δψ 1 .

Разрешающая сила объектива диаметром D равна (13.16).

Изображения.

Разрешающая способность объектива оценивается по количеству воспроизводимых штрихов на 1 мм изображения, которое тот способен спроецировать на фоточувствительный элемент (плёнку или матрицу цифровой камеры). Само собой разумеется, что при этом снимаемый объект находится в фокусе, а не в зоне резкого изображения для данного объектива. Измерения разрешающей способности проводят с помощью специальных мир .

Энциклопедичный YouTube

    1 / 1

    ✪ Разрешающая способность дифракционной решетки. ЭНП

Субтитры

Неоднородности разрешающей силы

Разрешающая сила объективов неоднородна по полю изображения, обычно уменьшаясь к краям изображения. Это обусловлено наличием у объектива внеосевых аберраций (кома , астигматизм), которые не наблюдаются в центре поля.

Разрешающая сила у объективов одинаковой конструкции уменьшается с увеличением главного фокусного расстояния: у короткофокусных (широкоугольных) она выше, чем у длиннофокусных.

Для каждого объектива существует относительное отверстие (диафрагма), при котором его разрешающая сила максимальна. Это обусловлено тем, что сначала при диафрагмировании происходит улучшение изображения за счет уменьшения аберраций , а потом ухудшение за счёт дифракции .

Для определения оптимальной по разрешающей силе диафрагмы для конкретного объектива следует обратиться к результатам тестов. В целом, с ростом максимальной разрешающей способности её максимум смещается в сторону более открытой диафрагмы.

Фотографические объективы служат для получения изображения на фотоматериале или цифровой матрице , которые также обладают определённой разрешающей способностью. Поэтому для полного использования разрешающей силы объектива следует использовать его с соответствующими фотоматериалами или матрицами, разрешающая способность которых равна или выше разрешающей способности объектива, так как разрешающая способность системы объектив + светочувствительный элемент заведомо не выше разрешения каждого компонента.

Методы определения

Для определения разрешающей силы объектива используют различного вида ми́ры - испытательные таблицы с нанесёнными на них штрихами различной ширины и длины.

Разрешающая сила объектива по ГОСТ в СССР измерялась в линиях на 1 мм, она всегда больше в центральной части изображения и меньше на его краях. Современные данные могут оперировать иным способом оценки числа линий, когда учитываются как чёрные, так и белые линии. Разрешение при этом численно удваивается, не меняясь по сути.

Разрешающая способность системы объектив + светочувствительный элемент приближенно определяется по формуле:

1 R S = 1 R O + 1 R E {\displaystyle {\frac {1}{R_{S}}}={\frac {1}{R_{O}}}+{\frac {1}{R_{E}}}} ,

где R O {\displaystyle R_{O}} – разрешающая сила объектива в линиях на 1 мм; R E {\displaystyle R_{E}} - разрешающая сила светочувствительного элемента в линиях на 1 мм. Данная формула непригодна для матричных фотоприемников в связи с их дискретным характером.

Что важнее: качественная фотокамера или объектив? Руководствуясь постулатом прошлых лет - «снимает не камера, снимает объектив» ответ был однозначным: при желании улучшить разрешающую силу системы «фотокамера + объектив» фотограф отдавал предпочтение качественному объективу. Так ли это сейчас, в эпоху цифровой фотографии? Фотокамера имеет несколько параметров качества: дисторсия, аберрация, дифракция, боке, пластичность рисунка. В статье рассматривается только один параметр – разрешающая сила, то есть способность передать в фотографии некоторое количество различимой информации. Передавать отчетливо, резко или чётко, как говорят некоторые.

Терминология

Фотоаппарат состоит из двух основных частей: фотокамеры (body) и объектива. То есть, в этой статье, фотоаппарат не то же самое, что и фотокамера. Изображения составных фотоаппарата я возьму в каталоге где найду исследуемые объективы и фотокамеры. Данные по разрешающей способности фотоаппаратов найдутся на сайтах www.photozone.de и www.dxomark.com.

Разрешающая сила : возможность различить две отдельные точки. Чем меньше расстояние между точками, и при этом они не сливаются в одно пятно, тем выше разрешение фотоаппарата. По-простому говоря, чем выше разрешение фотоаппарата, тем больше информации будет содержаться в фотоснимке, лучше различаются мелкие детали и выше резкость изображения. Разрешающая сила фотоаппарата складывается из разрешающей силы матрицы и разрешающей силы объектива.

Тест MTF50 самый распространенный тест для оценки качества изображения в фотографии. Разрешающая сила определяется фотографированием штриховой шкалы или миры . Штриховая мира это лист бумаги, на котором напечатаны чередующиеся тёмные и светлые полоски с изменяющейся частотой. Чем более тонкие штрихи способен передать фотоаппарат, тем выше его разрешающая способность. Оценивать качество изображения мы будем по количеству различимых полосок помещающихся в высоту кадра. Чем тоньше будут различимые полоски, тем больше таких полосок мы увидим, тем выше качество фотосистемы в целом. Чтобы не усложнять расчеты, я буду использовать лучшее значение разрешающей силы.

Исходные данные . Предположим, мы имеем слабую, всего 8 мегапикселов, фотокамеру Canon 350D и слабый объектив Canon EF-S 18-55mm f/3.5-5.6 IS. Попробуем определить, какие вложения будут эффективны для улучшения такого фотоаппарата:

  • увеличить количество мегапикселов матрицы фотокамеры;
  • использовать более качественный оптику;
  • перейти на полнокадровую (фулфрейм) камеру.

Наращивание мегапикселов

Что произойдет с разрешением, если увеличить количество мегапикселов с 8,2 (у Canon 350D) до 15,5 (например, у Canon 500D)? Количество пикселей матрицы увеличится в 1,89 раза, вероятно, следует ожидать пропорциональный рост увеличения разрешающей способности фотоаппарата. На сайте PHOTOZONE.DE я вижу, что разрешение нашей системы увеличилось с 2164 линий (рис. 1) до 2440 (рис. 2) по высоте кадра, то есть в 1,13 раза по одной стороне матрицы, а по всей матрице: 1,13 2 = 1,28. Прирост 28%, против ожидаемых 89%, как же так?

Для того чтобы ответить на этот вопрос, я поискал информацию о разрешающей способности объектива Canon 18-55. На сайте Dxomark.com было обнаружено, что его разрешающая сила соответствует 8 мегапикселов информации (строка Sharpness на рисунке 3). Сколько бы мы не наращивали мегапикселов в матрице, ограничителем резкости системы будет именно слабый объектив. Собственно, в фотоаппарате «Canon 350D + Canon 18-55» разрешение матрицы соответствует разрешающей силе оптики, такая система является сбалансированной.

Вывод: наращивание мегапикселов при объективе Canon 18-55 даст эффект, но не столь значительный, как ожидалось. Купив более качественный объектив, разрешающая сила фотоаппарата Canon 350D будет ограничиваться уже матрицей с небольшим числом мегапикселов. Подтверждением этому служит иллюстрация 1-4: с хорошим объективом Canon EF 50mm f/1.4 мы получим близкий с Canon 18-55 результат. Это же подтверждает и сайт g-foto.ru, показывая результат 2100 линий для системы «Canon 350D + Canon EF 50mm f/1.4». Улучшение данной системы практически невозможно.

Улучшаем объектив

Слава богу, что современные камеры не столь слабы, как Canon 350D, и скорей всего вы имеете «на борту» больше мегапикселов, например, Canon EOS 500D с матрицей на 15,5 мп. Напомню, что с такой матрицей Canon 18-55 выдавал разрешение 2164 линии. Попробуем найти для камеры более качественный объектив. Canon EF-S 17-85mm f/4-5.6 USM IS «выдаст на гора» 2556 линий по высоте кадра (рис. 4), то есть в 1,18 раза больше. А по всей площади кадра мы получим прирост количества информации в 1,18 2 = 1,4 раза. Очень не дурно… Собственно говоря, это всё, что мы сможем добиться от Canon 500D. Даже самая качественная оптика на этой фотокамере даёт схожие значения разрешающей силы. Например, очень резкий Canon EF 35mm f/2 USM IS, дает с нашей фотокамерой аж 2638 линий по высоте кадра (рис. 5), популярный Canon EF 50mm f/1.4 показал 2600 линий (рис. 6), а профессиональные зуммы показали результат, схожий с «любительским» Canon 17-85mm.

Вывод: для современных камер с «кропнутой» матрицей оптимальным и по цене и по качеству использовать объектив, схожий по разрешающей силе с Canon 17-85. Использование дорогих профессиональных объективов даст едва ощутимый прирост количества информации в кадре.

Хотим больше!

Canon EF 24-105mm f/4 USM L IS непафосный, но хороший объектив, рабочая лошадка профессионального фотографа. На камере с кропнутой 15-ти мегапиксельной матрице она дает нам 2488 линий по высоте кадра (рис. 7). Но на полноформатном Canon 5D Mk II он выдаст 3400(!) линий (рис. 8). То есть количество информации по всей площади кадра увеличится в 1,37 2 = 1,86 раза. Очень хорошо!

Почему получился такой прирост? Все дело в размере матрицы. Предположим, что у нас есть объектив, который выдает 100 линий/мм. В «кропнутой» матрице таких миллиметров 15 (по высоте), значит, матрица сможет принять на себя 100х15 = 1500 линий. В полноформатной фотокамере высота матрицы 24 мм., и на матрицу будет передано уже 2400 линий. Это гигантское преимущество матриц большого размера.

Вывод: можно, конечно, купить к кропнутой фотокамере очень хороший профессиональный объектив, но полностью он проявит себя только на полноформатной фотокамере.

Еще больше?

Дальнейшее наращивание мегапикселов на полноформатной матрице вновь упрется в качество оптики. Уже 30-ти мегапиксельные камеры, чтобы раскрыться во всей своей красе, требуют самых лучших, самых дорогих объективов. Это не только дорого, но еще и неудобно, ибо от зумм-объективов, скорей всего, придется отказаться. Второй вариант наращивания резкости камеры – переход на среднеформатные матрицы, например Hasselblad с матрицей 53х40 мм. Но это совсем другая, фантастическая история.

Разрешающая сила объектива

Среди советских фотоаппаратов есть аппараты ФЭД, которые выпускались в двух вариантах: с объективом «Индустар-26М» и «Индустар-61». Если сравнить основные технические характеристики этих объективов, то никакой разницы мы не обнаружим. Оба объектива имеют совершенно одинаковые фокусные расстояния и одинаковые относительные отверстия. Одинакова и конструкция обоих объективов. Между тем аппарат с «Индустаром-61» стоит дороже, чем с «Индустаром-26М». Чем это объясняется?

Разница, между этими объективами состоит в том, что в объективе «Индустар-61» (рис. 20) две линзы из четырех (первая и последняя) изготовлены из лантанового стекла .

Рис. 20. Оптическая система объектива «Индустар-61». Линзы, очерченные жирным контуром, изготовлены из лантанового стекла

Линзы, изготовленные из оптического стекла, в состав которого входит окись лантана, позволяют улучшить одно из важных свойств объектива - его разрешающую силу.

Разрешающей силой фотографического объектива называют способность объектива давать раздельные резкие изображения мельчайших деталей фотографируемого объекта. Чем выше разрешающая сила объектива, тем меньшие по размерам детали он может четко воспроизвести на фотоснимке.

Разрешающая сила объектива определяется при помощи точной съемки так называемых мир - штриховых таблиц. Эти таблицы фотографируют с сильным уменьшением при наибольшем действующем отверстии объектива, а затем просматривают их изображение на негативе через микроскоп и по числу линий, раздельно передаваемых объективом, судят о его разрешающей силе.

Показателем разрешающей силы объектива служит число линий, раздельно передаваемых объективом в 1 мм в плоскости изображения. Эти данные заносят в технический паспорт объектива.

Разрешающая сила объектива в центре кадра (поля) всегда выше, чем по краям, поэтому в паспорте указываются два ее значения: для центра и для краев поля.

Современные объективы обладают очень большой разрешающей силой - порядка сотен линий на миллиметр, но при фотографировании мир изображение их воспроизводится светочувствительным слоем пленки, который имеет зернистую структуру и поэтому не дает возможности полностью использовать разрешающую силу объектива. Она практически получается меньшей, и именно это ее меньшее значение указывается в техническом паспорте объектива. Запись в паспорте может быть, например, такой: «Разрешающая сила в центре поля - 30 лин/мм , по краям поля - 14 лин/мм ».

Даже самые простые объективы дают в центре поля 20-22 лин/мм , а у хороших разрешающая сила еще больше.

Чтобы иметь представление о том, насколько велика подобная разрешающая сила, достаточно сказать, что здоровый человеческий глаз с расстояния наилучшего зрения (25-30 см) может различить в одном миллиметре не более десяти линий.

Как видите, современный фотографический объектив в несколько раз зорче глаза.

Высокая разрешающая сила объектива несомненно играет важную роль в практической фотографии. Появляется возможность очень четко передать на фотоснимке такие мелкие детали, как листья растений и т. п. С таких негативов можно делать значительно увеличенные фотоотпечатки без существенной потери резкости.

Разрешающая сила лантанового объектива «Индустар-61» выше, чем объектива «Индустар-26М». Надо, однако, знать, что при наибольшем отверстии объектива разрешающая сила может быть практически использована только при очень точной наводке на резкость во время съемки. При малейших нарушениях этого условия, а это случается довольно часто, разрешающая сила объектива практически не используется. Поэтому при покупке фотоаппарата или отдельного объектива не стоит обращать внимания на разрешающую силу объектива. Она всегда больше чем достаточна для получения резких снимков. Гораздо важнее производить во время съемки точную наводку на резкость.

В заключение главы еще раз напомним, что фотографический объектив - весьма точный оптический прибор, требующий осторожного и бережного обращения. Ни в коем случае не разбирайте сами объектив, не вывинчивайте его линз. Вы не сможете собрать его с необходимой точностью. Это дело можно доверить только опытному специалисту, работающему в ремонтной мастерской.

И еще одно напоминание. Линзы современных объективов изготовляются из специальных сортов оптического стекла, при варке которого обычно не удается избежать образования мелких газовых пузырьков. Такие пузырьки могут оказаться и в объективе купленного вами аппарата. Наличие их не оказывает влияния на качество работы объектива, и пусть это вас не волнует.

Из книги История диджеев автора Брюстер Билл

Из книги Кто держит паузу автора Юрский Сергей Юрьевич

Из книги Искусство оформления сайта. Практическое пособие автора Бердышев Сергей Николаевич

Из книги Великие загадки мира искусства автора Коровина Елена Анатольевна

Из книги Цифровая фотография без Photoshop автора Газаров Артур Юрьевич

Из книги Музеи Петербурга. Большие и маленькие автора Первушина Елена Владимировна

Из книги Партитуры тоже не горят автора Варгафтик Артём Михайлович

Из книги Тайнопись искусства [Сборник статей] автора Петров Дмитрий

Хрупкая сила святыни. Владимирская икона Божьей Матери (Ольга Наумова) Она прошла через все испытания нашей истории. Видела основание нового русского государства - сначала Владимиро-Суздальского, потом Московского. Видела нашествие Тамерлана и других завоевателей.

Из книги Учимся фотографировать автора Эртон Дэни

Разрешающая сила объектива

Всякий оптический прибор (фотоаппарат, телескоп, человеческий глаз в том числе) имеет некоторое входное отверстие, через которое свет поступает в прибор, создает изображение и затем анализируется. Изображение объекта в приборе определяется не только потоком излучения, идущего от объекта, но и свойствами самого прибора. Некоторые мелкие детали реального объекта оказываются отсутствующими в его изображении.

Излучение, приходящее от объекта, всегда можно рассматривать состоящим из излучения отдельных светящихся точек его поверхности. Поэтому рассмотрим ситуацию (рисунок 3), когда на непрозрачный экран с круглым отверстием (входное отверстие) падает плоская волна (от удаленного точечного источника). В этом случае будет наблюдаться дифракция Фраунгофера от круглого отверстия. Дифракционную картину можно наблюдать с помощью линзы, поместив в ее фокальной плоскости экран. Вследствие дифракции света на входном отверстии дифракционная картина имеет вид светлого пятна, окруженного дифракционными кольцами. Соответствующие расчеты показывают, что подавляющая часть светового потока попадает в центральное светлое пятно, и угловое расстояние на первый дифракционный минимум, если диметр отверстия

,(18)

Подавляющая часть светового потока попадает в область центрального пятна. Дифракционная картина не зависит от расстояния между отверстием и линзой и не изменится при их совмещении. Следовательно, самая совершенная линза не может дать идеального оптического изображения . Изображение светящейся точки, даваемое линзой, имеет вид пятнышка, являющегося центральным максимумом дифракционной картины. Угловой размер пятнышка уменьшается с ростом диаметра оправы линзы.

При малом угловом расстоянии между светящимися точками их изображения сливаются. Если dl минимальное угловое расстояние, при котором точки воспринимаются раздельно, то разрешающей силой прибора называется . В частности для объектива .



Поделиться