Изготовление полимерных изделий. Полимерные материалы и изделия

Бразильский реал (Brazilian real) - так называется бразильская валюта, которая была в обращении с 1690 по 1942 годы. Когда в обращение вышел первый реал, его форма множественного числа звучала как "рейс" (réis). В настоящее время множественное число от реала - реалы (reais). Реал обозначают знаком R$, а его код в соответствии с международным стандартом ISO 4217 - BRL.

Первый реал, 1690-1942

Португальский реал - это первая валюта, которую использовали португальские переселенцы, прибывшие в Америку. Но первые официальные деньги, носившие имя "реал", на самом деле, были напечатаны в 1654 году голландцами во время захвата ими Северо-востока Бразилии.

Реал стал официальной валютой Бразилии в 1690 году. Он не был разделен на более мелкие единицы. В течение всего срока его существования реал был подвержен инфляции, и базовая единица валюты сместилась с реала до тысячи рейс, а в последние годы эры Старой Республики - и до миллиона рейс. Один миллион рейс обозначался символом Rs перед числовым значением и знаком доллара. То есть 350 рейс записывались как "Rs 350", 1.712 рейс - как "Rs 1$712", а 1.020.800 рейс записывался как "Rs 1:020$800". Таким образом, двоеточие обозначало разделение миллионов, а знак доллара $ - разделение тысяч.

В XVIII - начале XIX века была создана валюта из золота на основе кусочка золота весом 22 карата (14,34 грамм). Стандарт для серебряной монеты был различен в этом периоде и, например, в 1806 году серебряная монета номиналом 640 рейс соответствовала 17,92 грамм серебра 917 пробы. В 1834 году номинал золотой монеты увеличился до 10.000 рейс, а серебряная монета номиналом 1.200 рейс соответствовала 26,89 грамм серебра 917 пробы. В 1846 году золотой стандарт монеты в тысячу рейс установился на значении 822,076 мг золота, что на 37,5% ниже предыдущего стандарта.

После основания республики в 1889 году стоимость валюты упала до уровня 180 мг золота для монеты в тысячу рейс в 1926 году. Золотой стандарт был отменен в 1933 году, когда тысяча рейс была привязана к доллару по курсу 12 тысяч рейс за 1 доллар. В 1942 году реал был заменен крузейро по курсу 1000 реалов за 1 крузейро.

Монеты

В 1750-х годах в обращении находились медные монеты с номиналами в 5, 10, 20 и 40 рейс, серебряные монеты с номиналами в 75, 150, 300 и 600 рейс и золотые монеты с номиналами в 1.000, 2.000, 4.000 и 6.400 рейс. Серебряная монетная система была изменена в 1778 году, когда появились монеты в 80, 160, 320 и 640 рейс. С 1780 год по 1782 год были добавлены золотые монеты с номиналами в 800, 1..600 и 3.200 рейс. В 1809 году старые медные и серебряные монеты были перечеканены португальцами, что удвоило цену монет в 5, 10, 20 и 40 рейс, а также увеличило цену монет с 75, 150, 300 и 600 рейс до 80, 160, 320 и 640 рейс соответственно. Начиная с 1810 года, испанские монеты в 8 рейс были перечеканены для выпуска бразильских монет в 960 рейс. Медные монеты с номиналом в 80 рейс были выпущены в 1811 году.

С 1823 по 1833 год медная монетная система Бразилии претерпела значительные изменения. Начали выпускаться медные монеты с номиналами в 10, 20, 37,5, 40, 75 и 80 реалов, серебряные монеты с номиналами в 80, 160, 320, 640 и 960 реалов, а также золотые монеты в 4.000 и 6.400 реалов.

В течение 1833-1835 гг. монетная система подверглась реформированию. Медные монеты были стандартизированы по всей стране, а также появились перечеканенные монеты в 10, 20 и 40 рейс. Серебряные монеты были выпущены с номиналами в 100, 200, 400, 800 и 1.200 рейс, а золотые - в 10.000 рейс.

Дальнейшее реформирование в 1848-1854 гг. привело к сокращению содержания серебра и золота в монетах, а также к выпуску новых серебряных монет в 200, 500, 1.000 и 2.000 рейс, и золотых монет в 5.000, 10.000 и 20.000 рейс. Выпуск бронзовых монет в 10 и 20 рейс начался в 1868 году, за ним последовал выпуск медно-никелевых монет в 100 и 200 рейс в 1871 году, бронзовых 40 рейс в 1873 г оду и медно-никелевых 50 рейс в 1886 году. Выпуск монет в 10 рейс был прекращен в 1870 году.

В 1901 году появились медно-никелевые монеты в 400 рейс. Затем в 1918 году начался выпуск медно-никелевых монет в 20 рейс. Алюминиево-бронзовые 500 и 1.000 рейс появились в 1922 году, после чего началась чеканка медно-никелевых 200 рейс, алюминиево-бронзовых 2.000 рейс и серебряных 5.000 рейс в 1936 году.

Банкноты

Первые бразильские бумажные деньги были выпущены с 1771 по 1792 год Королевским алмазным управлением, чтобы расплачиваться с добытчиками алмазов. В то время были напечатаны банкноты с различными номиналами на них. Они обращались по своей номинальной цене и могли быть обменены на монеты. В 1808-1857 гг. банкноты выпускались различными провинциями с номиналами в 37, 5, 75, 150, 300, 450, 500, 600, 10.000, 25.000, 50000 и 100.000 рейс.

Первый (частный) Банк Бразилии был основан в 1808 году и начал выпуск банкнот в 1810 году с номиналами в 30, 40, 50, 60, 70, 80, 90, 100, 200, 300 и 400 тысяч рейс. В 1813 году были добавлены банкноты в 4, 6, 8, 10, 12 и 20 тысяч рейс, а в 1828 году - 1 и 2 тысячи рейс. Этот банк был закрыт в 1829 году.

В 1833 году правительство в обмен на медные монеты выпустило банкноты в 1, 2, 5, 10, 20, 50 и 100 тысяч рейс. За ними в 1835 году последовали казначейские билеты в 1, 2, 5, 10, 20, 50, 100, 200 и 500 тысяч рейс. Банкноты в 500 рейс были добавлены в 1874 году, а в 1921 году были выпущены банкноты в миллион рейс. Выпуск казначейских билетов продолжался до вывода из оборота реала, а последние билеты были перепечатаны для выпуска первых банкнот крузейро.

В 1850-1893 гг. несколько частных банков выпускали бумажные деньги номиналом от 10 до 500 тысяч рейс. Среди них были следующие: Банк Бразилии (1853-1890), Банк Мараньан (1857-1885) и Банк Республики Соединенных Штатов Бразилии (1890-1892).

Региональные правительства выпускали бумажные деньги в период с 1892 по 1897 г. Их номиналы были 100, 200 и 500 рейс, а также 1, 2, 5, 10, 50, 100, 200 и 500 тысяч рейс. Они выпускались в штатах Алагоас, Амазонас, Мараньан, Пернамбуко, Риу Гранди ду Норте и Серджипи.

С 1906 по 1910 гг. Конверсионная касса выпустила банкноты номиналом в 10, 20, 50, 100, 200, 500 и 1.000 тысяч рейс. В 1905 году был основан новый Банк Бразилии, который выпускал бумажные банкноты с 1923 по 1942 год номиналами в 1, 2, 5, 10, 20, 50, 100, 200, 500 и 1.000 тысяч рейс. В 1926 году Стабилизирующая касса выпустила золотые банкноты номиналами в 10, 20, 50, 100, 200, 500 и 1.000 тысяч рейс.

Правительства штатов Минас-Жерайс, Риу Гранди ду Сул и Сан Паулу в период с 1924 по 1942 гг. снова выпускали бумажные деньги с номиналами 2, 5, 10, 20, 50, 100, 200 и 500 тысяч рейс.

Второй реал, 1994-

Современный реал (множественное число - реалы) был представлен 1 июля 1994 года во время президентства Итамара Франку и нахождения в должности министра финансов Фернанду Енрике Кардозу как часть плана по стабилизации экономики Бразилии (также известного как План реала). Реал пришел на смену недолговечному крузейро.

Реал был выпущен по курсу R$1.00 = 1 реал реальной стоимости (URV) как валюта, не участвующая в обращении. Во время выпуска обменный курс CR$ (крузейро) к URV составлял 1 URV = CR$2500~3000 (обменный курс доллара США к крузейро в тот день). Поскольку крузейро были изъяты из обращения, была проведена огромная работа по обмену банкнот. В результате множества валютных реформ в настоящее время один реал эквивалентен 2,75 x 1018 рейс 1942 года.

Один реал разделен на 100 сентаво. Симво R$ используется перед числом, а в качестве разделителя десятичных знаков используется запятая (,): R$ 123,45.

Сначала реал был значительно высок в цене по сравнению с долларом США из-за большого притока капитала в конце 1994 и 1995 гг. Постепенно начался процесс обесценивания, завершившийся в 1999 году январским бразильским валютным кризисом, когда реал страдал от девальвации и сильно колебался. После периода н епостоянного валютного курса в 1994-1999 гг. новый президент Центрального банка Арминио Фрага разработал новый курс действий, направленный на борьбу с инфляцией, а это означало окончание периода фиксированного курса. Однако валюта никогда не была по-настоящему "свободной", а скорее в управляемом (грязном) плавании с частыми вмешательствами центрального банка, которые были направлены на регулирование ее цены относительно доллара.

Процесс постепенного обесценивания продолжался до конца 2002 года. Тогда перспектива победы на выборах кандидата от Партии трудящихся Луиса Инасиу Лула да Силва, считающегося радикальным народником, привела к новому валютному кризису и пику инфляции, так как многие бразильцы боялись очередного дефолта или возобновления ортодоксальной экономической политики и скупали материальные ценности, чтобы спастись от инфляции, или просто переводили деньги за границу. В октябре 2002 года реал достиг своего минимального курса за всю историю - R$4 за US$1. Однако вслед за обещаниями тогдашнего президента Центрального банка Арминио Фрага и постоянными утверждениями Лулы и его финансового министра, что будет продолжена макроэкономическая политика (включая нацеленность на борьбу с инфляцией, первичные денежные избытки и плавающий валютный курс, а также на продолжение выплаты государственного долга), реал становился все сильнее и сильнее относительно доллара, а также других мировых валют с начала 2005 года.

В 2007 году, несмотря на различные попытки Центрального банка Бразилии сдержать курс реала, он сильно вырос относительно доллара. В мае 2007 года реал стал стоить больше, чем 50 центов США в первый раз за последние годы. По данным на 26 марта 2008 г., 1 реал = 0,574119 доллара США, а 1 доллар США = 1,74179917 реала.

Монеты

В 1994 году были введены монеты номиналами 1, 5, 10, 25 и 50 сентаво и 1 реал. Все они были отчеканены из нержавеющей стали. В 1998 году была введена вторая серия монет - 1 и 5 сентаво из стали, покрытой медью, 10 и 25 сентаво из стали, покрытой латунью, 50 сентаво из медноникелевого сплава, а также двухветный 1 реал из медноникелевого сплава и латуни (начиная с 2002 года - 50 сентаво из стали и двухцветный 1 реал из латуни и стали). В обороте находятся обе серии монет, но правительство собирается вывести первую серию из обращения. 23 декабря 2003 года монета в 1 реал первой серии стала выводиться из обращения. В ноябре 2005 года Центральный банк Бразилии принял решение прекратить чеканку монет в 1 сентаво из-за их маленького достоинства. Однако находящиеся в обращения монеты продолжают быть действительными.

Серия монет 1994 года.

1 сентаво
5 сентаво
10 сентаво
25 сентаво
50 сентаво
1 реал

Серия монет 1998 года.

1 сентаво
5 сентаво
10 сентаво
25 сентаво
50 сентаво
1 реал

В специальных случаях Центральный банк Бразилии выпускал монеты в один реал особого вида. До настоящего времени было выпущено три разные версии монет к дням особых праздников. Такие монеты отличаются от обычного одного реала только обратной стороной монеты, на которой изображали символ наступающего праздника. Все три версии монет находятся в обращении наряду с обычной.

Рассмотрим общие характеристики полимерных изделий.

Пластмасса — материал, основным компонентом которого являются полимеры и их смеси, обладающий свойством перерабатываться в изделия в вязко-текучем или высоко-эластичном состоянии.

Полимер — группа материалов, основным компонентом которых являются высокомолекулярные соединения.

Сополимер — гомополимеры, видоизмененные за счет внедрения других нехарактерных групп или мономеров. (Различают блок-сополимер или привитые сополимеры).

Гомополимер — полимер состоящий из одинаковых мономеров. (Чистый полимер).

Мономер — это низкомолекулярные вещества, являющиеся основой полимеров.

Полимерную упаковку изготавливают из следующих видов

Целофан (ЦЛ) получают при химической переработке целлюлозы. Применяют в виде пленок и волокон. Достоинства: высокие гигиенические свойства, сравнительно низкая газопроницаемость, высокая проницаемость паров воды, устойчивость к жирам. Недостатки: низкая прочность во влажном состоянии, высокая намокаемость. Получают разнообразные пленки широкого применения, употребляют с учетом свойств присущих ЦЛ.

Эфиры целлюлозы, производные получают этерификацией целлюлозы. Получают: диацетаты, триацетаты, ацетобутираты, этролы и т. п Пленки на их основе хорошо воспринимают печать, следовательно декорируются.

Полиэтилен (ПЭ) впервые был получен путем полимеризации газа этилена. Считается самым объемным по производству и дешевым полимером.

Выпускают три марки ПЭ:

1) ПЭ высокого давления ПЭВД получают при давлении в 1500 атмосфер и температуре 200 °С. Отличается более низкой плотностью, разветвленной формой молекул, эластичностью, мягкостью, гигиеничностью. В основном, это пленки и волокна;

2) ПЭ низкого давления ПЭНД — при давлении в 6 атмосфер и обычной температуре, но в присутствии катализатора Циглера Натта. Отличается высокой плотностью, линейной формой молекул, твердостью, меньшей гигиеничностью по отношению к ПЭВД. Изготавливают ведра, канистры и другие жесткие изделия;

3) ПЭ среднего давления ПЭСД — при давлении 30-40 атмосфер.

В целом, ПЭ довольно морозостойкие, малотермостойкие, подвержены процессу старения, в следствие чего добавляют стабилизаторы в виде аминов. Широко применяется для производства жесткой тары и однослойных или комбинированных упаковочных пленок. ПЭВД чаще применяется для производства потребительской тары, ПЭНД — для производства транспортной тары (бочки, ящики, паллеты и др).

Полипропилен (ПП) начал выпускаться путем полимеризации газа пропилена с катализатором Циглера Натта (горючий, взрывоопасный). От ПЭ отличается большей прозрачностью, гладкостью, блестящей поверхностью, твердостью и жесткостью,

а также термостойкостью, но меньшей морозостойкостью, дает меньшую усадку при охлаждении готовых изделий, сильнее подвержен старению. Эти качества определяют обширную сферу применения ПП.

Выпускают ориентированный и двуосноориентированный полипропилен.

Поливинилхлорид (ПВХ) получают полимеризацией жидкости винилхлорида. Выпускают двух видов:

1) твердый винипласт — используется как конструкционный материал;

2) ПВХ-пластикат — когда в ПВХ смолу добавляют большое количество 50-60% пластификатора. Он нашел применение в производстве пленок.

Известны сополимеры ПВХ:

1) ПВХ и акрилонитрил — пищевые пленки для упаковки;

2) ПВХ и винилиденхлорид — пленки, получившие название сополимер хлористого винила, сарановые пленки — термоусадочные пленки для упаковки продуктов сложной формы;

3) ПВХ и винилацетат — получают мягкую смолу для производства пленок, лакокрасочных материалов, клеев, грампластинок и пр.

В целом ПВХ малотермостоек (до +70 °С). Его морозостойкость зависит от вида пластификатора, имеет большую химическую стойкость, хороший диэлектрик. Сфера применения полимера обусловлена его свойствами.

Полистирол (ПС) получают полимеризацией стирола. Классический ПС очень прозрачен, имеет высокое светопреломление, химическую стойкость, но хрупкий и мало термостойкий (до +80 °С) с высокими изоляционными свойствами. Для производства упаковки применяют ПС высокой молекулярной массы, который обладает высокими оптическими свойствами, прозрачностью, устойчивостью к воздействию воды, растворов кислот и щелочей, устойчивостью к некоторым органическим растворителям. Пленки из ПС прозрачные, но жесткие, поэтому чаще выпускают жесткую тару из ПС. ПС легко формуется, хорошо декорируется и сваривается.

Выпускают сополимеры ПС:

1) ударопрочный ПС и каучуки акрилонитрильные, бутадиеновый. Изготовляют сантехоборудование;

2) акрилбутадиенстирольный — твердый, ударопрочный, легко окрашивающийся материал для корпусов телевизоров, деталей бытовой аппаратуры.

Полистирол и его сополимеры выделяют стирол (ядовитое вещество), поэтому его содержание ограничивается. Выпускают марки «пищевого» и «непищевого» ПС, а также вспененный ПС или стиропор. Из-за его высоких морозостойких и термостойких свойств он нашел довольно широкое применение для выпуска пористых лотков для пищевых продуктов, требующих заморозки, а также стаканчиков под горячее (супы быстрого приготовления).

Полиэтилентерефталат (ПЭТФ) относится к классу полиэфиров, производится синтезом терефталевой кислоты и этиленгли-коля или смеси этиленгликоля и диэтиленгликоля. Он химически инертен, что дает возможность использовать упаковку из него для химической группы товаров. Пленки из ПЭТФ очень прочные, прозрачные, блестящие, выносят большие колебания температур, вследствие чего могут использоваться для продуктов, подвергаемых глубокой заморозке или стерилизации. Выпускают комбинированные пленки: лавсан, ПЭ, лавсан, сополимеры ПЭ, ПП и др. Они позволяют снизить температуру сваривания пленки, следовательно, используются в качестве упаковки широкой группы товаров. Еще одним достоинством ПЭТФ является низкая проницаемость к углекислому газу, вследствие чего бутылки из ПЭТФ широко применяют для фасовки и хранения газированных напитков.

Полиамиды (ПА) — полярные полимеры, характеризуются высокой механической прочностью, особенно в ориентированном состоянии, эластичностью, термо-, жиро- и химической стойкостью, низкой газопроницаемостью, однако высокая гигроскопичность и паропроницаемость являются их недостатками. ПА нашли широкое применение в производстве пленок для упаковки пищевых продуктов, упаковки для масел животного и растительного происхождения, оболочек колбас и сосисок.

Вследствие высоких барьерных свойств ПА, их могут использовать как промежуточный слой в многослойных пленках.

Поликарбонат (ПК) — по химическому строению является производным угольной кислоты, в которой атомы водорода замещены на органические радикалы. Пленки из него обладают высокими прочностными показателями, низкой паро- и газопроницаемостью, большим интервалом колебания температур (от -100 °С до +200 °С), устойчивы к изгибам. Эти свойства обусловливают сферу применения упаковок из ПК. Они широко применяются для упаковок продуктов, которые стерилизуются, замораживаются, а также нагреваются в микроволновой печи.

Полиуретаны (ПУ) получаются синтезом диизоцианитов (жесткий блок) и полиэфиров (мягкий блок). Могут бьггь в высокоэластичном (эластомеры) или твердом стеклообразном состоянии. Вспененные ПУ (поролон) используют в качестве амортизаторов, прокладочных, вспомогательных материалов для транспортной тары.

Перечисленные виды полимеров являются основными при производстве полимерной упаковки.

Полимерные материалы и изделия

Полимерныминазывают материалы, в состав которых в качестве основного компонента входят высокомолекулярные органические вяжущие вещества (полимеры) .

Благодаря способности в процессе переработки принимать требуемую форму и сохранять ее после снятия действующих усилий полимерные материалы называют также пластическими массами (пластмассами или пластиками). Пластмассы, применяемые в строительстве, представляют из себясложные композиции, состоящие из полимерного связующего, наполнителœей, стабилизаторов, пластификаторов, отвердителœей и других компонентов.

Полимеры (от греческого ʼʼполиʼʼ – много, ʼʼмеросʼʼ – часть, доля)- ϶ᴛᴏ высокомолекулярные вещества, молекулы которых состоят из большого количества звеньев одинаковой структуры, взаимодействующих друг с другом посредством ковалентных связей с образованием макромолекул.

По составу основной цепи макромолекул полимеры разделяют на три группы: а) карбоцепные полимеры – макромолекулярные цепи полимера состоят лишь из атомов углерода; б) гетероцепные полимеры, в состав цепей которых входят кроме атомов углерода еще атомы кислорода или серы, азота͵ фосфора и т.п.; в) элементоорганические полимеры, в основные цепи которых могут входить атомы кремния, алюминия, титана и других элементов, имеющие кремнийкислородные, силоксановые связи.

Полимеры могут иметь линœейное, разветвленное или сетчатое (трехмерное) строение , что определяет физико-механические и химические свойства полимеров. Макромолекулы полимеров линœейного строения вытянуты в виде цепей, связанных между собой слабыми силами межмолекулярного взаимодействия (рис. 9а). Для разветвленных полимеров характерно наличие мономерных звеньев, ответвленных от основной цепи макромолекулы (рис. 9б). Сетчатые (трехмерные) структуры полимеров характеризуются тем, что прочные химические связи между цепями (ʼʼсшивкаʼʼ отдельных линœейных или разветвленных цепей полимера) приводят к образованию единого пространственного каркаса (рис. 9в).

Полимеры с макромолекулами линœейного или разветвленного строения плавятся при нагревании с изменением свойств и растворяются в соответствующем органическом растворителœе, а при охлаждении вновь затвердевают. Такие полимеры, способные многократно размягчаться при нагревании и затвердевать при охлаждении, называются термопластичными (термопласты). Напротив, полимеры с макромолекулами трехмерного строения имеют повышенную устойчивость к термическим и механическим воздействиям, не растворяются в растворителях, а лишь набухают. Такие полимеры не могут обратимо размягчаться при повторном нагревании и носят название термореактивных полимеров (реактопласты).

Высокомолекуляр­ные соединœения характеризуются не только структурой молекул, но и моле­кулярной массой . Полимеры обычно имеют молекулярную массу свыше 5000 единиц; высокомолекуляр­ные соединœения с меньшей молекулярной массой называют олигомерами. По мере увеличения молекулярной массы полимера растворимость его в органических раствори­телях снижается, несколько снижается эластичность, однако прочность зна­чительно возрастает.

Свойства многих полимеров неразрывно связаны с величиной молеку­лярной массы и межмолекулярных сил, которые слабее обычных валентных связей. При увеличении молекулярной массы полимера суммарный эффект межмолекулярных сил становится ощутимым, поскольку их источником яв­ляется каждый атом. В этой связи возрастающая роль межмолекулярных сил при повышении молекулярной массы качественно отличает полимеры от низкомолекулярных соединœений.

в
а
б

Рис. 9. Схематическое строение макромолекул полимеров с линœейной (а), разветвленной (б), сетчатой (в) структурой

Для производства полимеров основным сырьем служат мономеры, ᴛ.ᴇ. вещества, способные соединяться друг с другом, образуя полимеры. Моно­меры получают путем переработки природных и нефтяных газов, каменного угля, аммиака, углекислоты и других подобных веществ. Учитывая зависимость отметода получения полимеры подразделяются на полимеризационные, поликонденсационные и модифицированные природные.

Полимеризационные полимеры получают в процессе полимеризации мономеров вследствие раскрытия кратных связей (или раскрытия цикла) и соединœения элементарных звеньев мономера в длинные цепи. Поскольку при реакции полимеризации атомы и их группировки не отщепляются, побочные продукты не образуются, химический состав мономера и полимера одинаков.

Поликонденсационные полимеры получают в процессе реакции поликонденсации двух или нескольких низкомолекулярных веществ. При этой реакции наряду с основным продуктом поликонденсации образуются побочные соединœения (вода, спирты и другие), а химический состав полимера отлича­ется от химического состава исходных продуктов поликонденсации.

Модифицированные полимеры получают из природных высокомолеку­лярных веществ (целлюлоза, казеин) путем их химической модифи­кации для изменения их первоначальных свойств в заданном направлении. Из ацетилцеллюлозы вырабатывают прочные и водостойкие лаки для окрашивания древесины и металла.

К полимеризационным полимерам (термопластам) относятся полиэтилен, полипропилен, полиизобутилен, поливинилхлорид, полистирол, полиметилметакрилат (органическое стекло), поливинилацетат и др.
Размещено на реф.рф
Полиэтилен [-СН 2 -СН 2 -] п – продукт полимеризации этилена. Выпускается в виде гранул размером 3 – 4 мм или белого порошка. Технические свойства полиэтилена зависят от молекулярной мас­сы, разветвленности цепи и степени кристалличности. Полиэтилен один из самых легких полимеров – его плотность меньше плотности воды (0,92-0,97 г/см 3). Характеризуется высоким пределом прочности при растяжении (12-32 МПа), незначительным водопоглощением (0,03-0,04 %), высокой химической стойкостью и морозостойкостью. Сле­дует учитывать особенности полиэтилена, свойственные всœем полимерам с линœей­ной структурой: сравнительно низкий модуль упругости (150-800 МПа), малую твердость, ограниченную теплостойкость (108-130 °С), большой коэффициент теплового расширения. Полиэтилен применяется для производства труб, пленок, теплоизоляционных газонаполненных материалов, тары и сантехнического оборудования.

Поливинилхлорид (ПВХ) является продуктом полимеризации винилхлорида (СH 2 =CHCl). Высокие механические свойства поливинилхлорида определили главные области его применения в строительстве. Из поливинилхлорида изготовляют гидро­изоляционные и отделочные материалы, плинтуса, поручни, оконные и дверные переплеты, линолеум и др.
Размещено на реф.рф
Ценным свой­ством поливинилхлорида является стойкость к действию кислот, ще­лочей, спирта͵ бензина, смазочных масел. По этой причине его широко при­меняют для производства труб, используемых в системах водоснаб­жения, канализации и технологических трубопроводов.

Недостатками поливинилхлорида является резкое понижение прочности при повышении температуры, а также ползучесть при дли­тельном действии нагрузки.

Полистирол [-СН 2 -СНС 6 Н 5 -] п – твердый продукт полимеризации стирола (винилбензола). При обычной температуре полистирол представляет собой твердый прозрачный материал, похожий на стек­ло, пропускающий до 90 % видимой части спектра. Выпускают поли­стирол в виде гранул (6-10 мм), мелкого и крупнозернистого порошка, а также в виде бисера (при суспензионном методе производства) с влажностью до 0,2 %.

Полистирол обладает высокими механическими свойствами (предел прочности на сжатие 80-110 МПа), водостоек, хорошо сопротивляется действию концентрированных кислот (кроме азотной и ледяной ук­сусной кислот), противостоит растворам щелочей (с концентрацией до 40 %). К недостаткам полистирола, ограничивающим его применение, относятся: невысо­кая теплостойкость, хрупкость, проявляющаяся при ударной нагруз­ке.

Применяют для изготовления гидроизоляционных пленок, облицовочных плиток, теплоизоляционных материалов, водопроводных труб и др.

Среди поликонденсационных полимеров (реактопластов) наиболее значимыми являются фенолформальдегидные, карбамидные (мочевиноформальдегидные), эпоксидные, кремнийорганические полимеры, полиуретаны и др.
Размещено на реф.рф
Фенолформальдегидные полимеры получают путем поликонденсации фенола с формальдегидом. Эти полимеры хорошо совмещаются с на­полнителями - древесной стружкой, бумагой, тканью, стеклянным волокном, при этом получаются пластики более прочные и менее хрупкие, чем сами полимеры. По этой причине фенолформальдегидные по­лимеры широко применяют в качестве связующего при изготовлении древесностружечных плит, бумажнослоистых пластиков, стеклопла­стиков и разнообразных изделий из минœеральной ваты. Вместе с тем, они используются для производства клеев, водостойкой фанеры, спиртовых лаков.

Макромолекулы кремнийорганических полимеров состоят из чередующихся атомов кремния и кислорода, а углерод входит лишь в состав групп, обрамляющих главную цепь СН 3 . Наличие силоксановой связи придает свойства, присущие силикатным материалам (прочность, твердость, теплостойкость), а углеводородистых радикалов СН 3 – органическим поли­мерам (эластичность и др.).

Полимеры характеризуются следующими техническими свойствами : термическими (температурой размягчения и теплостойкостью, температурой стеклования и те­кучестью), механическими (прочностью, деформативностью и поверх­ностной твердостью), химическими (атмосферостойкостью и сопротивляемостью деструкции).

В целом, наряду с положительными свойствами полимеров – малой средней плотностью (около 1 г/см 3), низкой теплопроводностью, водо- и газонепроницаемостью, химической стойкостью, высоким коэффициентом конструктивного качества, практически неограниченной сырьевой базой и др.
Размещено на реф.рф
– они обладают и рядом недостатков. К ним относятся: низкая теплостойкость, невысокий модуль упругости, значительная ползучесть, склонность к старению, что в итоге определяет недостаточную долговечность. Вместе с тем, крайне важно учитывать горючесть и определœенную токсичность полимеров. Так, при получении многих полимерных материалов используются в качестве связующего фенолформальдегидные смолы, содержащие до 9 % свободного фенола, до 11 % свободного формальдегида и 1,5-2,0 % метанола. В процессе производства и эксплуатации изделий значительная часть этих высокотоксичных веществ выделяется в воздух. Пенополистирол при обычных условиях эксплуатации (и особенно при горении) выделяет высокотоксичный стирол. Пенополиуретановые теплоизоляционные материалы при горении образуют множество летучих высокотоксичных соединœений, включая синильную кислоту.

Наполнители в пластических массах, снижая расход полимера, удешевляют пластмассы. Вместе с тем, структурируя полимерное связующее, они улучшают ряд технических свойств пластмасс: прочность, твердость, термостойкость, сопротивляемость усадке и ползучести и др.

Наполнители исходя из химической природы разделяют на органические и неорганические; исходя из формы и структуры – порошкообразные и волокнистые. В производстве полимерных композиционных материалов широко применяются органические и неорганические порошкообразные наполнители (древесная мука, отход целлюлозного производства – лигнин, микрослюда, кварцевая мука, тальк и т.д.).

Волокнистыми наполнителями служат целлюлозное, асбестовое и стеклянное, а также синтетические (из капрона, нейлона, лавсана и др.) волокна.

Добавочные вещества. Введение пластификаторов (эфиры алифатических и ароматических кислот и алифатических спиртов, эфиры гликолей и эфиры фосфорной кислоты, эпоксидированные и хлорированные соединœения) позволяет улучшить условия переработки полимерных композиций, снизить их хрупкость. Добавки-стабилизаторы (антиоксиданты, термо- и светостабилизаторы) способствуют длительному сохранению свойств пластмасс в процессе их эксплуатации. Отвердители (сшивающие и вулканизующие агенты) обеспечивают процесс отверждения полимеров (формирование их пространственной структуры). Для получения окрашенных пластмасс используют пигменты . Стойкость пластмасс против возгорания повышают антипирены . Создание газонаполненных (ячеистых) пластмасс достигается с помощью порообразователœей .

Все многообразие пластмасс исходя из назначения их в строительстве сводится к группам: конструкционным, кровельным, гидроизоляционным и герметизирующим; тепло- и звукоизоляционным; отделочным (покрытия полов и стен, лаки, краски, клеи и т.п.) материалам, а также материалам для инженерных коммуникаций. Основными конструкционными материалами на базе полимеров являются полимербетоны. К конструкционно-отделочным материалам относятся стеклопластики, бумажно-слоистые, угольные и другие пластики; древесноволокнистые и древесностружечные плиты (которые могут являться также конструкционно-теплоизоляционными материалами).

Полимербетоны – композиционные материалы, изготовляемые преимущественно на базе термореактивных полимеров: поли­эфирных, эпоксидных, фенолоформальдегидных, фурановых и др.
Размещено на реф.рф
Заполнители выбираются исходя из вида агрессивной среды эксплуатации. Для кислых сред получают полимербетоны на кислотостойких за­полнителях – кварцевом песке и щебне из кварцита͵ базальта или гра­нита. Используют также бой кислотоупорного кирпича, кокс, антра­цит, графит. Наиболее высокие физико-механические свойства полимербетоны имеют на эпоксидных смолах. Для уменьшения расхода и стоимости эпоксидных смол их модифицируют каменноугольной смолой (до 35-50 %). Широкое распространение получили полимербетоны на фурановых полимерах, которые модифицируют эпоксидны­ми смолами для улучшения свойств композиций.

Расход связующего составляет 100-200 кг на 1 м 3 полимербетона при соотношении полимера к наполнителю 1:5-1:12 по массе. Технология при­готовления и уплотнения полимербетонов такая же, как и цементных. Термообработка при 40-80 °С значительно ускоряет процесс тверде­ния. Полимербетоны (полимеррастворы) хорошо склеиваются с це­ментным бетоном, в связи с этим их применяют для ремонта желœезобетон­ных конструкций. Для уменьшения хрупкости полимербетона применяют волок­нистые наполнители – асбест, стекловолокно и др.
Размещено на реф.рф
Полимербетоны отличаются от обычного цементного бетона не только химической стойкостью (особенно по отношению к кислотам), но и высокими показателями прочности , в особенности при растяжении (7-20 МПа) и изгибе (16-40 МПа). Прочность при сжатии достигает 60-120 МПа. Морозостойкость полимербетонов может иметь 200-300 и более циклов за­мораживания и оттаивания; теплостойкость 100-200 °С (до 300 °С). Но их стои­мость в несколько раз выше цементных бетонов.

Применяют полимербетоны для химически стойких конструкций, износостойких покрытий, там, где высокая стоимость полимербето­нов будет оправдана. Отрицательными свойствами полимербетонов яв­ляются их большая ползучесть и старение, усиливающееся при действии попеременного нагревания и охлаждения. Не­обходимо соблюдение специальных правил охраны труда при работе с полимерами и кислыми отвердителями, могущими вызвать ожоги. В частности необходимы хорошая вентиляция, обеспечение рабочих защитными очками, резиновыми рукавицами, спецодеждой.

Стеклопластики - ϶ᴛᴏ композиционные листовые материалы, из­готовляемые из стеклянных волокон или тканей, связанных по­лимером. Связующим веществом в стеклопластиках обычно служат феноло-формальдегидные, полиэфирные и эпоксидные полимеры. Выпускают три разновидности стеклопластиков: на базе ориен­тированных волокон, рубленых волокон и тканей или матов. Стеклопластики с ориентированными волокнами (типа СВАМ – стекловолокнистого анизотропного материала) обладают большой прочностью (при растяжении до 1000 МПа), легкостью (их плотность 1,8-2 г/см 3), что в сочетании с химической стойкостью делает их эф­фективным материалом для строительных конструкций, емкостей и труб. Стеклопластики с рубленым стеклянным волокном изготовляют в виде волокнистых или плоских листов на полиэфирном связующем, обладающим светопрозрачностью. Эти изделия применяют для уст­ройства кровель, ограждений балконов, лоджий и перегородок. Стеклопластики, изготовляемые на базе стеклянной ткани (стеклотекстолиты) , получают горячим прессованием полотнищ ткани, пропитанной термореактивным полимером, при высоком дав­лении и температуре. Стеклотекстолит идет для наружных слоев трехслойных стеновых панелœей. Этот же материал применяют для ус­тройства оболочек и других строительных конструкций. Стеклотекстолиты получают также прессованием пастообразной массы из полиэфирного полимера, стекловолокна, асбеста и порош­кообразного наполнителя. Из этого материала формуют оконные и дверные блоки, фурнитуру, санитарно-технические изделия.

Бумажно-слоистые пластики изготовляют из нескольких слоев специальной бумаги, пропитанных фенолоформальдегидным или карбамидным полимером. Пластик выпускают в виде листов длиной 1000-3000 мм, шириной 600-1600 мм, толщиной 1-5 мм. Бумажно-слоистые пластики разнообразны по цвету и рисунку, хорошо обраба­тываются – их можно пилить, сверлить. Пластик тол­щиной до 1,6 мм крепят битумно-каучуковыми и другими мастиками, эпоксидными и резорциноформальдегидными клеями. Более толстые листы пластика крепят механическим способом.

Полимерные материалы и изделия - понятие и виды. Классификация и особенности категории "Полимерные материалы и изделия" 2017, 2018.

Полимеры окружают нас повсюду, большинство предметов общего употребления изготовлены именно из них. Существует несколько видов полимерных материалов. Об их особенностях, свойствах и характеристике поговорим далее.

Классификация полимерных материалов и изделий

Полимерные материалы объединяют в себе несколько групп пластика синтетического происхождения. Среди них отметим:

  • полимерные вещества;
  • пластмассовые составы;
  • ПКМ - полимерные композитные материалы.

В каждой из перечисленных групп присутствует полимерное вещество, с помощью которого можно определить характеристику того или иного состава. Полимеры являются высокомолекулярными веществами, в которые вводят специальные добавки, то есть стабилизаторы, пластификаторы, смазки и т.д.

Пластмасса - является композиционным материалом, в основе которых лежит полимер. Кроме того, в их составе содержится наполнитель дисперсного или коротковолокнистого типа. Наполнители не склонны к образованию непрерывных фаз. Различают два вида пластмассовых веществ:

  • термопластик;
  • термоактивы.

Первый вариант пластмасс склонен к расплавлению и дальнейшему использованию, второй вариант пластмассы не склонен к расплавлению под воздействием высокой температуры.

В соотношении со способом полимеризации, пластмассы добывают с помощью:

  • поликонцентрирования;
  • полиприсоединений.

Рассматривая виды полимерных веществ, выделим:

1. Вид полиоэфинов - полимеры с одинаковой химической природой относятся к данной разновидности полимеров. В их составе присутствует два вещества:

  • полиэтиленовое;
  • полипропиленовое.

Каждый год, в мире производят более ста пятидесяти тонн таких полимеров. Среди преимуществ полиоэфинных веществ отметим:

  • устойчивость перед окислителями и разрывом;
  • механическая стойкость;
  • отсутствие усадки;
  • изменение свойств при необходимости.

Если сравнивать полиоэфины с другими типами полимерных веществ, то первые отличаются наибольшей экологической безопасностью. Для их изготовления и переработки материалов необходимо минимальное количество энергии.

2. Полиэтилен широко распространен в процессе упаковки любых изделий. Среди преимуществ использования данного материала отметим широкую сферу применения и отличные эксплуатационные характеристики.

Строение полиэтилена довольно простое, поэтому он легко кристаллизуется.

Полиэтиленовые вещества с высоким давлением. Данный материал отличается наличием легкого матового блеска, пластичностью, наличием волнообразной текстуры. Данный вид пленки отличается высокой механической стойкостью, устойчивостью перед ударами и разрывом, прочностью даже при морозе. Для его размягчения потребуется наличие температуры около ста градусов.

Полиэтиленовые вещества с низким давлением. Пленки такого типа имеют жесткую, прочную основу, которая отличается меньшей волнообразностью, по сравнению с предыдущим вариантом полиэтилена. Для стерилизации данного вещества используется пар, а температура его размягчения составляет более ста двадцати одного градуса. Несмотря на наличие высокой стойкости перед сжатием, пленка отличается более низкими характеристиками стойкости перед ударом и разрывом. Однако, среди их преимуществ также отмечают стойкость перед влагой, химическими веществами, жиром, маслом.

Использование полиэтилена при комнатной температуре позволяет получить более мягкую и гибкую его текстуру. Однако, в морозных условиях, данные характеристики сохраняются. Поэтому полиэтилены используются для хранения замороженной продукции. Однако, при повышении температуры до ста градусов тепла, характеристики полиэтилена изменяются, он становится непригодным к использованию.

Полиэтилен низкого давления используется при изготовлении бутылок и для упаковки разного рода веществ. Он обладает отличными эксплуатационными характеристиками.

Полиэтилен высокого давления более широко применим как упаковочный полимер. У него присутствует низкая кристалличность, мягкость, гибкость и доступная стоимость.

3. Полипропилен - материал у которого присутствует отличная прозрачность, высокая температура расплавления, химическая стойкость и устойчивость перед влагой. Полипропилен способен пропускать пар, неустойчив перед кислородом и окислителями.

4. Поливинилхлорид - довольно хрупкий и не эластичный материал, который чаще всего используется в качестве добавки к полимерам. Отличается дешевой стоимостью, высоковязким расплавом, термической нестабильностью, а при нагреве, склонен выделять токсичные вещества.

Технология производства полимерных материалов

Изготовление полимеров - довольно сложный процесс, для выполнения которого следует учитывать многие технические моменты работы с данными материалами. Различают несколько разновидностей технологий изготовления материалов на полимерной основе. Полимерные материалы, изделия, оборудование, технологии, методы:

  • вальцево-каландровый метод;
  • применение трехкомпонентной технологии;
  • использование экструзии термопластиковых изделий;
  • метод литья полимеров крупной, средней и маленькой формы;
  • формирование полистирольных веществ;
  • изготовление плит из пенополистирола;
  • выдувной метод;
  • изготовление изделий на основе ППУ.

Самыми популярными методами производства изделий из полимерных материалов являются выдув и термоформировка. Для выполнения первого метода главными исходными материалами выступает полиэтилен и полипропиленовые составы. Среди основных характеристик полиэтилена отметим быструю усадку, стойкость к температурной нестабильности. С помощью выдува формируются изделия объемной формы.

С помощью термической формировки удается сделать пластиковую посуду. В таком случае, процедура изготовления изделий состоит из трех этапов. Вначале определяют количество пластика, далее он помещается в предварительно подготовленную форму, далее производится его расплавливание. Пластмасса устанавливается под прессом, далее она закрывается. В формирующей станции изделия доводится до нужной формы, на следующем этапе производится его охлаждение и затвердение. Далее изделие извлекают из формы и выбрасывают в специальный резервуар.

Использование современного оборудования для изготовления пластмассовых изделий, позволяет получить вещество, отличающееся прочностью, длительностью эксплуатации.

Выделяют оборудование автоматизированного типа, с его помощью также производят полимерные вещества. В таком случае, в процессе работы над полимерными изделиями человеческий фактор практически отсутствует вся работа проводится специальными роботами.

С помощью применения автоматизированного оборудования удается получить вещества, отличающиеся более высоким качеством, широким ассортиментом продукции и снижением расходов на их изготовление.

Различают огромное количество изделий из полимерных материалов. Они различаются между собой по величине, способу изготовления, составу, Для изготовления полимеров используют вещества в виде:

  • натуральных полиамидов с содержанием стекловолокна;
  • полипропиленов, которые делают изделия стойкими перед морозом;
  • поликарбонатов;
  • полиуретана;
  • ПВХ и т.д.

Кровельные полимерные материалы и изделия в строительной отрасли

Любая кровля должна быть долговечной и надежной. Довольно популярными отделочными материалами для кровли являются изделия на основе полимерных материалов. Среди преимуществ их использования отметим:

  • высокую степень эластичности;
  • надежность;
  • отличную прочность;
  • стойкость перед растяжением и механическими повреждениями;
  • установка практически в любом климатическом регионе;
  • легкий монтаж и простая эксплуатация;
  • длительность эксплуатации.

Использование мембранной кровли полимерного состава основывается на механическом креплении сначала теплоизоляционного и гидроизоляционного слоев. С помощью мембраны удается создать различные по форме и конфигурации кровли зданий.

Выделяют несколько видов полимерных мембран в зависимости от их состава и основных характеристик:

  • поливинилхлоридные мембраны, в составе которых присутствуют дополнительные наполнители;
  • мембраны на основе пластичных полиэфинов;
  • мембраны, в составе которых присутствует этиленпропилендиенпономер.

Первый вариант мембраны отличается особой популярностью. Основным составляющим веществом мембраны является поливинилхлорид и разного рода добавки. С их помощью состав становится более устойчив перед низкой температурой. В качества армирования пленки используется сетка из полиэстера. Она делает изделие более прочным и стойким к разрыву. Именно с помощью данных характеристик удается обеспечить механическое крепление пленки.

Если рассматривать недостатки ПВХ мембран, то стоит отметить потерю их эластичности, по прошествии определенного периода эксплуатации. Так как, добавки, присутствующие в их составе со временем теряют свойства. Кроме того, данный материал ни в коем случае не используется с гидроизоляторами на битумной основе, они между собой несовместимы. Длительность эксплуатации ПВХ мембран составляет не более тридцати лет.

Мембраны на основе термопластичных полиэфинов содержат в составе каучук и особые вещества, улучшающие их пожарную безопасность. В данном материале удается удачность скомбинировать пластичность и резину. Среди их преимуществ отметим:

  • совместимость с веществами на битумной основе;
  • длительность эксплуатации, не нуждаются в ремонте до сорока лет;
  • существует возможность ремонта поверхности, при необходимости;
  • легки в монтаже;
  • более длительный срок эксплуатации, по сравнению с материалами на основе ПВХ.

Среди недостатков отметим только более высокую стоимость такой кровли. Которая вполне перекрывается всеми ее достоинствами.

Мембраны на основе ЭПДМ отличаются отличной стойкостью перед климатическими изменениями, эластичностью и длительностью эксплуатации.

Среди большого количества полимерных строительных материалов и изделий, к особой группе относят наличную полимерную кровлю. Среди преимуществ ее применения, отмечают:

  • отличные гидроизоляционные характеристики;
  • высокий уровень прочности;
  • стойкость к изменению температуры;
  • высокий уровень морозостойкости;
  • отсутствие стыков;
  • высокая стойкость к механическим повреждениям и износу;
  • стойкость перед гниением;
  • разнообразие цветовых решений;
  • легкость выполнения монтажных работ;
  • срок эксплуатации составляет около пятнадцати лет.

Полимерная кровля наливного характера очень схожа с мембраной, однако, они различаются в технологии монтажа материала. В зависимости от технологии наливки кровли она бывает:

  • полимерной;
  • полимерно-резиновой.

Первый вариант более распространен из-за наличия в нем огромного количества преимуществ. Для нанесения данного типа кровли потребуется налить состав на поверхность и равномерно распределить его с помощью кисти или валиком. Главным преимуществом данной кровли является полная ее герметичность, эластичность и монолитность.

В соотношении с технологией установки наливной кровли, она бывает:

  • армированной;
  • неармированной;
  • комбинированной.

Наливная кровля с армированием содержит в своем составе цельную битумную эмульсию и дополнительное армирование с помощью стеклоткани. Неармированное покрытие состоит из эмульсионного материала, который наносится непосредственно на кровлю, толщиной около 1 мм. Комбинированный вариант предполагает использование полимерных мастик, гидроизоляционных материалов рулонного типа, верхнего слоя, в составе которого присутствует каменная крошка, гравий и краска на влагостойкой основе. Нижний слой кровли содержит подкладку в виде недорогого рулонного материала. При этом, армирование обеспечивается верхним слоем из каменной крошки.

В составе полимерной наливной кровли присутствует:

  • композиции полимерного типа;
  • наполнители, повышающие эксплуатационные характеристики материала;
  • грунтовка, с помощью которой выполняется подготовка основания перед нанесением кровли;
  • армирующий состав - полиэфирное волокно или стеклоткань.

Довольно распространенным вариантом является использование кровли на основе полиуретана. Она отлично ложится на поверхность и легко устанавливается на сложных участках вблизи дымохода или телевизионной антены. Полиуретан делает кровлю схожей с резиной, он придает ей таких качеств как стойкость к перепаду температур, длительность эксплуатации.

Еще одним вариантом полимера на органической основе, используемого в процессе ремонта и изготовления наливной кровли, является полимочевина. Среди ее преимуществ отметим:

  • очень быстрая полимеризация, для хождения по кровле достаточно подождать один час после нанесения материала;
  • способность проводить работы при температуре до -16 и высокой влажности;
  • отличные электроизоляционные характеристики;
  • стойкость перед ультрафиолетовым излучением;
  • пожарная безопасность и стойкость перед высокой температурой;
  • длительность эксплуатации;
  • экологическая безопасность.

Применение полимерных материалов и изделий связано с разными отраслями промышленности и общественности. Использование полимочевины особо актуально в регионах с нестабильным климатом и резкими изменениями температурного режима.



Поделиться