Механизация животноводства: состояние и перспективы. продолжительность дней локтации

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство Сельского Хозяйства РФ

Федеральное государственное образовательное учреждение высшего профессионального образования

Алтайский Государственный Аграрный Университет

КАФЕДРА: МЕХАНИЗАЦИИ ЖИВОТНОВОДСТВА

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПО ДИСЦИПЛИНЕ

«ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ПРОДУКЦИИ

ЖИВОТНОВОДСТВА»

КОМПЛЕКСНАЯ МЕХАНИЗАЦИЯ ЖИВОТНОВОДЧЕСКОЙ

ФЕРМЫ - КРС

Выполнил

студент 243 гр

Штергель П.П

Проверил

Александров И.Ю

БАРНАУЛ 2010г.

АННОТАЦИЯ

В данной курсовой работе произведён выбор основных производственных зданий для размещения животных стандартного типа.

Основное внимание уделено вопросам разработки схемы механизации производственных процессов, выбору средств механизации на основе технологических и технико-экономических расчётов.

ВВЕДЕНИЕ

Повышение уровня качества продукции и обеспечение соответствия её показателей качества нормам является важнейшей задачей, решение которой немыслимо без наличия квалифицированных специалистов.

В данной курсовой работе приведены расчёты скотомест на ферме, выбор зданий и сооружений для содержания животных, разработка схемы генерального плана, разработка механизации производственных процессов включающая в себя:

Проектирование механизации подготовки кормов: суточные рационы каждой группы животных, количество и объем хранилищ кормов, производительность кормоцеха.

Проектирование механизации раздачи кормов: требуемая производительность поточной технологической линии раздачи кормов, выбор кормораздатчика, количество кормораздатчиков.

Водоснабжение фермы: определение потребности в воде на ферме, расчёт наружной сети водопровода, выбор водонапорной башни, выбор насосной станции.

Механизация уборки и утилизации навоза: расчёт потребности в средствах удаления навоза, расчёт транспортных средств для доставки навоза в навозохранилище;

Вентиляция и отопление: расчёт вентиляции и отопления помещения;

Механизация доения коров и первичной обработки молока.

Приведены расчеты экономических показателей, изложены вопросы по охране природы.

1. РАЗРАБОТКА СХЕМЫ ГЕНЕРАЛЬНОГО ПЛАНА

1.1 РАЗМЕЩЕНИЕ ПРОИЗВОДСТВЕННЫХ ЗОН И ПРЕДПРИЯТИЙ

Плотность застройки площадок сельскохозяйственными предприятиями регламентируется данными. табл. 12.

Минимальная плотность застройки составляет 51- 55%

Ветеринарные учреждения (за исключением ветсанпропускников), котельные, навозохранилища открытого типа строят с подветренной стороны по отношению к животноводческим зданиям и сооружениям.

Выгульно-кормовые дворы или выгульные площадки располагают у продольных стен здания для содержания скота.

Хранилища кормов и подстилки строят с таким расчётом, чтобы обеспечивались кратчайшие пути, удобство и простота механизации подачи подстилки и кормов к местам использования.

Ширина проездов на площадках сельскохозяйственных предприятий рассчитывается из условий наиболее компактного размещения транспортных и пешеходных путей, инженерных сетей, полос деления с учётом возможного заноса снегом, но она не должна быть менее противопожарных, санитарных и зооветеринарных расстояний между противостоящими зданиями и сооружениями.

На участках, свободных от застройки и покрытий, а также по периметру площадки предприятия следует предусмотреть озеленение.

2. Выбор зданий для содержания животных

Количество скотомест для предприятия крупного рогатого скота молочно-товарного направления, 90% коров в структуре стада, рассчитывается с учётом коэффициентов приведённых в таблице 1. стр. 67.

Таблица 1. Определения количества скотомест на предприятии

На основании расчетов выбираем 2 коровника на 200 голов привязного содержания.

Новотельные и глубокостельные с телятами профилакторного периода находятся в родильном отделении.

3. Приготовление и раздача кормов

На ферме КРС будем использовать следующие виды кормов: сено разнотравные, солому, силос кукурузный, сенаж, концентраты (мука пшеничная), корнеплоды, соль поваренная.

Исходными данными для разработки этого вопроса являются:

Поголовье фермы по группам животных (см. раздел 2);

Рационы каждой группы животных:

3.1 Проектирование механизации подготовки кормов

Разработав суточные рационы каждой группы животных и зная их поголовье, приступаем к расчёту требуемой производительности кормоцеха, для чего рассчитываем суточный рацион кормов, а так же количество хранилищ.

3.1.1 ОПРЕДЕЛЯЕМ СУТОЧНЫЙ РАЦИОН КОРМОВ КАЖДОГО ВИДА ПО ФОРМУЛЕ

m j - поголовье j - той группы животных;

a ij - количество кормов i - того вида в рационе j - той группы животных;

n - количество групп животных на ферме.

Сено разнотравное:

qсут.10 = 4 263+4 42+3 42+3·45=1523 кг.

Силос кукурузный:

qсут.2 = 20 263+7,5·42+12·42+7,5·45=6416,5 кг.

Сенаж бобово-злаковый:

qсут.3 = 6·42+8·42+8·45=948 кг.

Солома яровой пшеницы:

qсут.4 = 4 263+42+45=1139 кг.

Мука пшеничная:

qсут.5 = 1,5 42+1,3·45+1,3 42+263·2 =702,1 кг.

Соль поваренная:

qсут.6 = 0,05 263+0,05 42+ 0,052 42+0,052 45 =19,73 кг.

3.1.2 ОПРЕДЕЛЯЕМ СУТОЧНУЮ ПРОИЗВОДИТЕЛЬНОСТЬ КОРМОЦЕХА

Q сут. = ? q сут.

Q сут. =1523+6416,5+168+70,2+948+19,73+1139=10916 кг

3.1.3 ОПРЕДЕЛЯЕМ ТРЕБУЕМУЮ ПРОИЗВОДИТЕЛЬНОСТЬ КОРМОЦЕХА

Q тр. = Q сут. /(Т раб. d)

где Т раб. - расчетное время работы кормоцеха для выдачи корма на одно кормление (линии выдачи готовой продукции), ч.;

Т раб. = 1,5 - 2,0 ч.; Принимаем Т раб. = 2ч.; d - кратность кормления животных, d = 2 - 3. Принимаем d = 2.

Q тр. =10916/(2·2)=2,63 кг/ч.

Выбираем кормоцех ТП 801 - 323, обеспечивающий расчётную производительность и принятую технологию обработки кормов, стр. 66.

Доставка кормов к животноводческому помещению и их раздача внутри помещения осуществляется мобильным техническим средством РММ 5,0

3.1.4 ОПРЕДЕЛЯЕМ ТРЕБУЕМУЮ ПРОИЗВОДИТЕЛЬНОСТЬ ПОТОЧНОЙ ТЕХНОЛОГИЧЕСКОЙ ЛИНИИ РАЗДАЧИ КОРМОВ В ЦЕЛОМ ДЛЯ ФЕРМЫ

Q тр. = Q сут. /(t разд. d)

где t разд. -время, отводимое по распорядку дня фермы на раздачу кормов (линии выдачи готовой продукции), ч.;

t разд. = 1,5 - 2,0 ч.; Принимаем t разд = 2ч.; d - кратность кормления животных, d = 2 - 3. Принимаем d = 2.

Q тр. = 10916/(2·2)=2,63 т/ч.

3.1.5 определяем фактическую производительность одного кормораздатчика

Gк - грузоподъемность кормораздатчика, т; tр - длительность одного рейса, ч.

Q р ф =3300/0,273=12088 кг/ч

t р. = t з + t д + t в,

tр = 0,11+0,043+0,12=0,273 ч.

где tз,tв - время загрузки и выгрузки кормораздатчика, т; tд - время движения кормораздатчика от кормоцеха к животноводческому помещению и обратно, ч.

3.1.6 определяем время загрузки кормораздатчика

где Qз - подача технического средства на погрузке, т/ч.

tз=3300/30000=0,11 ч.

3.1.7 определяем время движения кормораздатчика от кормоцеха к животноводческому помещению и обратно

tд=2·Lср/Vср

где Lср - среднее расстояние от места загрузки кормораздатчика до животноводческого помещения, км; Vср - средняя скорость движения кормораздатчика по территории фермы с грузом и без груза, км/ч.

tд=2*0,5/23=0,225 ч.

где Qв - подача кормораздатчика, т/ч.

tв=3300/27500=0.12 ч.

Qв= qсут ·Vр/a · d ,

где а - длина одного кормо-места, м; Vр - расчетная скорость кормораздатчика, м/с; qсут - суточный рацион животных; d - кратность кормления.

Qв= 33·2/0,0012·2=27500 кг

3.1.7 Определяем количество кормораздатчиков выбранной марки

z = 2729/12088=0,225 , принимаем- z =1

3.2 ВОДОСНАБЖЕНИЕ

3.2.1 ОПРЕДЕЛЯЕМ СРЕДНЕСУТОЧНЫЙ РАСХОД ВОДЫ НА ФЕРМЕ

Потребность в воде на ферме зависит от количества животных и норм водопотребления, установленных для животноводческих ферм.

Q ср.сут. = m 1 q 1 + m 2 q 2 + … + m n q n

где m 1 , m 2 ,… m n - число каждого вида потребителей, голов;

q 1 , q 2 , … q n - суточная норма потребления воды одним потребителем, (для коров - 100 л, для нетелей - 60 л);

Q ср.сут = 263 100+42 100+45 100+42 60+21·20=37940 л/сут.

3.2.2 ОПРЕДЕЛЯЕМ МАКСИМАЛЬНЫЙ СУТОЧНЫЙ РАСХОД ВОДЫ

Q m .сут. = Q ср.сут. б 1

где б 1 = 1,3 - коэффициент суточной неравномерности,

Q m .сут = 37940 1,3 =49322 л/сут.

Колебания расхода воды на ферме по часам суток учитывают коэффициентом часовой неравномерности б 2 =2,5:

Q m .ч = Q m .сут ?б 2 / 24

Q m .ч = 49322 2,5 / 24 =5137,7 л/ч.

3.2.3 ОПРЕДЕЛЯЕМ МАКСИМАЛЬНЫЙ СЕКУНДНЫЙ РАСХОД ВОДЫ

Q m .с = Q т.ч / 3600

Q m .с =5137,7/3600=1,43 л/с

3.2.4 РАСЧЁТ НАРУЖНОЙ СЕТИ ВОДОПРОВОДА

Расчёт наружной сети водопровода сводится к определению диаметров труб и потерь напора в них.

3.2.4.1 ОПРЕДЕЛЯЕМ ДИАМЕТР ТРУБЫ ДЛЯ КАЖДОГО УЧАСТКА

где v - скорость воды в трубах, м/с, v = 0,5-1,25 м/с. Принимаем v = 1 м/с.

участок 1-2 протяженность - 50 м.

d = 0,042м, принимаем d = 0,050 м.

3.2.4.2 ОПРЕДЕЛЯЕМ ПОТЕРИ НАПОРА ПО ДЛИНЕ

где л - коэффициент гидравлического сопротивления, зависящий от материала и диаметра труб (л = 0,03); L = 300 м - длина трубопровода; d - диаметр трубопровода.

3.2.4.3 ОПРЕДЕЛЯЕМ ВЕЛИЧИНУ ПОТЕРЬ В МЕСТНЫХ СОПРОТИВЛЕНИЯХ

Величина потерь в местных сопротивлениях составляет 5 - 10% от потерь по длине наружных водопроводов,

h м = = 0,07 0,48= 0,0336 м

Потери напора

h = h т + h м = 0,48+0,0336 = 0,51 м

3.2.5 ВЫБОР ВОДОПРОВОДНОЙ БАШНИ

Высота водонапорной башни должна обеспечить необходимый напор в наиболее удалённой точке.

3.2.5.1 ОПРЕДЕЛЯЕМ ВЫСОТУ ВОДОПРОВОДНОЙ БАШНИ

H б = H св + H г + h

где H св - свободный напор у потребителей, H св = 4 - 5 м,

принимаем H св = 5 м,

H г - геометрическая разность нивелирных отметок в фиксирующей точке и в месте расположения водонапорной башни, H г = 0, т. к. местность ровная,

h - сумма потерь напора в наиболее удалённой точке водопровода,

H б = 5 + 0,51= 5,1 м, принимаем H б = 6,0 м.

3.2.5.2 ОПРЕДЕЛЯЕМ ОБЪЁМ ВОДОПРОВОДНОГО БАКА

Объем водонапорного бака определяется необходимым запасом воды на хозяйственно-питьевые нужды, противопожарные мероприятия и регулирующим объемом.

W б = W р + W п + W х

где W х - запас воды на хозяйственно - питьевые нужды, м 3 ;

W п - объём на противопожарные мероприятия, м 3 ;

W р - регулирующий объём.

Запас воды на хозяйственно - питьевые нужды определяется из условия бесперебойного водоснабжения фермы в течение 2 ч на случай аварийного отключения электроэнергии:

W х = 2Q т.ч. = 2 5137,7 10 -3 = 10,2 м

На фермах с поголовьем более 300 голов устанавливаются специальные противопожарные резервуары, рассчитанные на тушение пожара двумя пожарными струями в течение 2 ч с расходом воды 10 л/с, поэтому W п =72000 л.

Регулирующий объём водонапорной башни зависит от суточного потребления воды , табл. 28:

W р = 0,25 49322 10 -3 = 12,5 м 3 .

W б = 12,5+72+10,2 = 94,4 м 3 .

Принимаем: 2 башни объёмом резервуара 50 м 3

3.2.6 ВЫБОР НАСОСНОЙ СТАНЦИИ

Выбираем тип водоподъёмной установки: принимаем центробежный погружной насос для подачи воды из буровых колодцев.

3.2.6.1 ОПРЕДЕЛЯЕМ ПРОИЗВОДИТЕЛЬНОСТЬ НАСОСНОЙ СТАНЦИИ

Производительность насосной станции зависит от максимальной суточной потребности в воде и режима работы насосной станции.

Q н = Q m .сут. /Т н

где Т н -время работы насосной станции, ч. Т н = 8-16 ч.

Q н =49322/10 =4932,2 л/ч.

3.2.6.2 ОПРЕДЕЛЯЕМ ПОЛНЫЙ НАПОР НАСОСНОЙ СТАНЦИИ

Н = Н гв + h в + Н гн +h н

где Н - полный напор насоса, м; Н гв - расстояние от оси насоса до наименьшего уровня воды в источнике, Н гв = 10 м; h в - величина погружения насоса, h в = 1,5…2 м, принимаем h в = 2 м; h н - сумма потерь во всасывающем и нагнетательном трубопроводах, м

h н = h в с + h

где h - сумма потерь напора в наиболее удалённой точке водопровода; h вс - сумма потерь напора во всасывающем трубопроводе, м, можно пренебречь

ферма балансовый производительность оборудование

Н гн = Н б ± Н z + Н р

где Н р - высота бака, Н р = 3 м; Н б - высота установки водонапорной башни, Н б = 6м; Н z - разность геодезических отметок от оси установки насоса до отметки фундамента водонапорной башни, Н z = 0 м:

Н гн = 6,0+ 0 + 3 = 9,0 м.

Н = 10 + 2 +9,0 + 0,51 = 21,51 м.

По Q н =4932,2 л/ч = 4,9322м 3 /ч., Н = 21,51 м. выбираем насос:

Берём насос 2ЭЦВ6-6,3-85.

Т.к. параметры выбранного насоса превышают расчетные, то насос будет загружен не полностью; следовательно, насосная станция должна работать в автоматическом режиме (по мере расхода воды).

3.3 УБОРКА НАВОЗА

Исходными данными при проектировании технологической линии уборки и утилизации навоза являются вид и поголовье животных, а также способ их содержания.

3.3.1 РАСЧЁТ ПОТРЕБНОСТИ В СРЕДСТВАХ УДАЛЕНИЯ НАВОЗА

От принятой технологии уборки и утилизации навоза существенно зависит стоимость животноводческой фермы или комплекса и, следовательно, продукции.

3.3.1.1 ОПРЕДЕЛЯЕМ КОЛИЧЕСТВО НАВОЗНОЙ МАССЫ ПОЛУЧАЕМОЙ ОТ ОДНОГО ЖИВОТНОГО

G 1 = б(K + M) + П

где K, M - суточное выделение кала и мочи одним животным,

П - суточная норма подстилки на одно животное,

б - коэффициент, учитывающий разбавление экскрементов водой;

Суточное выделение кала и мочи одним животным, кг:

Дойные = 70,8кг.

Сухостойные = 70,8кг

Новотельные = 70,8кг

Нетели = 31,8кг.

Телята = 11,8

3.3.1.2 ОПРЕДЕЛЯЕМ СУТОЧНЫЙ ВЫХОД НАВОЗА С ФЕРМЫ

m i - поголовье животных однотипной производственной группы; n - количество производственных групп на ферме,

G сут. = 70,8 263+70,8 45+70,8 42+31,8 42+11,8·21=26362,8 кг/ч? 26,5 т/сут.

3.3.1.3 ОПРЕДЕЛЯЕМ ГОДОВОЙ ВЫХОД НАВОЗА С ФЕРМЫ

G г = G сут D 10 -3

где D - число дней накопления навоза, т. е. продолжительность стойлового периода, D = 250 дней,

G г =26362,8 250 10 -3 =6590,7 т

3.3.1.4 ВЛАЖНОСТЬ БЕСПОДСТИЛОЧНОГО НАВОЗА

где W э - влажность экскрементов (для КРС - 87%),

Для нормальной работы механических средств удаления навоза из помещения должно выполнятся условие:

где Q тр - требуемая производительность навозоуборочного средства в конкретных условиях; Q - часовая производительность того же средства по технической характеристике

где G c * - суточный выход навоза в животноводческом помещении (на 200гол),

G c * =14160 кг, в = 2- принятая кратность уборки навоза, T - время на разовую уборку навоза, Т =0,5-1ч, принимаем Т =1ч, м - коэффициент, учитывающий неравномерность разового количества навоза, подлежащего уборке, м = 1,3; N - количество механических средств, устанавливаемых в данном помещении, N =2,

Q тр = = 2,7 т/ч.

Выбираем транспортер ТСН-3,ОБ(горизонтальный)

Q =4,0-5,5 т/ч. Т.к Q тр? Q - условие выполняется.

3.3.2 РАСЧЁТ ТРАНСПОРТНЫХ СРЕДСТВ ДЛЯ ДОСТАВКИ НАВОЗА В НАВОЗОХРАНИЛИЩЕ

Доставка навоза в навозохранилище будет вестись мобильными техническими средствами, а именно трактором МТЗ - 80 с прицепом 1- ПТС 4.

3.3.2.1 ОПРЕДЕЛЯЕМ ТРЕБУЕМУЮ ПРОИЗВОДИТЕЛЬНОСТЬ МОБИЛЬНЫХ ТЕХНИЧЕСКИХ СРЕДСТВ

Q тр. = G сут. /Т

где G сут. =26,5 т/ч. - суточный выход навоза с фермы; Т = 8 ч. - время работы технического средства,

Q тр. = 26,5/8 = 3,3 т/ч.

3.3.2.2 ОПРЕДЕЛЯЕМ ФАКТИЧЕСКУЮ РАСЧЁТНУЮ ПРОИЗВОДИТЕЛЬНОСТЬ ТЕХНИЧЕСКОГО СРЕДСТВА ВЫБРАННОЙ МАРКИ

где G = 4 т - грузоподъёмность технического средства, т. е. 1 - ПТС - 4;

t р - длительность одного рейса:

t р = t з + t д + t в

где t з = 0,3 - время загрузки, ч; t д = 0,6 ч - время движения трактора от фермы к навозохранилищу и обратно, ч; t в = 0,08 ч - время выгрузки, ч;

t р = 0,3 + 0,6 + 0,08 = 0,98 ч.

4/0,98 = 4,08 т/ч.

3.3.2.3 РАСЧИТЫВАЕМ КОЛИЧЕСТВО ТРАКТОРОВ МТЗ - 80 С ПРИЦЕПОМ

z = 3,3/4,08 = 0,8 , принимаем z = 1.

3.3.2.4 РАСЧИТЫВАЕМ ПЛОЩАДЬ НАВОЗОХРАНИЛИЩА

Для хранения подстилочного навоза применяют площадки с твердым покрытием, оборудованные жижесборниками.

Площадь хранилища для твердого навоза определяется по формуле:

где с- объемная масса навоза, т/м 3 ; h- высота укладки навоза (обычно 1,5-2,5м).

S=6590/2,5 0,25=10544 м 3 .

3.4 ОЕСПЕЧЕНИЕ МИКРОКЛИМАТА

Для вентиляции животноводческих помещений предложено значительное количество различных устройств. Каждая из вентиляционных установок должна отвечать следующим требованиям: поддерживать необходимый воздухообмен в помещении, быть, возможно, дешёвой в устройстве, эксплуатации и широко доступной в управлении.

При выборе вентиляционных установок необходимо исходить из требований бесперебойного обеспечения животных чистым воздухом.

При кратности воздухообмена К < 3 выбирают естественную вентиляцию, при К = 3 - 5 - принудительную вентиляцию, без подогрева подаваемого воздуха и при К > 5 - принудительную вентиляцию с подогревом подаваемого воздуха.

Определяем кратность часового воздухообмена:

где V w - количество влажного воздуха, м 3 /ч;

V п - объём помещения, V п = 76Ч27Ч3,5 =7182 м 3 .

V п - объём помещения, V п = 76Ч12Ч3,5 =3192 м 3 .

C - количество водяных паров, выделяемых одним животным, C = 380 г/ч.

m - количество животных в помещении, m 1 =200; m 2 =100 г; C 1 - допустимое количество водяного пара в воздухе помещения, C 1 = 6,50 г/м 3 , ; C 2 - содержание влаги в наружном воздухе в данный момент, C 2 = 3,2 - 3,3 г/м 3 .

принимаем C 2 = 3,2 г/м 3 .

V w 1 = = 23030 м 3 /ч.

V w 2 = = 11515 м 3 /ч.

К1 = 23030/7182 =3,2 т.к. К > 3,

К2 = 11515/3192 = 3,6 т.к. К > 3,

Р - количество углекислоты, выделяемое одним животным, Р = 152,7 л/ч.

m - количество животных в помещении, m 1 =200; m 2 =100 г; Р 1 - предельно допустимое количество углекислоты в воздухе помещения, Р 1 = 2,5 л/м 3 , табл. 2,5; Р 2 - содержание углекислоты в свежем воздухе, Р 2 = 0,3 0,4 л/м 3 , принимаем Р 2 = 0,4 л/м 3 .

V1со 2 = = 14543 м 3 /ч.

V2со 2 = = 7271 м 3 /ч.

К1 = 14543/7182 = 2,02 т.к. К < 3.

К2 = 7271/3192 = 2,2 т.к. К < 3.

Расчет ведем по количеству водяных паров в коровнике, применяем принудительную вентиляцию без подогрева, подаваемого воздуха.

3.4.1 ВЕНТИЛЯЦИЯ С ИСКУССТВЕННЫМ ПОБУЖДЕНИЕМ ВОЗДУХА

Расчет вентиляции с искусственным побуждением воздуха производится при кратности воздухообмена К > 3.

3.4.1.1 ОПРЕДЕЛЯЕМ ПОДАЧУ ВЕНТИЛЯТОРА

де К в - число вытяжных каналов:

К в = S в /S к

S к - площадь одного вытяжного канала, S к = 1Ч1 = 1 м 2 ,

S в - требуемая площадь сечения вытяжного канала, м 2:

V - скорость движения воздуха при прохождении через трубу определенной высоты и при определенной разнице температур, м/с:

h- высота канала, h = 3 м; t вн - температура воздуха внутри помещения,

t вн = + 3 o C; t нар - температура воздуха снаружи помещения, t нар = - 25 о С;

V = = 1,22 м/с.

V n = S к V 3600 = 1 1,22 3600 = 4392 м 3 /ч;

S в 1 = = 5,2 м 2 .

S в2 = = 2,6 м 2 .

К в 1 = 5,2/1 = 5,2 принимаем К в = 5 шт,

К в2 = 2,6/1 = 2,6 принимаем К в = 3 шт,

9212 м 3 /ч.

Т.к. Q в 1 < 8000 м 3 /ч, то выбираем схему с одним вентилятором.

7677 м 3 /ч.

Т.к. Q в1 > 8000 м 3 /ч, то с несколькими.

3.4.1.2 ОПРЕДЕЛЯЕМ ДИАМЕТР ТРУБОПРОВОДА

где V т - скорость воздуха в трубопроводе, V т = 12 - 15 м/с, принимаем

V т = 15 м/с,

0,46 м, принимаем D = 0,5 м.

0,42 м, принимаем D = 0,5 м.

3.4.1.3 ОПРЕДЕЛЯЕМ ПОТЕРИ НАПОРА ОТ СОПРОТИВЛЕНИЯ ТРЕНИЮ В ПРЯМОЙ КРУГЛОЙ ТРУБЕ

где л - коэффициент сопротивления трению воздуха в трубе, л = 0,02; L длина трубопровода, м, L = 152 м; с - плотность воздуха, с = 1,2 - 1,3 кг/м 3 , принимаем с = 1,2 кг/м 3:

H тр = = 821 м,

3.4.1.4 ОПРЕДЕЛЯЕМ ПОТЕРИ НАПОРА ОТ МЕСТНЫХ СОПРОТИВЛЕНИЙ

где?о - сумма коэффициентов местных сопротивлений, таб. 56:

О = 1,10 + 0,55 + 0,2 + 0,25 + 0,175 + 0,15 + 0,29 + 0,25 + 0,21 + 0,18 + 0,81 + 0,49 + 0,25 + 0,05 + 1 + 0,3 + 1 + 0,1 + 3 + 0,5 = 10,855,

h мс = = 1465,4 м.

3.4.1.5 ОБЩИЕ ПОТЕРИ НАПОРА В ВЕНТИЛЯЦИОННОЙ СИСТЕМЕ

Н = Н тр + h мс

Н = 821+1465,4 = 2286,4 м.

Выбираем два центробежных вентилятора № 6 Q в = 2600 м 3 /ч, с табл. 57.

3.4.2 РАСЧЁТ ОТОПЛЕНИЯ ПОМЕЩЕНИЯ

Кратность часового воздухообмена:

где, V W - воздухообмен животноводческого помещения,

Объём помещения.

Воздухообмен по влажности:

где, - воздухообмен водяных паров (Табл. 45, );

Допустимое количество водяного пара в воздухе помещения;

Масса 1м 3 сухого воздуха, кг. (таб.40)

Количество насыщающих паров влаги на 1 кг сухого воздуха, г;

Максимальная относительная влажность, % (таб. 40-42);

Т.к. К<3 - применяем естественную циркуляцию.

Расчет величины требуемого воздухообмена по содержанию углекислоты

где Р m - количество углекислоты, выделяемое одним животным в течение часа, л/ч;

Р 1 - предельно допустимое количество углекислоты в воздухе помещения, л/м 3 ;

Р 2 =0,4 л/м 3 .

Т.к. К<3 - выбираем естественную вентиляцию.

Расчеты ведем при К=2,9.

Площадь сечения вытяжного канала:

где, V - скорость движения воздуха при прохождении через трубу м/с:

где, высота канала.

температура воздуха внутри помещения.

температура воздуха с наружи помещения.

Производительность канала имеющего площадь сечения:

Число каналов

3.4.3 Расчёт отопления помещения

3.4.3.1 Расчет отопления помещения для коровника, в котором находится 200 голов

3.4.3.2 Расчет отопления помещения для коровника, в котором находится 150 голов

Дефицит теплового потока для отопления помещения:

где поток теплоты, проходящий сквозь ограждающие строительные конструкции;

поток теплоты, теряемый с удалённым воздухом при вентиляции;

случайные потери потока тепла;

поток теплоты, выделяемый животными;

где, коэффициент теплопередачи ограждающих строительных конструкций (таб. 52);

площадь поверхностей, теряющих поток теплоты, м 2: площадь стен - 457; площадь окон - 51; площадь ворот - 48; площадь чердачного перекрытия - 1404.

где, объёмная теплоёмкость воздуха.

где, q =3310 Дж/ч- поток теплоты, выделяемый одним животным, (табл. 45).

Случайные потери потока тепла принимаются в количестве 10-15% от.

Т.к. дефицит теплового потока получился отрицательный, то подогрев помещения не требуется.

3.4 Механизация доения коров и первичной обработки молока

Количество операторов машинного доения:

где, количество дойных коров на ферме;

шт.- количества голов на одного оператора при доении в молокопровод;

Принимаем 7 операторов.

3.6.1 Первичная обработка молока

Производительность поточной линии:

где, коэффициент сезонности поступления молока;

Количество дойных коров на ферме;

средний годовой удой одной коровы, (таб. 23) /2/;

кратность дойки;

Длительность дойки;

Выбор охладителя по поверхности теплообмена:

где, теплоёмкость молока;

начальная температура молока;

конечная температура молока;

общий коэффициент теплопередачи, (таб.56);

средняя логарифмическая разность температур.

где разность температур между молоком и охлаждающей жидкостью на входе, выходе, (таб. 56).

Число пластин в секции охладителя:

где, площадь рабочей поверхности одной пластины;

Принимаем Z п =13 шт.

Выбираем тепловой аппарат (по таб. 56) марки ООТ-М (Подача 3000л/ч. , Рабочая поверхность 6.5м 2).

Расход холода на охлаждение молока:

где - коэффициент, учитывающий теплопотери в трубопроводах.

Выбираем (таб. 57) холодильную установку АВ30.

Расход льда на охлаждение молока:

где, удельная теплота плавления льда;

теплоёмкость воды;

4. ЭКОНОМИЧЕСКИЕ ПОКОЗАТЕЛИ

Таблица 4.Расчёт балансовой стоимости оборудования фермы

Производственный процесс и применяемые машины и оборудование

Марка машины

мощность

количество машин

прейскурантная стои-мость машины

Начисле-ния на стоимость:

монтаж (10%)

балансовая стоимость

Одной машины

Всех машин

ЕДЕНИЦЫ ИЗМЕРЕНИЯ

ПРИГОТОВЛЕНИЕ КОРМОВ РАЗДАЧА КОРМОВ ВНУТРИ ПОМЕЩЕНИЙ

1. КОРМОЦЕХ

2. КОРМОРАЗДАТЧИК

ТРАНСПОРТНЫЕ ОПЕРАЦИИ НА ФЕРМЕ

1. ТРАКТОР

УБОРКА НАВОЗА

1. ТРАНСПОРТЁР

ВОДОСНАБЖЕНИЕ

1. ЦЕНТРОБЕЖНЫЙ НАСОС

2. ВОДОНАПОРНАЯ БАШНЯ

ДОЕНИЕ И ПЕРВИЧНАЯ ОБРАБОТКА МОЛОКА

1.ПЛАСТИНЧАТЫЙ ТЕПЛОВОЙ АППАРАТ

2. ВОДООХЛАЖД. МАШИНА

3. ДОИЛЬНАЯ УСТАНОВКА

Таблица5.Расчет балансовой стоимости строительной части фермы.

Помещение

Вместимость, гол.

Количество помещений на ферме, шт.

Балансовая стоимость одного помещения, тыс.руб.

Общая балансовая стоимость, тыс. руб.

Примечание

Основные производственные здания:

1 Коровник

2 Молочный блок

3 Родильное отделение

Вспомогательные помещения

1 Изолятор

2 Ветпункт

3 Стационар

4 Блок служебных помещений

5 Кормоцех

6Вет.сан.пропускник

Хранилища для:

5 Конц.кормов

Инженерные сети:

1 Водопровод

2Трансформаторная подстанция

Благоустройство:

1 Зеленые насаждения

Ограждения:

Сетка - рабица

2 Выгульных площадок

Твердое покрытие

Годовые эксплуатационные затраты:

где, А - амортизационные отчисления и отчисления на текущий ремонт и техническое обслуживание оборудования и т.д.

З - годовой фонд заработной платы обслуживающего персонала фермы.

М- стоимость расходуемых в течении года материалов, связанных с работой техники (электроэнергия, топлива и др.).

Амортизационные отчисления и отчисления на текущий ремонт:

где Б i - балансовая стоимость основных фондов.

норма амортизационных отчислений основных фондов.

норма отчислений на текущий ремонт основных фондов.

Таблица 6. Расчет амортизационных отчислений и отчислений на текущий ремонт

Группа и вид основных фондов.

Балансовая стоимость, тыс. руб.

Общая норма амортизационных отчислений, %

Норма отчислений на текущий ремонт, %

Амортизационные отчисления и отчисления на текущий ремонт, тыс. руб.

Здания, сооружения

Хранилища

Трактор (прицепы)

Машины и оборудования

Заборы ограждения

Годовой фонд заработной платы:

где годовые затраты труда, чел.-ч.;

руб.- средняя оплата труда 1чел.-ч. с учётом всех начислений;

где N=16 чел.- количество рабочих на ферме;

Ф=2088 ч.- годовой фонд рабочего времени одного работника;

Стоимость расходуемых в течении года материалов:

где годовой расход электроэнергии (кВт), топлива (т), горючего (кг.):

стоимость эл. энергии;

стоимость ГСМ;

Приведённые годовые затраты:

Где балансовая стоимость оборудования и строительства, принимаем раной, тыс. руб.;

Е=0,15- нормативный коэффициент экономической эффективности капитальных вложений;

Годовая выручка от реализации продукции (молока):

Где - - годовой объём молока, кг;

Цена одного кг. молока, руб/кг;

Годовая прибыль:

5. ОХРАНА ПРИРОДЫ

Человек, вытесняя все естественные биогеоценозы и закладывая агробиогеоценозы своими прямыми и косвенными воздействиями, нарушает устойчивость всей биосферы. Стремясь получить как можно больше продукции, человек оказывает влияние на все компоненты экологической системы: на почву- путём применения комплекса агротехнических мероприятий с включением химизации, механизации и мелиорации, на атмосферный воздух- химизацией и индустриализацией сельскохозяйственного производства, на водоёмы- за счёт резкого увеличения количества сельскохозяйственных стоков.

В связи с концентрацией и переводом животноводства на промышленную основу наиболее мощным источником загрязнения окружающей среды в сельском хозяйстве стали животноводческие и птицеводческие комплексы. Установлено, что животноводческие и птицеводческие комплексы и фермы являются самыми крупными источниками загрязнения атмосферного воздуха, почвы, водоисточников сельской местности, по мощности и масштабам загрязнения вполне сопоставимы с крупнейшими промышленными объектами- заводами, комбинатами.

При проектировании ферм и комплексов необходимо своевременно предусмотреть все меры по защите окружающей среды в сельской местности от нарастающего загрязнения, что следует считать одной из важнейших задач гигиенической науки и практики, специалистов сельскохозяйственного и других профилей, занимающихся данной проблемой.

Если судить об уровне рентабельности животноводческой фермы на 350 голов с привязным содержанием, то по полученному значению годовой прибыли видно, что она отрицательная, это говорит о том, что производства молока на этом предприятии убыточно, в следствии высоких амортизационных отчислений и низкой продуктивности животных. Повышение рентабельности возможно при разведении высокопродуктивных коров и увеличении их числа.

Поэтому я считаю, что строить данную ферму экономически необоснованно из-за высокой балансовой стоимости строительной части фермы.

7. ЛИТЕРАТУРА

1. В.И.Земсков; В.Д.Сергеев; И.Я.Федоренко «Механизация и технология производства продукции животноводства»

2. В.И.Земсков «Проектирование производственных процессов в животноводстве»

Размещено на Allbest.ru

Подобные документы

    Характеристика животноводческой фермы по производству молока поголовьем 230 коров. Комплексная механизация фермы (комплекса). Выбор машин и оборудования для приготовления и раздачи кормов. Расчет параметров электродвигателя, элементов электрической схемы.

    курсовая работа , добавлен 24.03.2015

    Анализ производственной деятельности сельскохозяйственного предприятия. Особенности применения средств механизации в животноводстве. Расчет технологической линии приготовления и раздачи кормов. Принципы выбора оборудования для животноводческой фермы.

    дипломная работа , добавлен 20.08.2015

    Обоснование системы содержания животных и размера фермы. Определение вместимости и числа хранилищ для кормов, потребности в навозохранилищах. Зоотехнические требования по подготовки кормов. Определение часовой производительности поточных линий.

    курсовая работа , добавлен 21.05.2013

    Расчет структуры стада, характеристика заданной системы содержания животных, выбор рациона кормления. Расчет технологической карты комплексной механизации линии уборки навоза для коровника на 200 голов. Основные технико-экономические показатели фермы.

    курсовая работа , добавлен 16.05.2011

    Правила правильной организации кормления телят. Особенности пищеварения новорожденного теленка. Характеристика кормов. Нормированное питание молодняка крупного рогатого скота. Механизация приготовления кормов. Механизация раздачи кормов для скармливания.

    презентация , добавлен 08.12.2015

    Описание генерального плана по проектированию фермы для откорма молодняка крупного рогатого скота. Расчет потребности в воде, в кормах, расчет выхода навоза. Разработка технологической схемы приготовления и распределение максимальных разовых порций.

    курсовая работа , добавлен 11.09.2010

    Классификация ферм в зависимости от биологического вида животных. Основные и вспомогательные здания и сооружения в составе фермы крупного рогатого скота. Число персонала, распорядок дня. Оборудование стойловых мест, системы поения и подогрева воды.

    курсовая работа , добавлен 06.06.2010

    Природно-климатическая характеристика хозяйства. Организационно-экономические условия сельскохозпредприятия. Урожайность сельскохозяйственных культур. Технология кормления крупного рогатого скота. Механизация подачи и дозировки кормов, проект дозатора.

    контрольная работа , добавлен 10.05.2010

    Понятие о конституции, экстерьере и интерьере крупного рогатого скота. Способы оценки крупного рогатого скота по экстерьеру и конституции. Линейный метод оценки телосложения молочного крупного рогатого скота. Метод глазомерной оценки, фотографирование.

    курсовая работа , добавлен 11.02.2011

    Разработка проекта молочной животноводческой фермы КРС на 200 коров. Анализ хозяйственной деятельности ТОО "Зеренды Астык". Разработка конструкции доильного аппарата с дополнительным массажником. Обеспеченность хозяйства рабочей силой и ее использование.

Министерство Сельского Хозяйства РФ

Федеральное государственное образовательное учреждение высшего профессионального образования

Алтайский Государственный Аграрный Университет

КАФЕДРА: МЕХАНИЗАЦИИ ЖИВОТНОВОДСТВА

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПО ДИСЦИПЛИНЕ

«ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ПРОДУКЦИИ

ЖИВОТНОВОДСТВА»

КОМПЛЕКСНАЯ МЕХАНИЗАЦИЯ ЖИВОТНОВОДЧЕСКОЙ

ФЕРМЫ - КРС

Выполнил

студент 243 гр

Штергель П.П

Проверил

Александров И.Ю

БАРНАУЛ 2010г.

АННОТАЦИЯ

В данной курсовой работе произведён выбор основных производственных зданий для размещения животных стандартного типа.

Основное внимание уделено вопросам разработки схемы механизации производственных процессов, выбору средств механизации на основе технологических и технико-экономических расчётов.

ВВЕДЕНИЕ

Повышение уровня качества продукции и обеспечение соответствия её показателей качества нормам является важнейшей задачей, решение которой немыслимо без наличия квалифицированных специалистов.

В данной курсовой работе приведены расчёты скотомест на ферме, выбор зданий и сооружений для содержания животных, разработка схемы генерального плана, разработка механизации производственных процессов включающая в себя:

Проектирование механизации подготовки кормов: суточные рационы каждой группы животных, количество и объем хранилищ кормов, производительность кормоцеха.

Проектирование механизации раздачи кормов: требуемая производительность поточной технологической линии раздачи кормов, выбор кормораздатчика, количество кормораздатчиков.

Водоснабжение фермы: определение потребности в воде на ферме, расчёт наружной сети водопровода, выбор водонапорной башни, выбор насосной станции.

Механизация уборки и утилизации навоза: расчёт потребности в средствах удаления навоза, расчёт транспортных средств для доставки навоза в навозохранилище;

Вентиляция и отопление: расчёт вентиляции и отопления помещения;

Механизация доения коров и первичной обработки молока.

Приведены расчеты экономических показателей, изложены вопросы по охране природы.

1. РАЗРАБОТКА СХЕМЫ ГЕНЕРАЛЬНОГО ПЛАНА

1 РАЗМЕЩЕНИЕ ПРОИЗВОДСТВЕННЫХ ЗОН И ПРЕДПРИЯТИЙ

Плотность застройки площадок сельскохозяйственными предприятиями регламентируется данными. табл. 12.

Минимальная плотность застройки составляет 51- 55%

Ветеринарные учреждения (за исключением ветсанпропускников), котельные, навозохранилища открытого типа строят с подветренной стороны по отношению к животноводческим зданиям и сооружениям.

Выгульно-кормовые дворы или выгульные площадки располагают у продольных стен здания для содержания скота.

Хранилища кормов и подстилки строят с таким расчётом, чтобы обеспечивались кратчайшие пути, удобство и простота механизации подачи подстилки и кормов к местам использования.

Ширина проездов на площадках сельскохозяйственных предприятий рассчитывается из условий наиболее компактного размещения транспортных и пешеходных путей, инженерных сетей, полос деления с учётом возможного заноса снегом, но она не должна быть менее противопожарных, санитарных и зооветеринарных расстояний между противостоящими зданиями и сооружениями.

На участках, свободных от застройки и покрытий, а также по периметру площадки предприятия следует предусмотреть озеленение.

2. Выбор зданий для содержания животных

Количество скотомест для предприятия крупного рогатого скота молочно-товарного направления, 90% коров в структуре стада, рассчитывается с учётом коэффициентов приведённых в таблице 1. стр. 67.

Таблица 1. Определения количества скотомест на предприятии


На основании расчетов выбираем 2 коровника на 200 голов привязного содержания.

Новотельные и глубокостельные с телятами профилакторного периода находятся в родильном отделении.

3. Приготовление и раздача кормов

На ферме КРС будем использовать следующие виды кормов: сено разнотравные, солому, силос кукурузный, сенаж, концентраты (мука пшеничная), корнеплоды, соль поваренная.

Исходными данными для разработки этого вопроса являются:

поголовье фермы по группам животных (см. раздел 2);

рационы каждой группы животных:

1 Проектирование механизации подготовки кормов

Разработав суточные рационы каждой группы животных и зная их поголовье, приступаем к расчёту требуемой производительности кормоцеха, для чего рассчитываем суточный рацион кормов, а так же количество хранилищ.

1.1 ОПРЕДЕЛЯЕМ СУТОЧНЫЙ РАЦИОН КОРМОВ КАЖДОГО ВИДА ПО ФОРМУЛЕ

q сут i =

m j - поголовье j - той группы животных;

a ij - количество кормов i - того вида в рационе j - той группы животных;

n - количество групп животных на ферме.

Сено разнотравное:

qсут.10 = 4∙263+4∙42+3∙42+3·45=1523 кг.

Силос кукурузный:

qсут.2 = 20∙263+7,5·42+12·42+7,5·45=6416,5 кг.

Сенаж бобово-злаковый:

qсут.3 = 6·42+8·42+8·45=948 кг.

Солома яровой пшеницы:

qсут.4 = 4∙263+42+45=1139 кг.

Мука пшеничная:

qсут.5 = 1,5∙42+1,3·45+1,3∙42+263·2 =702,1 кг.

Соль поваренная:

qсут.6 = 0,05∙263+0,05∙42+ 0,052∙42+0,052∙45 =19,73 кг.

1.2 ОПРЕДЕЛЯЕМ СУТОЧНУЮ ПРОИЗВОДИТЕЛЬНОСТЬ КОРМОЦЕХА

Q сут. = ∑ q сут.

Q сут. =1523+6416,5+168+70,2+948+19,73+1139=10916 кг

1.3 ОПРЕДЕЛЯЕМ ТРЕБУЕМУЮ ПРОИЗВОДИТЕЛЬНОСТЬ КОРМОЦЕХА

Q тр. = Q сут. /(Т раб. ∙d)

где Т раб. - расчетное время работы кормоцеха для выдачи корма на одно кормление (линии выдачи готовой продукции), ч.;

Т раб. = 1,5 - 2,0 ч.; Принимаем Т раб. = 2ч.; d - кратность кормления животных, d = 2 - 3. Принимаем d = 2.

Q тр. =10916/(2·2)=2,63 кг/ч.

Выбираем кормоцех ТП 801 - 323, обеспечивающий расчётную производительность и принятую технологию обработки кормов, стр. 66.

Доставка кормов к животноводческому помещению и их раздача внутри помещения осуществляется мобильным техническим средством РММ 5,0

3.1.4 ОПРЕДЕЛЯЕМ ТРЕБУЕМУЮ ПРОИЗВОДИТЕЛЬНОСТЬ ПОТОЧНОЙ ТЕХНОЛОГИЧЕСКОЙ ЛИНИИ РАЗДАЧИ КОРМОВ В ЦЕЛОМ ДЛЯ ФЕРМЫ

Q тр. = Q сут. /(t разд. ∙d)

где t разд. -время, отводимое по распорядку дня фермы на раздачу кормов (линии выдачи готовой продукции), ч.;

t разд. = 1,5 - 2,0 ч.; Принимаем t разд = 2ч.; d - кратность кормления животных, d = 2 - 3. Принимаем d = 2.

Q тр. = 10916/(2·2)=2,63 т/ч.

3.1.5 определяем фактическую производительность одного кормораздатчика

Gк - грузоподъемность кормораздатчика, т; tр - длительность одного рейса, ч.

Q р ф =3300/0,273=12088 кг/ч

t р. = t з + t д + t в,

tр = 0,11+0,043+0,12=0,273 ч.

где tз,tв - время загрузки и выгрузки кормораздатчика, т; tд - время движения кормораздатчика от кормоцеха к животноводческому помещению и обратно, ч.

3.1.6 определяем время загрузки кормораздатчика

tз= Gк/Qз,

где Qз - подача технического средства на погрузке, т/ч.

tз=3300/30000=0,11 ч.

3.1.7 определяем время движения кормораздатчика от кормоцеха к животноводческому помещению и обратно

tд=2·Lср/Vср

где Lср - среднее расстояние от места загрузки кормораздатчика до животноводческого помещения, км; Vср - средняя скорость движения кормораздатчика по территории фермы с грузом и без груза, км/ч.

tд=2*0,5/23=0,225 ч.

tв= Gк/Qв,

где Qв - подача кормораздатчика, т/ч.

tв=3300/27500=0.12 ч.в= qсут ·Vр/a · d ,

где а - длина одного кормо-места, м; Vр - расчетная скорость кормораздатчика, м/с; qсут - суточный рацион животных; d - кратность кормления.

Qв= 33·2/0,0012·2=27500 кг

3.1.7 Определяем количество кормораздатчиков выбранной марки

z = 2729/12088=0,225 , принимаем- z =1

2 ВОДОСНАБЖЕНИЕ

2.1 ОПРЕДЕЛЯЕМ СРЕДНЕСУТОЧНЫЙ РАСХОД ВОДЫ НА ФЕРМЕ

Потребность в воде на ферме зависит от количества животных и норм водопотребления, установленных для животноводческих ферм.

Q ср.сут. = m 1 q 1 + m 2 q 2 + … + m n q n

где m 1 , m 2 ,… m n - число каждого вида потребителей, голов;

q 1 , q 2 , … q n - суточная норма потребления воды одним потребителем, (для коров - 100 л, для нетелей - 60 л);

Q ср.сут = 263∙100+42∙100+45∙100+42∙60+21·20=37940 л/сут.

2.2 ОПРЕДЕЛЯЕМ МАКСИМАЛЬНЫЙ СУТОЧНЫЙ РАСХОД ВОДЫ

Q m .сут. = Q ср.сут. ∙ α 1

где α 1 = 1,3 - коэффициент суточной неравномерности,

Q m .сут = 37940∙1,3 =49322 л/сут.

Колебания расхода воды на ферме по часам суток учитывают коэффициентом часовой неравномерности α 2 =2,5:

Q m .ч = Q m .сут∙ ∙α 2 / 24

Q m .ч = 49322∙2,5 / 24 =5137,7 л/ч.

2.3 ОПРЕДЕЛЯЕМ МАКСИМАЛЬНЫЙ СЕКУНДНЫЙ РАСХОД ВОДЫ

Q m .с = Q т.ч / 3600

Q m .с =5137,7/3600=1,43 л/с

2.4 РАСЧЁТ НАРУЖНОЙ СЕТИ ВОДОПРОВОДА

Расчёт наружной сети водопровода сводится к определению диаметров труб и потерь напора в них.

2.4.1 ОПРЕДЕЛЯЕМ ДИАМЕТР ТРУБЫ ДЛЯ КАЖДОГО УЧАСТКА

где v - скорость воды в трубах, м/с, v = 0,5-1,25 м/с. Принимаем v = 1 м/с.

участок 1-2 протяженность - 50 м.

d = 0,042м, принимаем d = 0,050 м.

2.4.2 ОПРЕДЕЛЯЕМ ПОТЕРИ НАПОРА ПО ДЛИНЕ

h т =

где λ - коэффициент гидравлического сопротивления, зависящий от материала и диаметра труб (λ = 0,03); L = 300 м - длина трубопровода; d - диаметр трубопровода.

h т =0,48 м

2.4.3 ОПРЕДЕЛЯЕМ ВЕЛИЧИНУ ПОТЕРЬ В МЕСТНЫХ СОПРОТИВЛЕНИЯХ

Величина потерь в местных сопротивлениях составляет 5 - 10% от потерь по длине наружных водопроводов,

h м = = 0,07∙0,48= 0,0336 м

Потери напора

h = h т + h м = 0,48+0,0336 = 0,51 м

2.5 ВЫБОР ВОДОПРОВОДНОЙ БАШНИ

Высота водонапорной башни должна обеспечить необходимый напор в наиболее удалённой точке.

2.5.1 ОПРЕДЕЛЯЕМ ВЫСОТУ ВОДОПРОВОДНОЙ БАШНИ

H б = H св + H г + h

где H св - свободный напор у потребителей, H св = 4 - 5 м,

принимаем H св = 5 м,

H г - геометрическая разность нивелирных отметок в фиксирующей точке и в месте расположения водонапорной башни, H г = 0, т. к. местность ровная,

h - сумма потерь напора в наиболее удалённой точке водопровода,

H б = 5 + 0,51= 5,1 м, принимаем H б = 6,0 м.

2.5.2 ОПРЕДЕЛЯЕМ ОБЪЁМ ВОДОПРОВОДНОГО БАКА

Объем водонапорного бака определяется необходимым запасом воды на хозяйственно-питьевые нужды, противопожарные мероприятия и регулирующим объемом.

W б = W р + W п + W х

где W х - запас воды на хозяйственно - питьевые нужды, м 3 ;

W п - объём на противопожарные мероприятия, м 3 ;

W р - регулирующий объём.

Запас воды на хозяйственно - питьевые нужды определяется из условия бесперебойного водоснабжения фермы в течение 2 ч на случай аварийного отключения электроэнергии:

W х = 2Q т.ч. = 2∙5137,7∙10 -3 = 10,2 м

На фермах с поголовьем более 300 голов устанавливаются специальные противопожарные резервуары, рассчитанные на тушение пожара двумя пожарными струями в течение 2 ч с расходом воды 10 л/с, поэтому W п =72000 л.

Регулирующий объём водонапорной башни зависит от суточного потребления воды , табл. 28:

W р = 0,25∙49322∙10 -3 = 12,5 м 3 .

W б = 12,5+72+10,2 = 94,4 м 3 .

Принимаем: 2 башни объёмом резервуара 50 м 3

3.2.6 ВЫБОР НАСОСНОЙ СТАНЦИИ

Выбираем тип водоподъёмной установки: принимаем центробежный погружной насос для подачи воды из буровых колодцев.

2.6.1 ОПРЕДЕЛЯЕМ ПРОИЗВОДИТЕЛЬНОСТЬ НАСОСНОЙ СТАНЦИИ

Производительность насосной станции зависит от максимальной суточной потребности в воде и режима работы насосной станции.

Q н = Q m .сут. /Т н

где Т н -время работы насосной станции, ч. Т н = 8-16 ч.

Q н =49322/10 =4932,2 л/ч.

2.6.2 ОПРЕДЕЛЯЕМ ПОЛНЫЙ НАПОР НАСОСНОЙ СТАНЦИИ

Н = Н гв + h в + Н гн +h н

где Н - полный напор насоса, м; Н гв - расстояние от оси насоса до наименьшего уровня воды в источнике, Н гв = 10 м; h в - величина погружения насоса, h в = 1,5…2 м, принимаем h в = 2 м; h н - сумма потерь во всасывающем и нагнетательном трубопроводах, м

h н = h вс + h

где h - сумма потерь напора в наиболее удалённой точке водопровода; h вс - сумма потерь напора во всасывающем трубопроводе, м, можно пренебречь

ферма балансовый производительность оборудование

Н гн = Н б ± Н z + Н р

где Н р - высота бака, Н р = 3 м; Н б - высота установки водонапорной башни, Н б = 6м; Н z - разность геодезических отметок от оси установки насоса до отметки фундамента водонапорной башни, Н z = 0 м:

Н гн = 6,0+ 0 + 3 = 9,0 м.

Н = 10 + 2 +9,0 + 0,51 = 21,51 м.

По Q н =4932,2 л/ч = 4,9322м 3 /ч., Н = 21,51 м. выбираем насос:

Берём насос 2ЭЦВ6-6,3-85.

Т.к. параметры выбранного насоса превышают расчетные, то насос будет загружен не полностью; следовательно, насосная станция должна работать в автоматическом режиме (по мере расхода воды).

3 УБОРКА НАВОЗА

Исходными данными при проектировании технологической линии уборки и утилизации навоза являются вид и поголовье животных, а также способ их содержания.

3.1 РАСЧЁТ ПОТРЕБНОСТИ В СРЕДСТВАХ УДАЛЕНИЯ НАВОЗА

От принятой технологии уборки и утилизации навоза существенно зависит стоимость животноводческой фермы или комплекса и, следовательно, продукции.

3.1.1 ОПРЕДЕЛЯЕМ КОЛИЧЕСТВО НАВОЗНОЙ МАССЫ ПОЛУЧАЕМОЙ ОТ ОДНОГО ЖИВОТНОГО

G 1 = α(K + M) + П

где K, M - суточное выделение кала и мочи одним животным,

П - суточная норма подстилки на одно животное,

α - коэффициент, учитывающий разбавление экскрементов водой;

Суточное выделение кала и мочи одним животным, кг:

Дойные = 70,8кг.

Сухостойные = 70,8кг

Новотельные = 70,8кг

Нетели = 31,8кг.

Телята = 11,8

3.1.2 ОПРЕДЕЛЯЕМ СУТОЧНЫЙ ВЫХОД НАВОЗА С ФЕРМЫ

G сут. =

m i - поголовье животных однотипной производственной группы; n - количество производственных групп на ферме,

G сут. = 70,8∙263+70,8∙45+70,8∙42+31,8∙42+11,8·21=26362,8 кг/ч ≈ 26,5 т/сут.

3.1.3 ОПРЕДЕЛЯЕМ ГОДОВОЙ ВЫХОД НАВОЗА С ФЕРМЫ

G г = G сут ∙D∙10 -3

где D - число дней накопления навоза, т. е. продолжительность стойлового периода, D = 250 дней,

G г =26362,8∙250∙10 -3 =6590,7 т

3.3.1.4 ВЛАЖНОСТЬ БЕСПОДСТИЛОЧНОГО НАВОЗА

W н =

где W э - влажность экскрементов (для КРС - 87%),

W н = = 89%.

Для нормальной работы механических средств удаления навоза из помещения должно выполнятся условие:

Q тр ≤ Q

где Q тр - требуемая производительность навозоуборочного средства в конкретных условиях; Q - часовая производительность того же средства по технической характеристике

где G c * - суточный выход навоза в животноводческом помещении (на 200гол),

G c * =14160 кг, β = 2- принятая кратность уборки навоза, T - время на разовую уборку навоза, Т =0,5-1ч, принимаем Т =1ч, μ - коэффициент, учитывающий неравномерность разового количества навоза, подлежащего уборке, μ = 1,3; N - количество механических средств, устанавливаемых в данном помещении, N =2,

Q тр = = 2,7 т/ч.

Выбираем транспортер ТСН-3,ОБ(горизонтальный)

Q =4,0-5,5 т/ч. Т.к Q тр ≤ Q - условие выполняется.

3.2 РАСЧЁТ ТРАНСПОРТНЫХ СРЕДСТВ ДЛЯ ДОСТАВКИ НАВОЗА В НАВОЗОХРАНИЛИЩЕ

Доставка навоза в навозохранилище будет вестись мобильными техническими средствами, а именно трактором МТЗ - 80 с прицепом 1- ПТС 4.

3.2.1 ОПРЕДЕЛЯЕМ ТРЕБУЕМУЮ ПРОИЗВОДИТЕЛЬНОСТЬ МОБИЛЬНЫХ ТЕХНИЧЕСКИХ СРЕДСТВ

Q тр. = G сут. /Т

где G сут. =26,5 т/ч. - суточный выход навоза с фермы; Т = 8 ч. - время работы технического средства,

Q тр. = 26,5/8 = 3,3 т/ч.

3.2.2 ОПРЕДЕЛЯЕМ ФАКТИЧЕСКУЮ РАСЧЁТНУЮ ПРОИЗВОДИТЕЛЬНОСТЬ ТЕХНИЧЕСКОГО СРЕДСТВА ВЫБРАННОЙ МАРКИ

где G = 4 т - грузоподъёмность технического средства, т. е. 1 - ПТС - 4;

t р - длительность одного рейса:

t р = t з + t д + t в

где t з = 0,3 - время загрузки, ч; t д = 0,6 ч - время движения трактора от фермы к навозохранилищу и обратно, ч; t в = 0,08 ч - время выгрузки, ч;

t р = 0,3 + 0,6 + 0,08 = 0,98 ч.

4/0,98 = 4,08 т/ч.

3.2.3 РАСЧИТЫВАЕМ КОЛИЧЕСТВО ТРАКТОРОВ МТЗ - 80 С ПРИЦЕПОМ

z = 3,3/4,08 = 0,8 , принимаем z = 1.

3.2.4 РАСЧИТЫВАЕМ ПЛОЩАДЬ НАВОЗОХРАНИЛИЩА

Для хранения подстилочного навоза применяют площадки с твердым покрытием, оборудованные жижесборниками.

Площадь хранилища для твердого навоза определяется по формуле:

S=G г /hρ

где ρ- объемная масса навоза, т/м 3 ; h- высота укладки навоза (обычно 1,5-2,5м).

S=6590/2,5∙0,25=10544 м 3 .

4 ОЕСПЕЧЕНИЕ МИКРОКЛИМАТА

Для вентиляции животноводческих помещений предложено значительное количество различных устройств. Каждая из вентиляционных установок должна отвечать следующим требованиям: поддерживать необходимый воздухообмен в помещении, быть, возможно, дешёвой в устройстве, эксплуатации и широко доступной в управлении.

При выборе вентиляционных установок необходимо исходить из требований бесперебойного обеспечения животных чистым воздухом.

При кратности воздухообмена К < 3 выбирают естественную вентиляцию, при К = 3 - 5 - принудительную вентиляцию, без подогрева подаваемого воздуха и при К > 5 - принудительную вентиляцию с подогревом подаваемого воздуха.

Определяем кратность часового воздухообмена:

К = V w /V п

где V w - количество влажного воздуха, м 3 /ч;

V п - объём помещения, V п = 76×27×3,5 =7182 м 3 .

V п - объём помещения, V п = 76×12×3,5 =3192 м 3 .

C - количество водяных паров, выделяемых одним животным, C = 380 г/ч.

m - количество животных в помещении, m 1 =200; m 2 =100 г; C 1 - допустимое количество водяного пара в воздухе помещения, C 1 = 6,50 г/м 3 , ; C 2 - содержание влаги в наружном воздухе в данный момент, C 2 = 3,2 - 3,3 г/м 3 .

принимаем C 2 = 3,2 г/м 3 .

V w 1 = = 23030 м 3 /ч.

V w 2 = = 11515 м 3 /ч.

К1 = 23030/7182 =3,2 т.к. К > 3,

К2 = 11515/3192 = 3,6 т.к. К > 3,

Vсо 2 = ;

Р - количество углекислоты, выделяемое одним животным, Р = 152,7 л/ч.

m - количество животных в помещении, m 1 =200; m 2 =100 г; Р 1 - предельно допустимое количество углекислоты в воздухе помещения, Р 1 = 2,5 л/м 3 , табл. 2,5; Р 2 - содержание углекислоты в свежем воздухе, Р 2 = 0,3 0,4 л/м 3 , принимаем Р 2 = 0,4 л/м 3 .

V1со 2 = = 14543 м 3 /ч.

V2со 2 = = 7271 м 3 /ч.

К1 = 14543/7182 = 2,02 т.к. К < 3.

К2 = 7271/3192 = 2,2 т.к. К < 3.

Расчет ведем по количеству водяных паров в коровнике, применяем принудительную вентиляцию без подогрева, подаваемого воздуха.

4.1 ВЕНТИЛЯЦИЯ С ИСКУССТВЕННЫМ ПОБУЖДЕНИЕМ ВОЗДУХА

Расчет вентиляции с искусственным побуждением воздуха производится при кратности воздухообмена К > 3.

3.4.1.1 ОПРЕДЕЛЯЕМ ПОДАЧУ ВЕНТИЛЯТОРА


де К в - число вытяжных каналов:

К в = S в /S к

S к - площадь одного вытяжного канала, S к = 1×1 = 1 м 2 ,

S в - требуемая площадь сечения вытяжного канала, м 2:

V - скорость движения воздуха при прохождении через трубу определенной высоты и при определенной разнице температур, м/с:

V =

h- высота канала, h = 3 м; t вн - температура воздуха внутри помещения,

t вн = + 3 o C; t нар - температура воздуха снаружи помещения, t нар = - 25 о С;

V = = 1,22 м/с.

V n = S к ∙V∙3600 = 1 ∙ 1,22∙3600 = 4392 м 3 /ч;

S в1 = = 5,2 м 2 .

S в2 = = 2,6 м 2 .

К в1 = 5,2/1 = 5,2 принимаем К в = 5 шт,

К в2 = 2,6/1 = 2,6 принимаем К в = 3 шт,

= 9212 м 3 /ч.

Т.к. Q в1 < 8000 м 3 /ч, то выбираем схему с одним вентилятором.

= 7677 м 3 /ч.

Т.к. Q в1 > 8000 м 3 /ч, то с несколькими.

4.1.2 ОПРЕДЕЛЯЕМ ДИАМЕТР ТРУБОПРОВОДА


где V т - скорость воздуха в трубопроводе, V т = 12 - 15 м/с, принимаем

V т = 15 м/с,

= 0,46 м, принимаем D = 0,5 м.

= 0,42 м, принимаем D = 0,5 м.

4.1.3 ОПРЕДЕЛЯЕМ ПОТЕРИ НАПОРА ОТ СОПРОТИВЛЕНИЯ ТРЕНИЮ В ПРЯМОЙ КРУГЛОЙ ТРУБЕ

где λ - коэффициент сопротивления трению воздуха в трубе, λ = 0,02; L длина трубопровода, м, L = 152 м; ρ - плотность воздуха, ρ = 1,2 - 1,3 кг/м 3 , принимаем ρ = 1,2 кг/м 3:

H тр = = 821 м,

4.1.4 ОПРЕДЕЛЯЕМ ПОТЕРИ НАПОРА ОТ МЕСТНЫХ СОПРОТИВЛЕНИЙ

где ∑ξ - сумма коэффициентов местных сопротивлений, таб. 56:

∑ξ = 1,10 + 0,55 + 0,2 + 0,25 + 0,175 + 0,15 + 0,29 + 0,25 + 0,21 + 0,18 + 0,81 + 0,49 + 0,25 + 0,05 + 1 + 0,3 + 1 + 0,1 + 3 + 0,5 = 10,855,

h мс = = 1465,4 м.

4.1.5 ОБЩИЕ ПОТЕРИ НАПОРА В ВЕНТИЛЯЦИОННОЙ СИСТЕМЕ

Н = Н тр + h мс

Н = 821+1465,4 = 2286,4 м.

Выбираем два центробежных вентилятора № 6 Q в = 2600 м 3 /ч, с табл. 57.

4.2 РАСЧЁТ ОТОПЛЕНИЯ ПОМЕЩЕНИЯ

Кратность часового воздухообмена:

где, V W - воздухообмен животноводческого помещения,

- объём помещения.

Воздухообмен по влажности:

м 3 /ч

где, - воздухообмен водяных паров (Табл. 45, );

Допустимое количество водяного пара в воздухе помещения;

Масса 1м 3 сухого воздуха, кг. (таб.40)

Количество насыщающих паров влаги на 1 кг сухого воздуха, г;

Максимальная относительная влажность, % (таб. 40-42);

- содержание влаги в наружном воздухе.

Т.к. К<3 - применяем естественную циркуляцию.

Расчет величины требуемого воздухообмена по содержанию углекислоты

м 3 /ч

где Р m - количество углекислоты, выделяемое одним животным в течение часа, л/ч;

Р 1 - предельно допустимое количество углекислоты в воздухе помещения, л/м 3 ;

Р 2 =0,4 л/м 3 .

м 3 /ч.


Т.к. К<3 - выбираем естественную вентиляцию.

Расчеты ведем при К=2,9.

Площадь сечения вытяжного канала:

, м 2

где, V - скорость движения воздуха при прохождении через трубу м/с:


где, высота канала.

температура воздуха внутри помещения.

температура воздуха с наружи помещения.

м 2 .

Производительность канала имеющего площадь сечения:

Число каналов


3.4.3 Расчёт отопления помещения

4.3.1 Расчет отопления помещения для коровника, в котором находится 200 голов

Дефицит теплового потока для отопления помещения:


где, коэффициент теплопередачи ограждающих строительных конструкций (таб. 52);


где, объёмная теплоёмкость воздуха.

Дж/ч.

3.4.3.2 Расчет отопления помещения для коровника, в котором находится 150 голов

Дефицит теплового потока для отопления помещения:

где поток теплоты, проходящий сквозь ограждающие строительные конструкции;

поток теплоты, теряемый с удалённым воздухом при вентиляции;

случайные потери потока тепла;

поток теплоты, выделяемый животными;


где, коэффициент теплопередачи ограждающих строительных конструкций (таб. 52);

площадь поверхностей, теряющих поток теплоты, м 2: площадь стен - 457; площадь окон - 51; площадь ворот - 48; площадь чердачного перекрытия - 1404.


где, объёмная теплоёмкость воздуха.

Дж/ч.

где, q =3310 Дж/ч- поток теплоты, выделяемый одним животным, (табл. 45).

Случайные потери потока тепла принимаются в количестве 10-15% от .

Т.к. дефицит теплового потока получился отрицательный, то подогрев помещения не требуется.

3.4 Механизация доения коров и первичной обработки молока

Количество операторов машинного доения:

шт

где, количество дойных коров на ферме;

шт.- количества голов на одного оператора при доении в молокопровод;

Принимаем 7 операторов.

6.1 Первичная обработка молока

Производительность поточной линии:

кг/ч

где, коэффициент сезонности поступления молока;

Количество дойных коров на ферме;

средний годовой удой одной коровы, (таб. 23) /2/;

Кратность дойки;

Длительность дойки;

кг/ч.

Выбор охладителя по поверхности теплообмена:

м 2

где, теплоёмкость молока;

начальная температура молока;

конечная температура молока;

общий коэффициент теплопередачи, (таб.56);

средняя логарифмическая разность температур.


где разность температур между молоком и охлаждающей жидкостью на входе, выходе, (таб. 56).


Число пластин в секции охладителя:

где, площадь рабочей поверхности одной пластины;

Принимаем Z п =13 шт.

Выбираем тепловой аппарат (по таб. 56) марки ООТ-М (Подача 3000л/ч. , Рабочая поверхность 6.5м 2).

Расход холода на охлаждение молока:

где - коэффициент, учитывающий теплопотери в трубопроводах.

Выбираем (таб. 57) холодильную установку АВ30.

Расход льда на охлаждение молока:

кг.

где, удельная теплота плавления льда;

теплоёмкость воды;

4. ЭКОНОМИЧЕСКИЕ ПОКОЗАТЕЛИ

Таблица 4.Расчёт балансовой стоимости оборудования фермы

Производственный процесс и применяемые машины и оборудование

Марка машины

мощность

количество машин

прейскурантная стои-мость машины

Начисле-ния на стоимость: монтаж (10%)

балансовая стоимость







Одной машины

Всех машин

ЕДЕНИЦЫ ИЗМЕРЕНИЯ


ПРИГОТОВЛЕНИЕ КОРМОВ РАЗДАЧА КОРМОВ ВНУТРИ ПОМЕЩЕНИЙ








1. КОРМОЦЕХ

2. КОРМОРАЗДАТЧИК



ТРАНСПОРТНЫЕ ОПЕРАЦИИ НА ФЕРМЕ








1. ТРАКТОР



2. ПРИЦЕП



УБОРКА НАВОЗА








1. ТРАНСПОРТЁР

ВОДОСНАБЖЕНИЕ








1. ЦЕНТРОБЕЖНЫЙ НАСОС

2. ВОДОНАПОРНАЯ БАШНЯ




ДОЕНИЕ И ПЕРВИЧНАЯ ОБРАБОТКА МОЛОКА








1.ПЛАСТИНЧАТЫЙ ТЕПЛОВОЙ АППАРАТ

2. ВОДООХЛАЖД. МАШИНА

3. ДОИЛЬНАЯ УСТАНОВКА







Таблица5.Расчет балансовой стоимости строительной части фермы.

Помещение

Вместимость, гол.

Количество помещений на ферме, шт.

Балансовая стоимость одного помещения, тыс.руб.

Общая балансовая стоимость, тыс. руб.

Примечание

Основные производственные здания:






1 Коровник


2 Молочный блок



3 Родильное отделение


Вспомогательные помещения






1 Изолятор


2 Ветпункт



3 Стационар


4 Блок служебных помещений



5 Кормоцех



6Вет.сан.пропускник





Хранилища для:














5 Конц.кормов





Инженерные сети:






1 Водопровод



2Трансформаторная подстанция



Благоустройство:






1 Зеленые насаждения






Ограждения:








Сетка - рабица

2 Выгульных площадок




Твердое покрытие








Годовые эксплуатационные затраты:


где, А - амортизационные отчисления и отчисления на текущий ремонт и техническое обслуживание оборудования и т.д.

З - годовой фонд заработной платы обслуживающего персонала фермы.

М- стоимость расходуемых в течении года материалов, связанных с работой техники (электроэнергия, топлива и др.).

Амортизационные отчисления и отчисления на текущий ремонт:


где Б i - балансовая стоимость основных фондов.

Норма амортизационных отчислений основных фондов.

Норма отчислений на текущий ремонт основных фондов.

Таблица 6. Расчет амортизационных отчислений и отчислений на текущий ремонт

Группа и вид основных фондов.

Балансовая стоимость, тыс. руб.

Общая норма амортизационных отчислений, %

Норма отчислений на текущий ремонт, %

Амортизационные отчисления и отчисления на текущий ремонт, тыс. руб.

Здания, сооружения

Хранилища

Трактор (прицепы)

Машины и оборудования

руб.

Где - - годовой объём молока, кг;

Цена одного кг. молока, руб/кг;

Годовая прибыль:

5. ОХРАНА ПРИРОДЫ

Человек, вытесняя все естественные биогеоценозы и закладывая агробиогеоценозы своими прямыми и косвенными воздействиями, нарушает устойчивость всей биосферы. Стремясь получить как можно больше продукции, человек оказывает влияние на все компоненты экологической системы: на почву- путём применения комплекса агротехнических мероприятий с включением химизации, механизации и мелиорации, на атмосферный воздух- химизацией и индустриализацией сельскохозяйственного производства, на водоёмы- за счёт резкого увеличения количества сельскохозяйственных стоков.

В связи с концентрацией и переводом животноводства на промышленную основу наиболее мощным источником загрязнения окружающей среды в сельском хозяйстве стали животноводческие и птицеводческие комплексы. Установлено, что животноводческие и птицеводческие комплексы и фермы являются самыми крупными источниками загрязнения атмосферного воздуха, почвы, водоисточников сельской местности, по мощности и масштабам загрязнения вполне сопоставимы с крупнейшими промышленными объектами- заводами, комбинатами.

При проектировании ферм и комплексов необходимо своевременно предусмотреть все меры по защите окружающей среды в сельской местности от нарастающего загрязнения, что следует считать одной из важнейших задач гигиенической науки и практики, специалистов сельскохозяйственного и других профилей, занимающихся данной проблемой.

6. ВЫВОД

Если судить об уровне рентабельности животноводческой фермы на 350 голов с привязным содержанием, то по полученному значению годовой прибыли видно, что она отрицательная, это говорит о том, что производства молока на этом предприятии убыточно, в следствии высоких амортизационных отчислений и низкой продуктивности животных. Повышение рентабельности возможно при разведении высокопродуктивных коров и увеличении их числа.

Поэтому я считаю, что строить данную ферму экономически необоснованно из-за высокой балансовой стоимости строительной части фермы.

7. ЛИТЕРАТУРА

1. В.И.Земсков; В.Д.Сергеев; И.Я.Федоренко «Механизация и технология производства продукции животноводства»

В.И.Земсков «Проектирование производственных процессов в животноводстве»

Выпускаемое в последнее время нашей промышленностью, предназначено для комплексной механиза-ции ферм как при привязном стойловом, так и беспривязном содержании животных. Исходя из уровня оснащенности фермы доильными установками и другим оборудованием для животноводческих ферм разрабатываются и про-екты строительства животноводческих по-мещений. Теоретические расчеты и прак-тический опыт показывают, что экономиче-ски целесообразно создавать фермы с поголовьем не менее 200 коров. На обо-рудование таких ферм в основном и рас-считывается существующая механизация (например, молокопровод на 200 голов ), однако ее с успехом можно использовать и в коровниках на 100 голов (другие виды молокопровода , доильная площадка "ёлочка" ).

Водоснабжение большинства ферм осу-ществляется путем оборудования скважин глубиной от 50 до 120 м, с обсадными тру-бами диаметром 150—250 мм. Вода из скважин подается погруженными глубин-ными электронасосами типа УЭЦВ. Тип на-соса и его производительность выбирают в зависимости от глубины, диаметра сква-жины и потребного количества воды для фермы. В качестве резервуара для приема и накопления воды применяют водонапор-ные башни, устанавливаемые возле сква-жин. Наиболее удобна и проста в эксплу-атации цельнометаллическая башня систе-мы Рожковского. Ее емкость (15 куб. м) обеспечивает бесперебойное снабжение водой фермы (до 2000 голов) при перио-дической подкачке и заполнении башни водой из скважины. В настоящее время все более широко применяются безбашенные водокачки, малогабаритные и с полной ав-томатизацией управления.

Для поения коров в коровниках при привязном содержании применяют следующее оборудование для молочных ферм : одночашечные клапанные индивидуальные поил-ки Т1А-1 по одной на каждые две коровы. Поилка имеет небольшие размеры, удобна в обслуживании. При беспривязном содер-жании животных широко применяют поил-ки АГК-4 с электроподогревом. Их устанав-ливают на открытых выгульных площадках из расчета одна на 50—100 голов. Поилка АГК-4 обеспечивает подогрев воды и со-хранение температуры до 14—18° при мо-розе до 20°, потребляя на это около 12 квт/ч электроэнергии в сутки. Для пое-ния животных на выгульных площадках и на пастбищах летом следует применять групповую автопоилку АГК-12, которая об-служивает 100—150 голов. Для поения жи-вотных на пастбищах и летних лагерях, уда-ленных от источников воды на 10—15 км, целесообразно применять автопоилку ПАП-10А. Она смонтирована на одноосном прицепе с пневматическими шинами, име-ет 10 поилок, емкость для воды и насос, работающий от вала отбора мощности трактора. Кроме прямого назначения, поил-ка может служить для перекачки воды установленным на ней насосом. Поилку ПАП-10А агрегатируют с трактором «Бела-русь», она обеспечивает водой стадо в 100—120 коров.

Кормление животных при привязном со-держании осуществляется также с помощью оборудования для молочных ферм , в частности - мо-бильных или стационарных кормораздат-чиков. В коровниках привязного содержа-ния, имеющих кормовые проходы шири-ною до 2,0 м, для раздачи корма в кор-мушки целесообразно применять кормо-раздатчик— тракторный прицеп ПТУ-10К. Этот кормораздатчик агрегатируют со все-ми марками тракторов «Беларусь». Он имеет емкость кузова 10 куб. м и произ-водительность на раздаче от 6 до 60 кг на 1 погон, м кормушки. Стоимость кор-мораздатчика довольно высокая, поэтому оборудование для молочных ферм наиболее выгодно использовать его на фермах с поголовьем 400—600 коров или на двух-трех близко расположенных фер-мах.

Если в хозяйстве применяют наземное силосование или закладку силоса в тран-шеях, имеющих подъезды, то загружать силос и солому в кормораздатчик ПТУ-10К удобнее всего навесным погрузчиком си-лоса ПСН-1М. Погрузчик отделяет силос или солому из бурта или стога, измельча-ет и подает измельченную массу в кузов кормораздатчика или на другой транспорт. Погрузчик агрегатируют с тракторами МТЗ-5Л и МТЗ-50; он работает от вала отбора мощности и гидравлики трактора. Погрузчик снабжен бульдозерной навеской БН-1, которая служит для подгребания остатков силоса и соломы, а также и для других хозяйственных работ. Обслуживает погрузчик один тракторист, производительность до 20 т силоса и до 3т соломы в час.

В тех случаях, когда силосная масса хра-нится в заглубленных хранилищах, ямах или секционных траншеях, вместо по-грузчика ПСН-1М целесообразно приме-нять электрифицированный погрузчик пре-рывного действия ЭПВ-10. Он представля-ет собой козловый кран с наклонной бал-кой, но которой перемещается каретка с виброгрейфером. Производительность погрузчика около 10 т в час, обслуживает-ся одним рабочим. Достоинством электри-фицированного погрузчика ЭПВ-10 являет-ся то, что его можно использовать для выемки навоза из заглубленных навозохра-нилищ, заменив рабочий орган. Произво-дительность его на выгрузке навоза составляет 20—25 т/час.

Если в коровнике низкий потолок (менее 2,5 м) или недостаточная ширина кормо-вого прохода между кормушками (менее 2 м), для раздачи кормов в стойлах целе-сообразно применять стационарный транс-портер— кормораздатчик ТВК-80А. Уста-навливается он по всей длине коровника на один ряд коров по фронту кормления. Приемная загрузочная часть транспортера размещается в специальном помещении, и его загрузка осуществляется при включен-ном транспортере из прицепного трактор-ного кормораздатчика ПТУ-10К. Кормораз-датчики ТВК-80 и ПТУ-10К работают одновременно в заданном режиме. Норма раздачи корме животным регулируется пу-тем изменения скорости подачи его кор-мораздатчиком ПТУ-10К.

При беспривязном содержании для кормления на выгульной площадке наибо-лее эффективен мобильный кормораздат-чик, хотя в некоторых случаях, в частности, при содержании животных в боксах, может быть успешно применен и кормораздат-чик ТВК-80А. В летнее время скашивание, измельчение и погрузка зеленой мас-сы в прицепной кормораздатчик ПТУ-10К осуществляется косилкой-измельчителем КИР-1,5, в осенне-зимнее время погрузку силоса и соломы в кормораздатчик произ-водят навесным погрузчиком ПСН-1М.

Для доения коров при привязном со-держании применяют два типа доильных установок: «Доильный комплект 100», ДАС-2 и ДА-ЗМ для доения в ведра и до-ильную установку «Даугава» для доения в молокопровод, «Доильный комплект 100» предназначен для коровника на 100 голов. Он состоит из 10 доильных аппаратов «Волга», вакуумного оборудования, устрой-ства для промывки доильных аппаратов, очистителя-охладителя молока ООМ-1000А с фригаторным ящиком, танка для сбора и хранения молока ТМГ-2, электроводонагревателя ВЭТ-200, молочных насосов ОЦНШ-5 и УДМ-4-ЗА. Доильный комплект обеспечивает доение, первичную обработ-ку и хранение молока, поэтому его целе-сообразно применять для оборудования доильными аппаратами удаленных коровников, где бывает необхо-димо кратковременно хранить молоко одного-двух удоев. Нагрузка на доярку при применении комплекта составляет 22—24 коровы.

Для ферм, расположенных в непосред-ственной близости около молочных заво-дов; сливных пунктов или транспортных магистралей, рекомендуются доильная установка ДАС-2 или доильная установка ДА-ЗМ. Доильная установка ДАС-2 укомплектована двухтакт-ным доильным аппаратом «Майга», ваку-умным оборудованием, устройством для промывки доильных аппаратов и шкафом для хранения сменной резины. Доильная установка ДА-ЗМ содержит то же обору-дование, но укомплектована трехтактными доильными аппаратами «Волга» или пере-движными доильными аппаратами . ПДА-1. Доение переносными аппаратами увеличи-вает производительность труда в 1,5—2,0 раза и значительно облегчает труд доярок по сравнению с ручным доением. Однако при применении переносных доильных ап-паратов ручной труд исключается не пол-ностью. Вручную переносят доильные ап-параты с ведрами от коровы к корове, а также относят надоенное молоко. Поэто-му на фермах, имеющих более 100 коров, затраты на ручные операции доения, связанные в том числе и с работой с доильными аппаратами , не-сколько возрастают, в связи с чем целе-сообразнее применять доильные установки «Даугава» с молокопроводом, с помощью которого один человек может выдаивать до 36—37 коров.

Доильная установка «Даугава» выпускает-ся в двух вариантах: «Молокопровод-100» для оборудования ферм на 100 коров и «Молокопровод-200» для ферм на 200 ко-ров. В комплект доильной установки «Мо-локопровод-100» входят 8 двухтактных до-ильных аппаратов «Майга», стеклянный мо-локопровод с устройством для замера молока при контрольном доении, устрой-ство для циркуляционной промывки доиль-ных аппаратов и молокопровода, вакуум-ная аппаратура, охладитель молока, ванна для мойки молочного оборудования, мо-лочные насосы ОЦНШ-5 и УДМ-4-ЗА, водя-ной центробежный насос, водонагреватель ВЭТ-200. Доильная установка «Молокопро-вод-200» имеет те же агрегаты, но с молокопроводом , рассчитанном на обслуживание 200 коров. Кроме перечисленного оборудова-ния, имеющегося в каждой установке «Молокопровод», в комплекте имеется оборудование, поставляемое по желанию хозяйства. Например, для ферм, не име-ющих источников холодной воды, может быть поставлена холодильная установка МХУ-8С компрессионного типа, хладоагентом в которой является фреон. Холодопроизводительность установки 6200 ккал/час, что при возможности аккумуля-ции холода обеспечивает охлаждение 4000 л молока в сутки до температуры 8°. Применение холодильной установки позво-ляет улучшить качество молока за счет своевременного его охлаждения оборудованием для молочных ферм .

Также по желанию хозяйств, для ферм, на которых необходимо кратковременно хранить молоко одного-двух удоев, по-ставляется танк ТМГ-2. Если такой танк не нужен, то доильная установка комплек-туется двумя или четырьмя завакуумированными цистернами емкостью по 600 л. В этом случае из комплекта исключается молочный диафрагменный насос УДМ-4-ЗА. Применение «Молокопровода» по сравне-нию с доением в переносные ведра, кро-ме облегчения-труда, позволяет улучшить качество молока, так как молоко ОТ выме-ни коровы до молочного танка идет по трубам и изолировано от окружающей среды. При использовании молокопровода необходимо регулярно промывать его пос-ле доения (с помощью устройства для циркуляционной мойки) теплой водой и растворами моющих дезинфицирующих средств: порошком А и порошком Б. Сбор заявок и реализация этих химических мо-ющих средств производится Всесоюзными объединениями «Союззооветснаб» и «Союзсельхозтехника».

Во многих хозяйствах в летний период коров содержат на пастбищах. Если паст-бища расположены в непосредственной близости от фермы, доение целесообраз-но проводить на ферме той же доильной установкой, - которую применяют зимой. Однако часто пастбища удалены от ферм, поэтому перегон скота для доения на ферму невыгоден. В этом случае приме-няют пастбищную доильную установку УДС-3. Эта доильная установка имеет две секции, каждая с четырьмя проходными станками, 8 доиль-ных аппаратов «Волга», молокопровод, охладитель, молочный насос и оборудова-ние, обеспечивающее нагревание воды, электроосвещение, подмывание вымени и охлаждение молока, вакуумный насос до-ильной установки приводится в действие в пастбищных условиях от бензодвигателя, но он имеет и электродвигатель, от кото-рого может работать при наличии электро-энергии. Обслуживают доильную установку 2—3 доярки, производительность доильной установки 55—60 коров в час.

Для удаления навоза из помещений при привязном содержании скота, а также из свинарников и телятников при групповом клеточном содержании свиней и телят также при-меняют оборудование для животноводческих ферм: транспортеры ТСН-2 и ТСН-3,06. Горизонтальная и наклонная часть транс-портера ТСН-2 состоит из одной простран-ственной цепи, которая приводится в дей-ствие приводным механизмом от электро-двигателя. Транспортер ТСН-З.ОБ состоит из горизонтальной части с приводом и на-клонной части также с собственным приво-дом. Такая конструкция позволяет при необходимости использовать каждую часть транспортера самостоятельно. Применение для уборки навоза значи-тельно облегчает труд скотников и повы-шает их производительность, позволяя совмещать уборку навоза с другими рабо-тами на ферме. Для уборки навоза при беспривязном содержании с выгульных площадок и из помещений применяют тракторы разных типов с бульдозерными навесками (БН-1, Д-159, Э-153 и другие). В некоторых хозяйствах, преимущественно в северо-западных районах страны, нахо-дят применение электрифицированные ва-гонетки ВНЭ-1.Б для вывоза навоза от ко-ровника в навозохранилище.

Применение оборудования для животноводческих ферм на фермах дает значительное снижение затрат труда на производство продукции. Так, на 1 ц молока расходуется лишь око-ло 6 чел.-час. В колхозе имени Калинина, Динского района, Краснодарского края, внедрение комплексной механизации на ферме с поголовьем 840 коров позволило высвободить для других работ 76 человек. Затраты труда с применением оборудования для животноводческих ферм на производство 1 ц молока уменьшились с 21 до 6 чел.-час, а себе-стоимость 1 ц молока понизилась с 11,2 до 8,9 руб. Еще один пример. В колхозе «Маяк», Дунаевецкого района, Хмельниц-кой области, до внедрения комплексной механизации на ферме одна доярка об-служивала 12—13 коров, затраты на содер-жание 100 коров при частичной механиза-ции процессов составляли 31,7 тыс. руб. в год, себестоимость 1 ц молока составля-ла 12,8 руб. После внедрения применения оборудования для животноводческих ферм производственных процессов каждая доярка стала обслуживать в сред-нем 26 коров, затраты на содержание 100 коров уменьшились до 26,5 тыс. руб. в год, себестоимость 1 ц молока сократилась до 10,8 руб.

  • 2. Понятие производственно–технологической линии (птл) в животноводстве, принцип их составления.
  • 3. Способы содержания крс. Комплекты стойлового оборудования. Определение оптимальных параметров стойла.
  • 4. Способы содержания животных. Комплекты технологического оборудования.
  • 5. Способы и средства для удаления навоза. Расчет объема навозного канала.
  • 6. Классификация средств для уборки навоза. Обоснование выбора средства для уборки навоза.
  • 7. Методика обоснования типа и размеров навозохранилища.
  • 8. Способы утилизации навоза и внесения его в почву.
  • 9. Физиологические основы процесса машинного доения коров. Способы извлечения молока из вымени коровы.
  • 10. Типы доильных аппаратов и их краткая характеристика. Расчет потребности в доильных аппаратах.
  • 11. Типы доильных установок. Критерии выбора. Расчет годового выхода молока.
  • 12. Автоматизированные доильные установки, область их применения и краткая характеристика.
  • 13. Способы первичной обработки молока и комплекс машин. Расчет объема молока, подлежащего обработке.
  • 14. Способы и обоснование выбора машин для приготовления кормов к скармливанию.
  • 15. Система машин для раздачи кормов (наименование и марки). Расчет линии кормораздачи.
  • 1.3. Устройство мобильных кормораздатчиков
  • 1.4 Устройство стационарных кормораздатчиков
  • 16. Критерии выбора и определение производительности кормораздатчиков.
  • 17. Классификация кормораздатчиков. Расчет потребности в кормораздатчиках.
  • 18. Система машин и технология приготовления травяной муки и гранул.
  • 19. Обоснование типа и размеров силосных сооружений.
  • 20. Технология приготовления измельченного корма и комплекс машин. Расчет затрат энергии на измельчение кормов.
  • 21. Классификация и принципиальные схемы машин для измельчения кормов резанием.
  • 22. Дозаторы кормов, их классификация и характеристика.
  • 23. Смешивание кормов. Типы кормосмесителей применяемых в животноводстве.
  • 24. Система машин для обеспечения нормального микроклимата в животноводческих помещениях.
  • 25. Системы вентиляции животноводческих помещений и их характеристики. Расчет необходимой кратности воздухообмена.
  • 26. Понятие и основные параметры микроклимата в животноводческих помещениях.
  • 27. Система машин для стрижки овец (марки, характеристика).
  • 28. Система и оборудование для то комплекса машин на животноводческих фермах.
  • 29. Механизация процессов при промышленном производстве яиц и мяса птицы.
  • Механизация и технология животноводства.

    1. Понятие комплексной механизации животноводческих ферм и комплексов. Методика расчета уровня механизации.

    В связи с переводом животноводства на промышленную основу все большее значение приобретают крупные специализированные предприя­тия, отличающиеся от обычных животноводческих ферм четкой инженер­ной организацией труда, комплексной механизацией и автоматизацией процессов, поточностью и ритмичностью производства. Это животновод­ческие комплексы. Для них характерны высокая производственная мощность и концентрация поголовья животных или птицы на объекте, а также узкая специализация на главном виде продукции, дающем основ­ной валовой доход. Продукция на комплексах имеет низкую себестои­мость, что свойственно крупным промышленным предприятиям.

    Производственные процессы на фермах и комплексах слагаются из основных и вспомогательных технологических операций, проводимых в определенной последовательности. Каждая операция, в свою очередь, может состоять из отдельных работ. К основным технологическим опера­циям относятся кормоприготовление, доение коров и др.; к вспомога­тельным - операции, обеспечивающие выполнение основных (создание искусственного холода для обработки и хранения молока, получение пара на технологические нужды и др.).

    Машины, выполняющие работы одного производственного процесса, составляют систему машин. Комплексная механизация должна охваты­вать все процессы на ферме, при этом необходима их взаимная увязка. Например, процессы кормоприготовления, стерилизации оборудования, получения горячей воды связаны с получением и подачей пара; работа всех машин фермы, за исключением приводимых в действие от двига­телей внутреннего сгорания, зависит от подачи электрической энергии и т. д.

    Любой технологический процесс необходимо строить так, чтобы в системе машин, его осуществляющей, производительность каждой мaшины соответствовала производительности предыдущей или была несколько большей. Это позволяет создать поточность производства. Ряд процессов на животноводческих предприятиях автоматизирован: водоснабжение, получение искусственного холода, первичная обработка молока и др. Благодаря автоматизации обязанности обслуживающего персонала сводятся к контролю работы оборудования, техническим обслуживаниям, наблюдению за ходом процесса и наладке оборудования. Для осуществления комплексной механизации ферм, прежде всего, необходимы прочная кормовая база, животноводческие помещения, соот­ветствующие уровню современной техники и технологии, надежное электроснабжение. Рентабельность производства в огромной степени за­висит от опыта и знаний инженерно-технического и обслуживающего персонала фермы или комплекса.

    Состояние механизации процессов на животноводческих фермах можно характеризовать такими показателями:

    Уровень механизации;

    Уровень механизации процесса определяют по следующему выражению:

    где m мех – количество голов скота, обслуживаемое механизмами;

    m общ – общее число голов.

    Возможно определение уровня механизации по следующему выражению:

    где в числителе затраты времени на выполнение каждой операции с помощью механизмов, а в знаменателе – общие затраты времени на обслуживание животных.

    В настоящее время определяются как уровни механизации отдельных процессов на различных фермах (например, раздача кормов, доение, удаление навоза на фермах КРС), так и уровни комплексной механизации – когда механизированы все основные процессы) например, свиноводческая ферма будет комплексно механизированной, если механизированы приготовление и раздача кормов, автопоение и удаление навоза).

    Уровень комплексной механизации процессов на животноводческих фермах в нашей стране еще низок.

    По состоянию на 1 января 1994 года в РФ было комплексно механизировано 73 % ферм КРС, 94 % свиноводческих ферм, 96 % птицеводческих ферм и 22 % овцеводческих. В Кемеровской области данный показатель достигает 65%.

    Механизация животноводства позволяет существенно снизить себестоимость продукции животноводства, поскольку упрощает процедуру кормления и уборки навоза. Применяя комплексные мероприятия для автоматизации фермерского хозяйства, владелец сможет получить впечатляющую прибыль, при полностью окупаемых затратах на модернизацию

    Животноводство - важный сегмент экономики, обеспечивающий население такими необходимыми продуктами питания, как мясо, молоко, яйца и др. При этом животноводческие хозяйства поставляют сырье для предприятий легкой промышленности, которые занимаются изготовлением одежды, обуви, мебели и других материальных ценностей. Наконец сельскохозяйственные животные являются источником поступления органических удобрений для предприятий растениеводства. Ввиду этого увеличение объемов производства продукции животноводства является желанным и даже необходимыми явлением для любого государства. При этом основным источником производственного роста в современном мире выступает в первую очередь внедрения интенсивных технологий, в частности автоматизация и механизация животноводства с основами энергосбережения.

    Состояние и перспективы механизации животноводства в России

    Животноводство является достаточно трудоемким видом производства, поэтому использование последних достижений научно-технического прогресса путем механизации и автоматизации рабочих процессов является очевидным направлением для повышения эффективности и рентабельности производства.

    На сегодняшний день в России затраты труда на производство единицы продукции на крупных механизированных фермах в 2-3 раза ниже, чем в среднем по отрасли, себестоимость - в 1,5-2 раза. И хотя уровень механизации отрасли в целом является высоким, он значительно отстает от развитых стран, а потому является недостаточным. Так, лишь около 75% молочных ферм имеют комплексную механизацию работ, среди производителей говядины таких менее 60%, свинины - около 70%.

    В России сохраняется высокая трудоемкость животноводства, что негативно отражается на себестоимости продукции. Например, доля ручного труда при обслуживании коров составляет порядка 55%, а в овцеводстве и репродукторных цехах свиноводческих ферм - не менее 80%. Уровень автоматизации производства в мелких хозяйствах еще ниже - в среднем в 2-3 раза отстает от всей отрасли в целом. Например, полностью механизированы лишь около 20% ферм со стадом до 100 голов и около 45% со стадом до 200 голов.

    Среди причин низкого уровня механизации отечественного животноводства можно назвать с одной стороны низкую рентабельность в отрасли, не позволяющую предприятиям закупать импортное оборудование, а с другой - отсутствие отечественных современных средств комплексной механизация и технологий животноводства.

    По мнению ученых, исправить положение могло бы освоение отечественной промышленностью выпуска типовых модульных животноводческих комплексов с высоким уровнем автоматизации, роботизации и компьютеризации. Модульный принцип позволил бы унифицировать конструкции различного оборудования, обеспечив их взаимозаменяемость, облегчив процесс создания животноводческих комплексов и снизив эксплуатационные расходы для них. Однако такой подход требует целенаправленного вмешательства в ситуацию государства в лице профильного министерства. К сожалению, необходимых шагов в данном направлении пока не предпринимается.

    Технологические процессы, подлежащие автоматизации

    Производство животноводческой продукции представляет собой длинную цепочку технологических процессов, операций и работ, связанных с разведением, содержанием и забоем сельскохозяйственных животных. В частности на предприятиях отрасли выполняются такие виды работ:

    • приготовление кормов,
    • кормление и поение животных,
    • удаление и переработка навоза,
    • сбор продукции (яиц, меда, постриг шерсти и т.д.),
    • забой животных на мясо,
    • спаривание животных,
    • выполнение различных работ по созданию и поддержанию необходимого микроклимата в помещениях и т.д.

    Механизация и автоматизация животноводства не может быть сплошной. Некоторые виды работ можно полностью автоматизировать, поручив их компьютеризированным и роботизированным механизмам. Другие работы подлежат лишь механизации, то есть их может выполнять лишь человек, но используя в качестве инструментов более совершенное и производительное оборудование. Очень немногие виды работ на сегодняшний день требуют полностью ручного труда.

    Механизация и автоматизация кормления

    Приготовление и раздача кормов, а также поение животных является одним из самых трудоемких технологических процессов в животноводстве. На него приходится до 70% общих затрат труда, что по умолчанию делает его первой «мишенью» для автоматизации и механизации. К счастью, поручить этот вид работ роботам и компьютерам относительно просто для большинства отраслей животноводства.

    Сегодня механизация раздачи кормов предусматривает на выбор два типа технических решений: стационарные кормораздатчики и передвижные (мобильные) средства раздачи кормов. Первое решение представляет собой электродвигатель, управляющий ленточным, скребковым или иным транспортером. Подача корма у стационарного раздатчика осуществляется путем его выгрузки из бункера на транспортер, который затем доставляет пищу непосредственно в кормушки. В свою очередь мобильный кормораздатчик перемещает сам бункер прямо к кормушкам.

    Какой тип кормораздатчика использовать, определяется путем осуществления некоторых расчетов. Обычно они сводятся к тому, что требуется подсчитать внедрение и обслуживание какого типа раздатчика будет более рентабельно для помещения данной конфигурации и данного типа животных.

    Механизация поения представляет собой еще более простую задачу, поскольку вода, будучи жидкостью, легко транспортируется сама по трубам и желобам под воздействием силы тяготения (если имеется хотя бы минимальный угол наклона желоба/трубы). Также ее легко транспортировать с помощью электронасосов по системе труб.

    Механизация уборки навоза

    Механизация производственных процессов в животноводстве не обходит стороной и процесс уборки навоза, которая среди всех технологических операций находится на втором месте по трудоемкости после кормления. Выполнять эту работу нужно часто и в больших объемах.

    В современных животноводческих комплексах используются различные механизированные и автоматизированные системы удаления навоза, тип которых прямо зависит от вида животных, системы их содержания, конфигурации и других особенностей помещения, вида и количества подстилочного материала. Чтобы добиться максимального уровня автоматизации и механизации данного вида работ, крайне желательно предусмотреть использование конкретного оборудования еще на стадии строительства помещения, в котором будут содержаться животные. Только тогда комплексная механизация животноводства станет возможной.

    Уборку навоза можно осуществлять двумя способами: механическим и гидравлическим. Системы механического типа действия подразделяются на:

    • а) скребковые транспортеры;
    • б) канатно-скреперные установки;
    • в) бульдозеры.

    Гидравлические системы различают по:

    1. По движущей силе:
      • самотечные (навоз движется по наклонной поверхности под воздействием гравитации);
      • принудительные (навоз движется под воздействием внешнего принуждения, например, потока воды);
      • комбинированные (часть «маршрута» навоз перемещается самотеком, а часть принудительно).
    2. По принципу действия:
      • непрерывного действия (навоз удаляется круглосуточно по мере поступления);
      • периодического действия (навоз удаляется при накоплении до определенного уровня или через определенные отрезки времени).
    3. По конструкции:
      • сплавные (навоз непрерывно движется по каналу за счет разницы его уровня наверху и внизу канала);
      • шиберные (перекрытый заслонкой канал частично заполняют водой и в течение нескольких дней накапливают в нем навоз, после чего заслонку открывают и содержимое самотеком спускается дальше);
      • комбинированные.

    Диспетчеризация и комплексная автоматизация в животноводстве

    Повышение эффективности производства и снижение уровня трудозатрат на единицу продукции в животноводстве не должно ограничиваться автоматизацией, механизацией и электрификацией отдельных технологических операций и видов работ. Современный уровень научно-технического прогресса уже позволил полностью автоматизировать многие виды промышленного производства, где весь производственный цикл от стадии приемки сырья до стадии пакования готовой продукции в тару выполняет автоматическая роботизированная линия под присмотром одного диспетчера или нескольких инженеров.

    Очевидно, что в силу специфики животноводства добиться таких показателей уровня автоматизации на сегодняшний день невозможно. Однако к нему можно стремиться, как к желаемому идеалу. Уже существует такое оборудование, которое позволяет отказаться от использования отдельных машин и заменить их поточными технологическими линиями. Такие линии не смогут контролировать абсолютно весь цикл производства, но способны полностью механизировать основные технологические операции.

    Поточные технологические линии оборудуются сложными рабочими органами и продвинутыми системами датчиков и сигнализации, что позволяет добиваться высокого уровня автоматизации и контроля техники. Максимальное использование таких линий позволит отойти от ручного труда, в том числе операторов отельных машин и механизмов. Им на смену придут диспетчерские системы контроля и управления технологическими процессами.

    Переход на современный уровень автоматизации и механизации работ в животноводстве России обеспечит снижение эксплуатационных издержек в отрасли в несколько раз.



    Поделиться