Газотурбинные установки предприятий российской федерации. Опыт создания и эксплуатации первой гту-тэц в республике башкортостан

Строительство ГТУ-30 МВт на Калужской ТЭЦ является частью масштабной инвестиционной программы ОАО «Квадра», реализуемой в рамках договоров присоединения мощности.

В рамках инвестиционной программы ОАО «Квадра» до 2015 г. планирует построить объекты генерации общей установленной мощностью 1092 МВт.

В ходе строительства нового энергоблока на Калужской ТЭЦ (в соответствии с проектом) был возведен новый комплекс, состоящий непосредственно из газотурбинной установки производства General Electric (США), парового котла-утилизатора производства ООО «НПО «Барнаульский завод котельного оборудования» и дожимной компрессорной станции. Стоимость проекта составила 1,7 млрд руб. При выборе газовой турбины учитывали опыт эксплуатации аналогичного генерирующего оборудования на других станциях, в частности на Белгородской ГТУ-ТЭЦ «Луч», работающей с 2005 г

Немаловажным фактором явилось то, что фирма-производитель газовых турбин на время капитального ремонта своей продукции предоставляет аналогичный газотурбинный агрегат, что исключает возможные простои в работе всей станции.

Стоит отметить, что нами было реализовано интересное и энергоэффективное решение включения нового газотурбинного энергоблока в существующую схему генерации энергии на Калужской ТЭЦ с учетом уже действующего оборудования. Принципиальная схема этого решения представлена на рис. 1, особенностью которого является получение пара в котле-утилизаторе (за счет охлаждения выхлопных газов газовой турбины) с его последующей подачей на действующие две паровые турбины типа Р и П. То есть с вводом в эксплуатацию газотурбинной установки фактически получили парогазовую ТЭЦ. Коэффициент использования топлива (КИТ) станции составит около 86%.

Рис. 1

Газовые турбины производства фирмы General Electric являются современной разработкой и отвечают последним мировым достижениям в этой области.

Концентрация окислов азота и углерода в отработанных газах имеет крайне низкие значения (на уровне наилучших мировых стандартов). Эти величины отвечают требованиям действующего ГОСТ 29328-92: содержание оксидов азота в отработанных газах ГТУ не более 51 мг/нм 3 .

Реконструкция Калужской ТЭЦ позволит значительно сократить выбросы вредных веществ в атмосферу. После ввода современной ГТУ на Калужской ТЭЦ концентрация выбросов окислов азота снизится с 255 до 55 мг/нм 3 .

Газотурбинная установка полностью автоматизирована, управление ГТУ производится из диспетчерской станции.

Ввод в эксплуатацию современного газотурбинного оборудования на Калужской ТЭЦ позволит увеличить установленную электрическую мощность станции с 12 до 42 МВт, выработка электроэнергии на Калужской ТЭЦ, по оценкам, увеличится в 6,5 раза (будет дополнительно вырабатываться до 2 млн кВт.ч электроэнергии в год). Это сократит дефицит электроэнергии в Калужской области и тем самым повысит надежность работы регионального энергоузла.

Что касается выработки тепловой энергии, то существующие два котла теперь будут работать в пиково-резервном режиме, а большая часть тепловой нагрузки в течение года будет покрываться за счет пара, вырабатываемого в котле-утилизаторе (максимальная производительность - 40 т/ч).

Пуск ГТУ позволяет улучшить технико-экономические показатели работы станции, повысить надежность энергоснабжения потребителей, а также обеспечить конкурентоспособность ТЭЦ на рынке электроэнергии и мощности.

После ввода ГТУ удельные расходы топлива снизятся:

¦ на отпуск электроэнергии - с 632,3 до 265 г/кВт.ч;

¦ на отпуск тепловой энергии - с 215,5 до 175 кг/Гкал.

В 2010 г. обучение и переподготовку для работы на ГТУ прошли 18 сотрудников Калужской ТЭЦ, в 2011 г. планируется обучить еще 10 чел.

В заключение стоит отметить, что проектом реконструкции Калужской ТЭЦ предусматривалось не только строительство ГТУ-30 МВт, но и дополнительная загрузка станции по тепловой мощности за счет переключения тепловых нагрузок, в частности, в районе ул. Чичерина, Социалистическая и Телевизионная (г. Калуга) с закрытием низкоэффективных котельных.

До района ул. Чичерина, Социалистическая и Телевизионная на данный момент теплотрасса практически «дотянута», общая протяженность которой 3 км в двухтрубном исчислении, диаметром 300 мм, бесканальная прокладка. В этом случае нами было принято решение об использовании труб в пенополимерминеральной (ППМ) изоляции с системой оперативного дистанционного контроля.

С завершением работ по строительству теплосети, в районе планируется закрыть четыре низкоэффективные котельные.

В 2007 г. для «переброса» тепловой нагрузки с трех котельных (две ведомственные и одна муниципальная) в Силикатном районе на Калужскую ТЭЦ от станции до района была проложена теплосеть протяженностью 3,5 км в двухтрубном исчислении наружной прокладки из труб в пенополиуретановой (ППУ) изоляции диаметром 325 мм с антивандальным покрытием. установка пар газотурбинный тепловой

Правда, за время эксплуатации данного трубопровода возникла проблема многочисленных поджогов теплоизоляции со стороны жителей. Сегодня Силикатный район полностью получает тепловую энергию от Калужской ТЭЦ.

К теплоэлектроцентралям (ТЭЦ) относятся электростанции, которые вырабатывают и отпускают потребителям не только электрическую, но и тепловую энергию. При этом в качестве теплоносителей служат пар из промежуточных отборов турбины, частично уже использованный в первых ступенях расширения турбины для выработки электроэнергии, а также горячая вода с температурой 100-150° С, нагреваемая отбираемым из турбины паром. Пар из парового котла поступает по паропроводу в турбину где он расширяется до давления в конденсаторе и потенциальная энергия его преобразуется в механическую работу вращения ротора турбины и соединенного с ним ротора генератора. Часть пара после нескольких ступеней расширения отбирается из турбины и направляется по паропроводу потребителю пара. Место отбора пара, а значит, и его параметры устанавливаются с учетом требований потребителя. Так как теплота на ТЭЦ расходуется на производство электрической и тепловой энергии, то различаются КПД ТЭЦ по производству и отпуску электроэнергии и производству и отпуску теплоэнергии.

Газотурбинные установки (ГТУ) состоят из трех основных элементов: воздушного компрессора, камеры сгорания и газовой турбины. Воздух из атмосферы поступает в компрессор, приводимый в действие пусковым двигателем, и сжимается. Далее под давлением его подают в камеру сгорания, куда одновременно подводится топливным насосом жидкое или газообразное топливо. Для того чтобы снизить температуру газа до приемлемого уровня (750-770° С), в камеру сгорания подают в 3,5-4,5 раза больше воздуха, чем нужно для сгорания топлива. В камере сгорания он разделяется на два потока: один поток поступает внутрь жаровой трубы и обеспечивает полное сгорание топлива, а второй обтекает жаровую трубу снаружи и, подмешиваясь к продуктам сгорания, снижает их температуру. После камеры сгорания газы поступают в газовую турбину, находящуюся на одном валу с компрессором и генератором. Там они, расширяясь (примерно до атмосферного давления), совершают работу, вращая вал турбины, и затем выбрасываются через дымовую трубу. Мощность газовой турбины значительно меньше мощности паровой турбины и в настоящее время КПД около 30%.

Парогазовые установки (ПГУ) представляют собой сочетание паротурбинной (ПТУ) и газотурбинной (ГТУ) установок. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД по сравнению с отдельно взятыми ПТУ и ГТУ. Кроме того, при таком объединении достигается ряд конструктивных преимуществ, приводящих к удешевлению установки. Распространение получили два типа ПГУ: с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла. Высоконапорный котел работает на газовом или очищенном жидком топливе. Дымовые газы, выходящие из котла с высокой температурой и избыточным давлением, направляются в газовую турбину, на одном валу с которой находятся компрессор и генератор. Компрессор нагнетает воздух в топочную камеру котла. Пар из высоконапорного котла направляется к конденсационной турбине, на одном валу с которой находится генератор. Отработавший в турбине пар переходит в конденсатор и после конденсации насосом подается снова в котел. Выхлопные газы турбины подводятся к экономайзеру для подогрева питательной воды котла. В такой схеме не требуется дымосос для удаления отходящих газов высоконапорного котла, функцию дутьевого насоса выполняет компрессор. КПД установки в целом достигает 42-43%. В другой схеме парогазовой установки осуществляется использование теплоты отработавших газов турбины в котле. Возможность сброса отработавших газов турбины в топочную камеру котла основывается на том, что в камере сгорания ГТУ топливо (газ) сжигают с большим избытком воздуха и содержание кислорода в выхлопных газах (16-18%) является достаточным для сжигания основной массы топлива.



29. АЭС: устройство, типы реакторов, параметры, режимные характеристики.

АЭС относятся к тепловым ЭС, т.к. в их устройстве есть тепловыделители, теплоноситель и генератор эл. тока – турбина.

АЭС могут быть конденсационными, теплофикационными (АТЭЦ), атомные станции теплоснабжения (АСТ).

Ядерные реакторы классифицируются по различным признакам:

1. по уровню энергии нейтронов:

На тепловых нейтронах

На быстрых нейтронах

2. по виду замедлителя нейтронов: водными, тяжеловодными, графитовыми.

3. по виду теплоносителя: водными, тяжеловодными, газовыми, жидко металлическими

4. по числу контуров: одно-, двух-, трех- контурные

В современных реакторах для деления ядер исходного топлива используются в основном тепловые нейтроны. Все они имеют прежде всего так называемую активную зону , в которую загружается ядерное топливо, содержащее уран 235 замедлитель (обычно графит или вода). Для сокращения утечки нейтронов из активной зоны последнюю окружают отражателем, выполненным обычно из того же материала, что и замедлитель.

За отражателем снаружи реактора размещается бетонная защита от радиоактивных излучений. Загрузка реактора ядерным топливом обычно значительно превышает критическую. Чтобы по мере выгорания топлива непрерывно поддерживать реактор в критическом состоянии, в активную зону вводят сильный поглотитель нейтронов в виде стержней из карбамида бора. Такие стержни называютрегулирующими или компенсирующими. В процессе деления ядра выделяется большое количество теплоты, которая отводиться теплоносителем в теплообменник парогенератора , где она превращается в рабочее тело – пар. Пар поступает в турбину и вращает ее ротор, вал которого соединен с валом генератора . Отработавший в турбине пар попадает в конденсатор , после которого сконденсированная вода вновь идет в теплообменник, и цикл повторяется.

Газотурбинная теплоэлектроцентраль (ГТ ТЭЦ или ГТУ-ТЭЦ ) - теплосиловая установка, служащая для совместного производства электрической энергии в газотурбинной установке и тепловой энергии в котле-утилизаторе .

Устройство ГТ ТЭЦ

Единичный агрегат ГТ ТЭЦ состоит из газотурбинного двигателя , электрогенератора и котла-утилизатора . При работе газовой турбины образующаяся механическая энергия идёт на вращение генератора и выработку электроэнергии, а неиспользованная тепловая - для подогрева теплоносителя в котле. Комплексное использование энергии топлива для электрогенерации и отопления позволяет, как и для всякой ТЭЦ в сравнении с чисто электрической станцией, увеличить суммарный КПД установки примерно с 30 до 90 %.

Оптимальная частота вращения газовой турбины превышает необходимую для непосредственной выработки тока промышленной частоты, поэтому в составе электрогененрирующей части агрегата присутствует либо понижающий механический редуктор , либо статический электронный преобразователь частоты .

В оборудование ГТ ТЭЦ также входят система газоподготовки (осушение, механическая очистка, буферное хранение), электрический распределительный узел, устройства охлаждения генераторов, система автоматического управления и др.

Преимущества и недостатки ГТ ТЭЦ

Преимущества

  • В сравнении с паротурбинными тепловыми электростанциями ГТ ТЭЦ требуют меньших суммарных капитальных затрат при возведении, более просты в обслуживании. Они не имеют котлов высокого давления, не требуют специальных охлаждающих устройств для сброса избыточной тепловой энергии, мощность на единицу массы у них значительно выше. В то же время мощность единичного агрегата ГТ ТЭЦ ограничена более тяжёлыми условиями работы турбины. ГТ ТЭЦ не может использовать тяжёлое и твёрдое топливо, возможности оптимизации процесса сгорания на паровой ТЭЦ шире.
  • В сравнении с крупными газопоршневыми станциями ГТ ТЭЦ отличается гораздо большим ресурсом, но при этом дороже и требует более квалифицированного обслуживания. Газовая турбина менее требовательна к горючим качествам газа, чем поршневая машина, и более экологически чиста.

Недостатки

  • По соотношению вырабатываемой электрической энергии к тепловой ГТ ТЭЦ, как правило, проигрывает другим типам станций.
  • К недостаткам ГТ-ТЭЦ можно отнести высокую шумность. Шум вблизи станции может достигать 110 дБ, что сравнимо с шумом от самолёта. В отсутствие шумоизоляции, шум от станции распространяется на расстояние 3 км, с шумоизоляцией около от 1,5 до 2 км.

Область применения

Строительство ГТ ТЭЦ оправдано в случае необходимости быстрого введения локальных генерирующих и отопительных мощностей при минимизации начальных затрат: увеличение мощности или реконструкция сетей масштаба микрорайона, посёлка, небольшого города, основание новых населённых пунктов, особенно в сложных для строительства условиях. Всё, что необходимо для работы станции - лишь наличие стабильного газоснабжения; крайне желателен достаточный спрос на тепловую энергию.

Совершенствование технологии газотурбинных агрегатов удешевляет их производство и эксплуатацию и значительно продляет ресурс. Применение бесконтактных подшипников (магнитных , газодинамических), совершенствование материалов, работающих в пламени, снижение тепловой напряжённости крупных турбин позволяет добиться наработки 60-150 тыс.ч. до замены основных изнашивающихся деталей и межсервисного интервала порядка года. В настоящее время (2010-е) разработаны и серийно выпускаются как мощные тихоходные (6 тыс.об/мин) энергетические турбины для капитальных стационарных ГТ ТЭЦ, так и компактные турбоагрегаты с высокой частотой вращения (около 100 тыс. об/мин) и высокочастотными генераторами в законченном «контейнерном» исполнении, также в той или иной мере пригодные в качестве основного источника энергоснабжения населённого пункта.

Технологическое совершенство современных газотурбинных агрегатов в известной мере снимает барьер, заставивший на заре электроэнергетики ввести в турбогенератор «лишнюю» паровую ступень. Всё это вместе с увеличением спроса на локальные мощности способствует распространению ГТ ТЭЦ из газоносных районов с суровым климатом и сложными условиями строительства во всё более обширные умеренные области, где при дешёвом газоснабжении ощущается возрастающий недостаток электроэнергии, а наращивание мощности централизованных сетей нецелесообразно по экономическим или организационным соображениям.

Область применения:

1) Для выработки электрической и тепловой энергии.

2) Транспортные (двигатели самолетов, судов, железнодорожных локомотивов, танков).

3) Приводные ГТУ: для привода мощных нагнетателей воздуха (компрессоры, воздуходувки, насосы, на газоперекачке).

4) Энерготехнологические ГТУ: используются в технологических схемах крупных предприятий для приводов компрессоров, обеспечивающих рабочий процесс и работающих за счет расширения газов, образующихся в сомом технологическом процессе.

ПТУ  сложнее и дороже

ГТУ – маневреннее, быстрее пуск. Пуск ГТУ осуществляется за несколько минут, паросиловой установки – до нескольких часов).

1. ГТУ используют для снятия пиковых нагрузок (КПД низкий).

2. Благодаря низкой стоимости на газ, в последнее время повышен интерес у конечных потребителей энергии к созданию ГТУ (собственных) для обеспечения предприятий энергоресурсами.

3. Использование ГТУ (замкнутых), работающих в паре с атомными реакторами (для охлаждения применяют гелий).

Принципиальная схема гту.

Цикл ГТУ.

2 д , 4 д  потери в проточной части.

12 сжатие воздуха в компрессоре (адиабатное);

23 изобарный подвод теплоты в камере сгорания;

34 адиабатное расширение продуктов сгорания в ГТ;

41 изобарное охлаждение продуктов сгорания в атмосфере.

степень повышения давления в компрессоре.

Р 1  давление окружающей среды только для разомкнутых схем.

Чем π выше, тем выше η t . .

Температура Т 3 ограничена пределом жаростойкости металла ГТ (1400°С – для авиационной турбины, или 900°С – в среднем).

Замкнутая схема.

Недостаток схемы : большое количество элементов, работающих при высокой температуре, что повышает стоимость установки (дорогие материалы).

Т 4 > Т 1 Т ос Т 4 =400÷450°С

В открытой схеме выбрасываемые газы имеют высокий тепловой потенциал.

Из-за потерь при определенной степени сжатия π работа компрессора может быть больше работы ГТ.

В реальной установке наибольшая эффективность достигается при определенной (оптимальной) степени повышенного давления в компрессоре π опт .

Значение π опт определяется температурой рабочего тела на выходе из камеры сгорания и относительными внутренними КПД компрессора и турбины.

Методы повышения КПД ГТУ.

1) Использование теплоты уходящих газов.

Регенеративный подогрев сжатого воздуха продуктами сгорания ГТ.

Т 4 > Т 1

температура воздуха на выходе из РП

Уменьшается количество подводимой теплоты в КС; уменьшается количество теплоты, выбрасываемое в окружающую среду, следовательно, эффективность возрастает.

Т 6 2

, Р 4 1 , Р 2 3

π > 1, следовательно, чем ниже π , тем больше выгода от регенерации теплоты.

При увеличении π :
и;

с увеличением Т 3 :
;

при определенной π:

2) Промежуточное охлаждение воздуха в компрессоре.

уменьшение работы на сжатие воздуха компрессором при промежуточном охлаждении воздуха, сжимаемого компрессором.

(адиабатный) изоэнтропный (относительный) КПД компрессора.

полезная работа компрессора ГТУ с промежуточным охлаждением воздеха.

>

3) Промежуточный подогрев газов в ГТ

η t –относительный КПД турбины (адиабатный)

Р 3 = Р 2 ; Р 4 = Р 1

увеличение работы расширения продуктов сгорания в турбине за счет промышленного перегрева этих газов.

ПОВ – промежуточный охладитель воздуха;

ПП  промежуточный подогреватель продуктов сгорания.

Т 1 =300К

Т 3 =973К

увеличилась в 1,8 раз (на 80%).

Если иувеличить на 2%, тоувеличится на 14%.

Полезная мощность

расход газа через турбину;

расход газа через компрессор.

–расход теплоты с топливом в КС.

N эл = N пол ·η эм

Условия отпуска теплоты от газотурбинной ТЭЦ имеют следующие особенности:

                Продолжительность сгорания на выходе из ГТУ составляют t=400-500°С,то достаточно для нагрева теплоносителей, в т.ч. пару, для отпуска тепловой энергии внешним потребителям.

                Выработка тепловой энергии в виде пара или горячей воды производится за счет теплоты полностью отработавших в ГТ продуктов сгорания, поэтому:

Температурный уровень отпускаемой теплоты не влияет на тепловую экономичность ГТ.

Мощность газотурбинного двигателя ГТУ при любой величине отпуска тепловой энергии остается постоянным (электрическая и тепловая нагрузка не связаны).

Газотурбинные установки (ГТУ) - тепловые машины, в которых тепловая энергия газообразного рабочего тела преобразуется в механическую энергию. Основными компонентами являются: компрессор, камера сгорания и газовая турбина. Для обеспечения работы и управления в установке присутствует комплекс объединенных между собой вспомогательных систем. ГТУ в совокупности с электрическим генератором называют газотурбинным агрегатом. Вырабатываемая мощность одного устройства составляет от двадцати киловатт до десятков мегаватт. Это классические газотурбинные установки. Производство электроэнергии на электростанции осуществляется при помощи одной или нескольких ГТУ.

Устройство и описание

Газотурбинные установки состоят из двух основных частей, расположенных в одном корпусе, - газогенератора и силовой турбины. В газогенераторе, включающем в себя камеру сгорания и турбокомпрессор, создается поток газа высокой температуры, воздействующего на лопатки силовой турбины. При помощи теплообменника производится утилизация выхлопных газов и одновременное производство тепла через водогрейный или паровой котел. Работа газотурбинных установок предусматривает использование двух видов топлива - газообразного и жидкого.

В обычном режиме ГТУ работает на газе. В аварийном или резервном при прекращении подачи газа осуществляется автоматический переход на жидкое (дизельное) топливо. В оптимальном режиме газотурбинные установки комбинированно производят электрическую и тепловую энергию. По количеству вырабатываемой тепловой энергии ГТУ значительно превосходят газопоршневые устройства. Турбоагрегаты используются на электростанциях как для работы в базовом режиме, так и для компенсирования пиковых нагрузок.

История создания

Идея использовать энергию горячего газового потока была известна еще с древних времен. Первый патент на устройство, в котором были представлены те же основные составляющие, что и в современных ГТУ, был выдан англичанину Джону Барберу в 1791 году. Газотурбинная установка включала в себя компрессоры (воздушный и газовый), камеру сгорания и активное турбинное колесо, но так и не получила практического применения.

В 19-м и начале 20-го века многие ученые и изобретатели всего мира разрабатывали установку, пригодную для практического применения, но все попытки были безуспешными ввиду низкого развития науки и техники тех времен. Полезная мощность, выдаваемая опытными образцами, не превышала 14% при низкой эксплуатационной надежности и конструктивной сложности.

Впервые газотурбинные установки электростанций были использованы в 1939 году в Швейцарии. В эксплуатацию была введена электростанция с турбогенератором, выполненным по простейшей схеме мощностью 5000 кВт. В 50-х годах эта схема была доработана и усложнена, что позволило увеличить КПД и мощность до 25 МВт. Производство газотурбинных установок в промышленно развитых странах сформировалось в единый уровень и направление развития по мощностям и параметрам турбоагрегатов. Суммарная мощность выпущенных в Советском Союзе и России газотурбинных установок исчисляется миллионами кВт.

Принцип работы ГТУ

Атмосферный воздух поступает в компрессор, сжимается и под высоким давлением через воздухоподогреватель и воздухораспределительный клапан направляется в камеру сгорания. Одновременно через форсунки в камеру сгорания подается газ, который сжигается в воздушном потоке. Сгорание газовоздушной смеси образует поток раскаленных газов, который с высокой скоростью воздействует на лопасти газовой турбины, заставляя их вращаться. Тепловая энергия потока горячего газа преобразуется в механическую энергию вращения вала турбины, который приводит в действие компрессор и электрогенератор. Электроэнергия с клемм генератора через трансформатор направляется в потребительскую электросеть.

Горячие газы через регенератор поступают в водогрейный котел и далее через утилизатор в дымовую трубу. Между водогрейным котлом и центральным тепловым пунктом (ЦТП) при помощи сетевых насосов организована циркуляция воды. Нагретая в котле жидкость поступает в ЦТП, к которому осуществляется подключение потребителей. Термодинамический цикл газотурбинной установки состоит из адиабатного сжатия воздуха в компрессоре, изобарного подвода теплоты в камере сгорания, адиабатного расширения рабочего тела в газовой турбине, изобарного отвода теплоты.

В качестве топлива для ГТУ используется природный газ - метан. В аварийном режиме, в случае прекращения подачи газа, ГТУ переводится на частичную нагрузку, а в качестве резервного топлива используются дизельное топливо или сжиженные газы (пропан-бутан). Возможные варианты работы газотурбинной установки: отпуск электроэнергии или совмещенный отпуск электричества и тепловой энергии.

Когенерация

Производство электричества с одновременной выработкой сопутствующей тепловой энергии называется когенерацией. Эта технология позволяет значительно повысить экономическую эффективность использования топлива. В зависимости от нужд газотурбинная установка дополнительно может оснащаться водогрейными или паровыми котлами. Это дает возможность получать горячую воду или пар различного давления.

При оптимальном использовании двух видов энергии достигается максимальный экономический эффект когенерации, а коэффициент использования топлива (КИТ) достигает 90%. В этом случае тепло выхлопных газов и тепловая энергия из системы охлаждения агрегатов, вращающих электрогенераторы (по сути, бросовая энергия), используется по назначению. При необходимости утилизируемое тепло может использоваться для производства холода в абсорбционных машинах (тригенерация). Система когенерации состоит из четырех ключевых частей: первичный двигатель (газовая турбина), электрогенератор, система теплоутилизации, система управления и контроля.

Управление

Выделяют два основных режима работы, при которых эксплуатируются газотурбинные установки:

  • Стационарный. В этом режиме турбина работает при фиксированной номинальной или неполной нагрузке. До недавнего времени стационарный режим был основным для ГТУ. Остановка турбины проводилась несколько раз в год для плановых ремонтов или в случае неполадок.
  • Переменный режим предусматривает возможность изменения мощности ГТУ. Необходимость изменять режим работы турбины может быть вызвана одной из двух причин: если изменилась потребляемая электрогенератором мощность ввиду изменения подключенной к нему нагрузки потребителей, и если изменилось атмосферное давление и температура забираемого компрессором воздуха. К нестационарным режимам, причем наиболее сложным, относится остановка и пуск газотурбинной установки. При последнем машинист газотурбинных установок должен выполнить многочисленные операции перед первым толчком ротора. Перед полноценным пуском установки осуществляется предварительная раскрутка ротора.

Изменение режима работы установки осуществляется регулировкой подачи горючего в камеру сгорания. Главной задачей управления ГТУ является обеспечение нужной мощности. Исключением является газотурбинная энергетическая установка, для которой основная задача управления - постоянство частоты ращения, связанного с турбиной электрического генератора.

Применение в энергетике

В стационарной энергетике применяются ГТУ разного назначения. В качестве основных приводных двигателей электрогенераторов на тепловых электростанциях газотурбинные установки используются в основном в районах с достаточным количеством природного газа. Благодаря возможности быстрого пуска ГТУ широко применяются для покрытия пиковых нагрузок в энергосистемах в периоды максимального потребления энергии. Резервные газотурбинные агрегаты обеспечивают внутренние нужды ТЭС во время остановки основного оборудования.

КПД

В целом электрический КПД газовых турбин ниже, чем у других силовых агрегатов. Но при полной реализации теплового потенциала газотурбинного агрегата значимость этого показателя становится менее актуальной. Для мощных газотурбинных установок существует инженерный подход, предполагающий комбинированное использование двух видов турбин за счет высокой температуры выхлопных газов.

Вырабатываемая тепловая энергия идет на производство пара для паровой турбины, которая используется параллельно с газовой. Это повышает электрический КПД до 59% и существенно увеличивает эффективность использования топлива. Недостатком такого подхода является конструктивное усложнение и удорожание проекта. Соотношение производимой ГТУ электрической и тепловой энергии примерно 1:2, то есть на 10 МВт электроэнергии выдается 20 МВт энергии тепловой.

Достоинства и недостатки

К преимуществам газовых турбин относятся:

  • Простота устройства. Ввиду отсутствия котельного блока, сложной системы трубопроводов и множества вспомогательных механизмов металлозатраты на единицу мощности у газотурбинных установок значительно меньше.
  • Минимальный расход воды, которая в ГТУ требуется только для охлаждения подаваемого к подшипникам масла.
  • Быстрый ввод в работу. Для газовых турбоагрегатов время пуска из холодного состояния до принятия нагрузки не превышает 20 минут. Для паросиловой установки ТЭС пуск занимает несколько часов.

Недостатки:

  • В работе газовых турбоагрегатов используется газ с весьма высокой начальной температурой - более 550 градусов. Это вызывает трудности при практическом исполнении газовых турбин, так как требуются специальные жаростойкие материалы и особые системы охлаждения для наиболее нагреваемых частей.
  • Около половины развиваемой турбиной мощности расходуется на привод компрессора.
  • ГТУ ограничены по топливу, используется природный газ или качественное жидкое топливо.
  • Мощность одной газотурбинной установки ограничена 150 МВт.

Экология

Позитивным фактором использования ГТУ является минимальное содержание вредных веществ в выбросах. По этому критерию газовые турбины опережают ближайшего конкурента - поршневые электростанции. Благодаря своей экологичности газотурбинные агрегаты без проблем можно размещать в непосредственной близости от мест проживания людей. Низкое содержание вредных выбросов при эксплуатации ГТУ позволяет экономить средства при строительстве дымовых труб и приобретении катализаторов.

Экономика ГТУ

На первый взгляд, цены на газотурбинные установки довольно высоки, но при объективной оценке возможностей этого энергетического оборудования все аспекты встают на свои места. Высокие капиталовложения на старте энергетического проекта полностью компенсируются незначительными расходами при последующей эксплуатации. Кроме того, значительно снижаются экологические платежи, уменьшаются затраты на покупку электрической и тепловой энергии, снижается влияние на окружающую среду и население. Вследствие перечисленных причин ежегодно приобретаются и устанавливаются сотни новых газотурбинных установок.



Поделиться