Регулируемый отбор пара с промежуточным регулируемым отбором. При номинальных параметрах пара, регулируемых отборов и мощности

В этой записи вы можете найти:

  • описание турбины ПТ-60-130;
  • схему ТЭЦ на базе этой турбины (формат MS Visio);
  • диаграммы режимов турбины ПТ-60-130 (режимы ПТ, Т и П).

Краткое описание и характеристики турбоустановки
ПТ-60-130/13

Паровая турбина ПТ-60/75-130/13 с конденсационной установкой и двумя регулируемыми отборами пара, представляет собой двухцилиндровый одновальный агрегат.

  • Номинальная мощность турбины 60000 кВт.
  • Число оборотов в минуту 3000.
  • Давление свежего пара перед стопорным клапаном
    12,75 (130) МПа (кгс/см 2).
  • Температура свежего пара перед стопорным клапаном 565 °С.
  • Давление в конденсаторе 0,0034 МПа.
  • Максимальный расход пара через турбину 107,5 (387) кг/с (т/ч).
  • Максимальный пропуск пара в конденсатор 44,4 (160) кг/с (т/ч).
  • Давление пара регулируемого промышленного отбора 0,686-1,666 (7-17) МПа (кгс/см 2).

Примечание : при работе с давлением промышленного отбора 0,686-0,784 (7-8) МПа (кгс/см 2) расход свежего пара на турбину снижается до 77,78-83,33 (280-300) кг/с (т/ч).

  • Давление пара регулируемого теплофикационного отбора 0,0294-0,147 МПа.
  • Расход охлаждающей воды 0,022 (8000) кг/с (м 3 /час).
  • Максимальная величина производственного отбора при теплофикационном отборе, равном нулю, составляет 69,44 (250) кг/с (т/ч). Максимальная величина теплофикационного отбора пара, когда величина производственного отбора равна нулю, составляет 44,44 (60) кг/с (т/ч).
  • Минимальный пропуск пара в часть низкого давления (за 27 ступенью), при закрытой поворотной диафрагме, с давлением в камере отбора 0,0196 (0,2) МПа (кгс/см 2), составляет 2,78 (10) кг/с (т/ч).

Турбина имеет

  • регулятор скорости, который поддерживает число оборотов турбины с неравномерностью 4%;
  • регулятор безопасности с двумя центробежными выключателями, которые срабатывают при достижении числа оборотов на 11-12% сверх номинальных (3000об/мин);
  • регулятор давления 0,686-1,666 (7-17) МПа (кгс/см);
  • регулятор давления от 0,02943 до 0,147 МПа;
  • ограничитель мощности;
  • реле для отключения турбины при аксиальном сдвиге ротора высокого давления и ротора низкого давления;
  • автоматическое устройство для включения электромасляного насоса смазки подшипников турбины при снижении давления масла;
  • регулятор уровня в конденсаторе, который также осуществляет рециркуляцию конденсата.

Цилиндр высокого давления (ЦВД) имеет одновенечную регулирующую ступень и 16 ступеней давления. Цилиндр низкого давления (ЦНД) состоит из двух частей: часть среднего давления (ЧСД) имеет регулирующую ступень и 8 ступеней давления, часть низкого давления (ЧНД) имеет регулирующую ступень и три ступени давления. Ротор высокого давления цельнокованый, а ротор низкого давления состоит из девяти цельнокованых дисков и четырех насадных.


Свежий пар от котла подается к отдельно стоящей паровой коробке, в которой расположен автоматический стопорный клапан (АСК) с условным диаметром d у 280 мм, откуда по перепускным трубам поступает к регулирующим клапанам ЦВД. ЦВД имеет сопловое парораспределение. Регулирующие клапаны (РК) с условным диаметром d у 125 мм расположены в паровых коробках, которые приварены к корпусам цилиндров. Два клапана установлены на верхней части цилиндра и два клапана по бокам в нижней части цилиндра.

Отработав в ЦВД, часть пара поступает в регулируемый производственный отбор, остальная часть направляется в ЦНД. Давление в камере производственного отбора поддерживается регулирующими клапанами ЦНД. Все диски ротора высокого давления откованы заодно с валом. По перепускным трубам пар из ЦВД поступает к паровым коробкам регулирующих клапанов ЦНД. Передняя часть ЦНД выполнена из литой углеродистой стали. Выхлопная часть ЦНД сварная. Ротор высокого давления (РВД) и ротор низкого давления (РНД) гибкие. РВД цельнокованый, на РНД первые 9 дисков откованы заодно с валом, 4 последние диски насадные. РВД и РНД соединены между собой гибкой пружинной муфтой. Ротор ЦНД и генератора соединены полугибкой муфтой.

Турбина имеет клапанное регулирование. Регулирование части высокого давления состоит из 4-х регулирующих клапанов, расположенных в паровых коробах передней части ЦВД, подающих пар к сегментам сопел и 5-го перегрузочного клапана, перепускающего пар из камеры регулирующего колеса в камеру за 4-ой ступенью. Регулирование промышленного отбора осуществляется 4-мя регулирующими клапанами, расположенными в передней части цилиндра низкого давления. Регулирование теплофикационного отбора осуществляется поворотной диафрагмой. Перестановка регулирующих клапанов впуска свежего пара, регулирующих клапанов ЦНД и поворотной диафрагмы перепуска пара производится поршневыми сервомоторами, золотниками которых управляют регуляторы скорости и давления отборов, включенные по принципу связанного регулирования.

Регулятор скорости снабжен механизмом управления, служащим для подрегулировки и используется для открытия автоматического затвора свежего пара, изменения числа оборотов турбины при холостом ходе во время синхронизации генератора, для поддержания заданной нагрузки генератора или нормальной частоты при параллельной работе генератора и поддержания частоты при одиночной работе генератора. Механизм управления может приводиться или от руки или дистанционно. Область изменения числа оборотов такова, что на холостом ходу возможно испытание регуляторов безопасности, настроенных на срабатывание при 10-12% от номинального числа оборотов. Фикс-пункт турбины расположен на задней фундаментной раме ЦНД, расширение турбины происходит в сторону переднего подшипника. Концевые и диафрагменные уплотнения ЦВД и ЦНД лабиринтового типа. Рядом стоящие обоймы концевых уплотнений, заключенных в корпусе цилиндра, образуют камеру отсоса.

Турбина снабжена валоповоротным устройством (ВПУ), вращающим ротор с частотой 3,4 об/мин. ВПУ отключается автоматически при повышении частоты вращения ротора более 3,4 об/мин. ВПУ может быть переведено на периодическое проворачивание ротора на 180° с помощью специального устройства. Турбина допускает возможность параллельной работы по обоим регулируемым отборам с аналогичной турбиной (по параметрам отборов) при условии:

  • паровой плотности стопорного клапана, регулирующих клапанов ЦВД и ЧСД и поворотной диафграмы отбора;
  • паровой плотности обратных клапанов на линиях нерегулируемых отборов пара;
  • регулярной проверки плотности органов парораспределения и обратных клапанов, а также надежного их закрытия.

Параллельная работа нерегулируемых отборов не допускается. Для сокращения времени прогрева и улучшения условий пусков предусмотрены паровой обогрев фланцев и шпилек.

Для обеспечения правильного режима работы и дистанционного управления системой дренажей при пусках и остановах турбины, предусмотрено групповое дренирование через расширитель дренажей в конденсатор. Корпусы турбины, корпус АСК и паропроводы покрываются тепловой изоляцией. Температура наружной поверхности изоляции не должна превышать 45 °С при работе турбины на номинальных параметрах и температуре охлаждающего воздуха 25 °С. ЦВД и передняя часть ЦНД закрываются тонкой металлической обшивкой.

Тепловая схема турбины ПТ-60-130

Хочу обратить ваше внимание, что схема была составлены в учебных целях и содержат неточности по сравнению с реальными схемами электростанций. Главной задачей этой схемы является показать принцип работы и основные потоки электростанции. Впрочем, вы можете дополнить ее по своему желанию и приблизить к реальности.

Паровая турбина — это машина, предназначенная для преобразования тепловой энергии пара в механическую энергию вращения.

В , как следует из названия, работу совершает нагретый пар. Пар в турбину поступает из или котла-утилизатора. Температура, с которой приходит в турбину пар, может быть разной. Но в основном, температура пара в районе 500-570 градусов Цельсия. Давление, также, разнообразное. Самое распространённое, это — 90 ата, 130 ата и 240 ата.

По типу паровые турбины делятся на: конденсационные, теплофикационные, теплофикационные с отбором пара на производство, противодавленческие.

В общем можно сказать, что тип турбины зависит от того, сколько и полностью ли пар совершает работу в турбине и куда он ещё идёт «на сторону».

Конденсационные турбины

Вероятно, этот тип турбин самый распространённый (маркировка — К). В комплекте с самой такой турбинной обязательно есть ещё устройство для сбора отработавшего пара — конденсатор. Весь отработавший пар в такой турбине поступает в конденсатор.

Конденсационные паровые турбины предназначены для выработки электричества. Т.е. такие турбины ставят на . На ставят, в основном, другого типа турбины. Весь пар с котла поступивший в такую турбину совершает работу для получения электроэнергии. Тепловую энергию с таких турбин не получают, за редкими исключениями.

В России такие турбины в советское время производил завод ЛМЗ — Ленинградский металлический завод. В настоящее время он переименован в ОАО «Силовые машины».

Теплофикационные турбины

Турбины типа — Т. Этот вид турбин устанавливают на ТЭЦ, т.е. там, где помимо выработки электричества, ещё нужно получать тепловую энергию — отопление и горячее водоснабжение.

У теплофикационных турбин существуют регулируемые теплофикационные отборы пара. Регулировка осуществляется поворотной диафрагмой. Пар с такого отбора поступает в сетевые подогреватели — теплообменники, где пар передаёт своё тепло сетевой воде.

Теплофикационные турбины, как правило, могут работать и в конденсационном режиме, например, в летнее время. В таком случае пар на сетевые подогреватели не поступает, а весь используется для выработки электричества.


Теплофикационные турбины в России производятся на УТЗ — Уральском турбинном заводе.

Теплофикационные турбины с промышленным отбором пара

Маркировка таких турбин — ПТ.

Промышленный отбор пара означает то, что часть пара с таких турбин уходит на какое-либо стороннее производство (завод, фабрику и т.д.). Пар может возвращаться обратно на электростанцию в виде конденсата, а может и полностью теряться.

Такие турбины в настоящее время практические не устанавливают. В советское время их устанавливали на ТЭЦ вблизи крупных промышленных предприятий — химических комбинатов, деревообрабатывающих заводах и т.д..

Противодавленческие турбины

Противодавленческие турбины имеют маркировку — Р. В составе таких турбин отсутствует конденсатор, а весь отработавший пар идёт с каким-либо небольшим давлением стороннему потребителю.

Этот тип турбин в настоящее время, как и турбины ПТ, не находит применение за редким исключением. После распада Советского Союза многие такие турбины «пылились» без дела, так как отсутствовал внешний потребитель отработавшего пара. Без потребителя пара невозможна и их эксплуатация, а значит и выработка электричества.

Паровая турбина Р-27-8,8/1,35 :

Но позже нашли оригинальное решение их модернизации. В пару к таким турбинам начали устанавливать небольшие турбины типа К (конденсационные), рассчитанные на работу с низким давлением пара. Т.е после того, как пар отработал в турбине Р, он не идёт стороннему потребителю, а поступает на вход дополнительно установленной турбины типа К, где завершает свою работу и конденсируется в конденсаторе.

Нагрузка турбины с противодавлением целиком определяется тепловым потребителем, поэтому, как отмечалось раньше, турбина с противодавлением обычно не может устанавливаться изолированно и должна работать параллельно с конденсационными турбинами. Кроме того, мощность самой турбины с противодавлением и связанного с ней электрического оборудования зачастую используется далеко не полностью, поскольку тепловое потребление или связано с зимним периодом, или зависит от числа смен, работающих в тенлонотребляющем производстве.

Значительно лучшее использование оборудования достигается в турбинах с промежуточным отбором пара, в которых мощность может изменяться в широких пределах независимо от нагрузки теплового потребителя.

В конденсаторе. Остальной поток пара Сп идет к тепловому потребителю. Таким образом, ЧВД турбины с отбором

представляет собой турбину с противодавлением, а ЧНД -конденсационную турбину.

При отсутствии отборов пара из ЧВД на регенерацию можно написать

Турбины с промежуточным от-

бором пара является суммой мощностей ЧВД и ЧНД:

Диаграмме. Если

принять обозначения рис. 9.4, то мощность ЧВД напишется так:

а мощность Ч НД:

Таким образом, внутренняя мощность всей турбины будет равна

Представляет собой использованный теплоперепад для потока пара, прошедшего в конденсатор через обе части турбины.

Из уравнения (9.4) можно найти расход свежего пара, если заданы мощность турбины и количество пара, отбираемого для теплового потребителя, и, кроме того, известны тепловые Перепады и КПД отдельных частей турбины:

Для того чтобы давление отводимого к тепловому потребителю пара поддерживалось на постоянном уровне, помимо клапанов, управляющих впуском пара в ЧВД, перед ЧНД турбины устанавливают также регулирующие клапаны. Изменения давления отбираемого пара воспринимаются регулятором давления.

Для того чтобы проследить зависимость между расходом свежего пара, развиваемой турбиной мощностью и количеством отбираемого пара, построим диаграмму, которая связывает эти величины и называется диаграммой режимов.

Диаграммы на рис. 9.5.

Здесь по оси абсцисс отложен относительный пропуск пара

Зависит от расхода пара;

Пара, выходящего из ЧВД.

будет наименьшим из все возможных располагаемых теилоперепадов ЧНД.

неизменным и производя расчет

Через ЧНД.

Выраженная в долях

На который необходимо умножить полученную из диаграммы рис. 9.6 мощность ЧНД, зависит только от пропуска пара через ЧВД.

Для рассматриваемого нами примера эта кривая нанесена на диаграмме рис. 9.5.

От количества пара, идущего в конденсатор.

Имея все предварительные данные, можно построить окончательную диаграмму режимов. Для этого перенесем

Определяется на основании

Которая показывает изменение мощности турбины при постоянном пропуске пара через ЧНД.

Случай, когда

На диаграмме рис. 9.7.

Представит собой диаграмму возможных режимов турбины с одним регулируемым отбором пара.

На которую рассчитан электрический генератор.

Увеличение пропуска пара через ЧНД за счет повышения давления пара перед ней сопровождается некоторым снижением экономичности ЧНД, но позволяет в брлее широких пределах использовать мощность турбогенератора. Следует отметить, что повышение давления пара в камере регулируемого отбора уменьшает располагаемый теплоперепад ЧВД и его КПД, а следовательно, и мощность ЧВД. Допуская режимы с повышенным давлением пара перед ЧНД, в диаграмме режимов получаем дополнительную область, которая на рис. 9.7 заштрихована.

Клапаны ЧНД откроются полностью и дальнейшее увеличение пропуска пара через ЧНД достигается за счет роста давления в камере отбора пара. Очевидно, что корпус ЧВД и примыкающие к нему трубопроводы отбираемого пара должны быть рассчитаны на максимальное давление, которое может возникнуть в камере отбора; на это же давление должны быть настроены предохранительные клапаны камеры отбора пара. В части низкого давления прочность рабочих лопаток и промежуточных диафрагм должна быть также рассчитана в соответствии с нагрузками, которые возникают при максимальном пропуске пара.

и принимая за начало отсчета мощности линию 1 - 1, получаем

В том случае, если требуется построить диаграмму режимов для электрической мощности турбогенератора, надо при

суммировании мощностей ЧВД и ЧНД вычесть из суммарной внутренней мощности механические потери и потери в электрическом генераторе. Последние зависят от нагрузки генератора и, следовательно, могут быть построены в зависимости от внутренней мощности турбины.

Часто при построении диаграммы режимов по оси абсцисс откладывают мощность, а по оси ординат - расходы свежего пара. В таком случае она примет вид, представленный на рис. 9.8, где показана диаграмма турбины Т-110/120-12,8-3 ТМЗ при работе с одним регулируемым отбором пара. Иногда строится упрощенная диаграмма режимов с прямыми линиями (рис. 9.9). При этом связь между отбором пара, мощностью и расходом свежего пара может быть выражена аналитически достаточно просто:

Расход пара, необходимый для холостого хода;

Отношение использованных теплоперепадов части низкого давления и всей турбины.

На рис. 9.7)

турбина практически работает как турбина с противодавлением и при заданном расходе отбираемого пара мощность не может быть меньше той, которая соответствует мощности ЧВД.

в диаграмме режимов (рис. 9.7).

Во всех тех случаях, когда по условиям электрической нагрузки турбины от нее не может быть отобран достаточно большой расход пара, в линию теплового потребителя добавляется свежий редуцированный пар и, таким образом, практически достигается любой режим, требуемый тепловым и электрическим потребителями.

В турбинах с отбором пара обычно применяется система регенеративного подогрева питательной воды. Построение диаграммы режимов в этом случае становится более сложным, так как необходимо рассматривать переменный режим всей установки.

Турбины с регулируемым отбором пара наиболее распространены па современных ТЭЦ, так как эти турбины в широком диапазоне режимов удовлетворяют запросам потребителей электроэнергии и теплоты и при этом полно используется оборудование независимо от времени года.

Однако нельзя забывать, что универсальность использования турбины с промежуточным отбором пара достигается ценой некоторого снижения экономичности при отдельных режимах. В самом деле, например, при конденсационном режиме такой турбины при полной нагрузке часть высокого давления оказывается незагруженной по пропуску пара, в то время как часть низкого давления перегружена. Такой режим турбины с отбором, очевидно, менее экономичен, чем режим конденсационной турбины. Понижение экономичности скажется особенно сильно, если при неполных нагрузках и конденсационном режиме или режиме с малыми отборами пара включено в работу регулирование давления промежуточного отбора. В этом случае возникают дополнительные потери дросселирования пара, перетекающего в часть низкого давления.

Точно так же при работе с большими отборами пара турбина с промежуточным отбором оказывается в менее благоприятных условиях, чем турбина с противодавлением, потому что при малом пропуске пара через часть низкоге давления последняя работает с низким КПД или даже потребляет мощность.

Очевидно, что наибольшая экономичность турбины с промежуточным отбором пара достигается при тех режимах, когда через каждук часть протекает оптимальный, обычно расчетный, расход пара.

Если режимы, при которых в основном будет эксплуатироваться турбина, известны наперед, то при проектировании можно так выбрать расчетные пропуски пара, чтобы обеспечить наибольшую экономичность при длительной эксплуатации. Так, например, если известно, что при чисто конденсационном режиме турбина должна развивать лишь небольшую мощность и что электрическая нагрузка турбины возрастает с ростом отбора пара, то расчетный пропуск через ступени низкого давления может быть выбран так, чтобы при чисто конденсационном режиме турбина принимала лишь частичную нагрузку или значительные нагрузки осуществлялись при существенном снижении экономичности. Это позволит сократить размеры лопаток ступеней низкого давления, удешевит трубину и сократит дополнительные потери при ограниченном пропуске пара в ЧНД. Наоборот, если от турбины требуется лишь небольшой отбор пара, то ступени низкого давления рассчитываются на пропуск пара, отвечающий конденсационной работе с полной мощностью, а ступени части высокого давления - на пропуск пара, лишь незначительно превышающий эту величину.

Для турбин с отопительным отбором пара, у которых в летнее время отбор пара существенно сокращается, обычно приходится рассчитывать ступени низкого давления на полный конденсационный пропуск пара. Следует учесть, что при этом несколько повышается давление в конденсаторе, что объясняется, с одной стороны, высокой температурой охлаждающей воды, с другой - большей нагрузкой конденсатора.

Выбор расчетных режимов теплофикационных турбин подробно описан в .

Обычно в основу этого выбора закладываются следующие положения.

1. Максимальная конденсационная мощность турбин с ото пительным отбором пара обеспечивается при полном расходе пара через турбину. Это позволяет полностью использовать оборудование ТЭЦ при конденсационном режиме, а в ото пительный период получить дополнительную электрическую мощность, если ограничить тепловую нагрузку. В то же время для турбин с производственным отбором пара, который, как правило, мало меняется в течение всего года, целесообразно, чтобы конденсационная мощность была равна или даже меньше номинальной, а не больше ее, что характерно для турбин с отопительными отборами пара.

Расходы пара в конденсатор невелики, то и технико-экономически целесообразно снизить стоимость конденсаторов и системы водоснабжения. Увеличение выходных потерь при конденсационном режиме, характерном для летнего времени, будет незначительным. Из-за больших отборов и соответственно малых массовых расходов пара в конденсаторе в зимний период сокращение общей кольцевой площади будет благоприятно и но экономичности и по надежности, что рассмотрено в § 7.4. Следует учитывать, что при том же расходе пара, что и в конденсационных турбинах, но и меньшем числе потоков в ЦНД через каждый поток проходит больший массовый расход и последние лопатки испытывают большие изгибающие напряжения.

3. В некоторых энергосистемах, в которых относительная мощность ТЭС невелика, приходится использовать ТЭЦ для регулирования электрической нагрузки. Для этого в отопитель ный период применяются различные способы, требующие сохранения тепловой нагрузки: отключение ПВД со снижением расхода свежего пара; повышение давления отопительного отбора с перепуском части сетевой воды помимо сетевых подогрева гелей в целях сохранения заданной температуры подогрева сетевой воды. Все эти методы, так же как ис пользование свежего пара для подогрева сетевой воды в обвод ЦВД, ведут к снижению экономичности турбоустановки, а в ря де случаев и собственно турбины и, главное, уменьшают удельную выработку электроэнергии на тепловом потреблении (см. § 1.4) и тем самым не используются экономически; весьма большие преимущества комбинированной выработки теплоты и электрической энергии.

На диаграмме строятся линии постоянной тепловой нагрузки, в общем случае равной

Расход сетевой воды.

Для частного случая одного сетевого подогревателя

Энтальпия насыщения при давлении отбора.

Турбины с регулируемым отбором пара могут выполняться как с промежуточным перегревом, так и без него. Промежуточный перегрев, как было проанализировано в § 1.3, повышает КПД цикла, КПД собственно турбины и надежность ступеней низкого (уменьшается эрозия лопаток ЦНД) и среднего давления (зона насыщения, чреватая неприятностями, вызываемыми коррозией под напряжением, благоприятно сдвигается в область пониженного давления).

МПа отсутствие промперегрева

может привести к недопустимо большой конечной влажности.

Современные теплофикационные турбины мощностью 50 МВт и выше имеют два отопительных регулируемых отбора пара для ступенчатого подогрева сетевой воды, осуществляемого в нескольких последовательно распо­ложенных подогревателях. Давление отбираемого пара определяется темпе­ратурой воды на выходе из каждой ступени подогрева. Для подогрева сетевой воды используют 70-80% расхода пара на турбину, а температура подогрева составляет 40- 50 °С.

Принципиальная схема турбоустановки с двумя отопительными отборами (верхним 4 и нижним 5) представлена на рис. 20.2,а. Свежий пар в количестве G о и с параметрами p 0 , t 0 подводится к турбине через стопорный 8 и регулирующий 7 клапаны. В ЧВД 1 пар расширяется до давления в нижнем отопительном отборе 5 и затем через регулирующий орган 6 направляется в ЧНД 2. Остальное оборудование турбоустановки с двумя отопительными отборами пара аналогично турбине с двумя регулируемыми отборами пара (рис. 20.1).

Рис. 20.2. Принципиальная схема (а) и процесс расширения пара (б) в h,S -диаграмме турбинной остановки с двухступенчатым отбором пара.

В верхний отбор 4 пар с расходом G 1 отбирается при давлении р 1 и с энтальпией h 1 (рис. 20.2,б), а в нижний - пар с расходом G 2 при параметрах р 2 и h 2 . Поскольку в турбине имеется только один регулирующий орган ЧНД, то регулируемое давление одновременно может поддерживаться только в одном из двух отопительных отборов пара: в верхнем - при включенных обоих отборах, в нижнем - при включенном нижнем отборе.

Установка для подогрева сетевой воды состоит из двух подогревателей (бойлеров) 9 и 10 поверхностного типа. Требуемая температура сетевой воды, направляемой тепловому потребителю, определяется давлением пара верхнего отбора. Распределение тепловой нагрузки между верхним и нижним отборами определяется температурами сетевой воды до и после сетевых подогревателей, расходом сетевой воды и электрической нагрузкой.

Внутренняя мощность турбины N i , кВт, с двумя отопительными отборами пара определяется из выражения (без учета регенеративных отборов)

N i = N э / η м η эг = N i " + N i " " + N i """ =

= G о Н 0 0i " + (G о G 1 0 ""η 0i "" + (G о G 1 G 2 0 """η 0i """ (20.3)

, кВт, составляет

Q т =W с c в (t 2с -t 1с) = G 1 (h 1 -h 1 " ) + G 2 (h 2 -h 2 " ), (20.4)

где G о , G п ,G т - расход пара на турбину, в верхний и нижний отопитель­ный отборы, кг/с; Н 0 " , Н 0 "" , Н 0 """- располагаемые ступеней турбины до верхнего отбора, между отборами и ЧНД, кДж/кг; W с - расход сетевой воды, кг/с; c в =4,19 кДж/(кг·К) - теплоемкость воды; t 2с,t 1с - температура воды на входе и выходе из подогревателей, град; h 1 , h 2 - энтальпия пара в верхнем и нижнем отопительных отборах, кДж/кг; h 1 " , h 2 " - энтальпия конденсата греющего пара в подогревателях 9 и 10, кДж/кг.

Турбины с двухступенчатым отбором пара могут иметь разнообразные теплофикационные режимы работы в зависимости от соотношения тепловой и электрической нагрузки. При режимах работы по тепловому графику при заданной тепловой нагрузке Q т регулирующий орган 6 перед ЧНД закрыт. Мощность турбины определяется тепловой нагрузкой, а расход пара через ЧНД ограничивается значением G к.мин , определяемым условиями надежной работы турбины. При работе турбины по электрическому графику возможно независимое изменение тепловой и электрической нагрузки. Регулирующий орган 6 открыт частично или полностью, что позволяет при постоянной тепловой нагрузке пропустить через турбину дополнительный расход свежего пара, поступающего через ЧНД в конденсатор 3 (рис. 20.2). Этот расход обес­печивает получение дополнительной мощности по сравнению с режимом работы по тепловому графику с той же тепловой нагрузкой. Таким образом, расход пара через ЧНД зависит от заданной электрической нагрузки.

20.3. ПРИМЕНЕНИЕ ВСТРОЕННЫХ ПУЧКОВ В КОНДЕНСАТОРАХ ТЕПЛОФИКАЦИОННЫХ ТУРБИН

В турбинах с регулируемым отбором пара при режимах работы с тепловой нагрузкой не допускается нулевой пропуск пара в конденсатор. Минимальный пропуск , служащий для охлаждения ступеней ЧНД, определяется конструкцией турбины (размерами облопачивания ЧНД, плотностью регулирующих органов ЧНД и т. д.) и режимом ее работы (вакуум, давление в камере отбора).

Теплота пара, поступающего в конденсатор, передается циркуляционной воде и не используется в цикле электростанции. Циркуляционной воде передается также теплота пара, поступающего в теплообменники, находящиеся на линии рециркуляции: сальниковый подогреватель и холодильники эжекторов. Для утилизации этой теплоты, соизмеримой с теплотой максимального пропуска пара в конденсатор, часть поверхности конденсатора выделяется в специальный теплофикационный пучок. В трубки пучка предусмотрен подвод как циркуляционной воды, так и воды тепловых сетей. Поверхность встроенного пучка составляет примерно 15% общей площади по­верхности конденсатора.

Конструкция конденсатора со встроенным пучком, имеющим самостоятельные водяные камеры и общее с основной поверхностью паровое пространство, является типовым решением для теплофикационных турбин мощностью 50 МВт и выше.

Принципиальная схема турбинной установки со встроенным теплофикационным пучком в конденсаторе представлена на рис. 20.3,а. К основному пучку труб конденсатора 8 предусмотрен подвод только циркуляционной воды, а к встроенному пучку 11 - циркуляционной воды и воды тепловых сетей (обратной сетевой или подпиточной). Остальное обору­дование турбоустановки имеет то же назначение и изображение, как и в турбинной установке с двухступенчатым отбором пара (рис. 20.2).

На режиме с конденсационной выработкой электроэнергии в основной и во встроенный пучки поступает только циркуляционная вода. При работе по тепловому графику подвод циркуляционной воды к основному и встроенному пучкам отключается, и встроенный пучок охлаждается сетевой или подпиточной водой. В этом случае регулирующий орган 6 ЧНД (рис. 20.3 ,а) закрыт, и турбина работает в режиме, аналогичном режиму работы турбины с противодавлением.

Рис. 20.3. Принципиальная схема (а) и процесс расширения пара (б) в h,S -диаграмме турбинной установки с двухступенчатым отбором пара и встроенным теплофикационным пучком.

Одновременно исключается возможность независимого задания тепловой и электрических нагрузок, так как электрическая мощность турбины при таком режиме работы определяется значением и параметрами тепловой нагрузки.

Перевод турбины на работу с использованием встроенного пучка вызывает перераспределение давлений и теплоперепадов по ступеням турбины. На рис. 20.3,б изображен тепловой процесс расширения пара в турбине в h,S -диаграмме при работе на конденсационном режиме (штриховые линии) и с включенным теплофикационным пучком (сплошные линии). Для ЧВД турбины режим работы с включенным встроенным пучком связан с увеличением давлений в регулируемых отборах (р 1 >р 1 "; р 2 >р 2 "), что приводит к снижению мощности, вырабатываемой на потоках пара в отборы. В ЧНД турбины вследствие ухудшения вакуума в конденсаторе резко снижается располагаемый теплоперепад (H 02 " > H 02 ), и ее ступени работают с большим отношением скоростей и/с ф и меньшим КПД. В отдельных случаях потери энергии в ЧНД превышают ее располагаемый теплоперепад и ступени ЧНД работают с отрицательным КПД и потребляют мощность (линия 1-2 на рис. 20.3,б). При таких режимах за счет возрастания температуры пара, проходящего через ЧНД, ухудшается температурный режим выхлопного патрубка турбины.

СРС. ДИАГРАММЫ РЕЖИМОВ

В общем случае диаграмма режимов выражает в графической форме зависимость между электрической мощностью турбины N i , расходом пара G о , тепловой нагрузкой потребителя Q п (Q т ), давлением пара, отпускаемо­го потребителю р п (р т) , параметрами свеже­го пара р 0 , t 0 , расходом охлаждающей воды W с и др., определяющими режим работы турбоустановки:

F(N э,G 0 , W с,Q п,Q т, р п, р т...) = 0. (1)

Уравнение (1) графически представля­ется на плоскости в том случае, если число переменных не превышает трех. В противном случае изображение диаграммы режимов на плоскости может быть получено только при замене действительной взаимосвязи переменных приближенными зависимостями, что вно­сит погрешность в диаграмму тем большую, чем больше число переменных уравнения (1). Поэтому целесообразно ограничить число независимых параметров, участвующих в диаграмме режимов. При ограничении числа переменных уравнения (1) учитывается, что влияние отдельных параметров на мощность не одинаково. Для обеспечения конечной высокой точности диаграмму режимов выполняют в виде нескольких самостоятельных графиков . Основной график , обычно называемый диаграммой режимов , выражает зависимость между мощностью турбиныN э и расходом параG 0 . Дополнительные графики , называемые поправочными кривыми к диаграмме режимов , определяют влияние изменения каждого из остальных параметров уравнения (1) на мощность турбины. В состав диаграммы режимов входят также некоторые вспомогательные кривые : зависимость температуры питательной воды от расхода свежего пара, возможного минимального давления в регулируемом отборе от расходов пара и отбора и др.

Основная диаграмма может быть выполнена с высокой точностью, поскольку число переменных ограничено. Поправочные кривые выполняют обычно с некоторой погрешностью. Однако погрешность поправочной кривой незначительно увеличивает общую погрешность диаграммы режимов, так как абсолютная величина самих поправок составляет, как правило, несколько процентов общей мощности турбины.

Наличие диаграммы режимов позволяет графически установить связь между параметрами уравнения (1) и выделить область возможных режимов работы турбоустановки. Наглядность представления, удобство пользования и достаточная точность определили широкое использование диаграммы режимов при проектировании и эксплуатации тепловых электростанций.

СРС 19.1. Диаграмма режимов турбины с противодавлением типа Р. Диаграмма режимов выражает зависимость расхода свежего пара G 0 от электрической мощности N э и противо­давления р п :

G 0 =f(N э, р п). (2)

которая может быть представлена на плоско­сти в соответствии с имеющимися опытными или расчетными данными. Из трех параметров уравнения (2) наименьшее влияние имеет конечное давление пара р п , и поэтому диаграмма режимов турбины с противодавлением выполняется (рис. 19.1СРС ) в виде сетки кривых G 0 =f(N э ) , полученных в результате пересечения трехмерной поверхности, описываемой уравнением (2), плоскостями р п = const .

Рис. 19.1СРС . Диаграмма режимов турбины с противодавлением.

СРС 19.2. Диаграмма режимов турбины с одним регулируемым отбором пара. В общем случае диаграмма режимов выражает зависимость электрической мощности N э от расхода пара на турбинуG 0 , в отборG п и давления пара в отбор р п .

G 0 =f(N э, G п, р п ). (3)

Из этого уравнения можно исключить давление отбора р п , заменив его влияние попра­вочными кривыми, которые могут быть выполнены с относительно малой погрешностью. Тогда зависимость (3) может быть построена на плоскости в виде серии кривых G 0 =f(N э ) при G п = const .

Рассмотрим пример построения диаграммы режимов турбины с отбором пара приближенным методом, основанным на использовании линеаризованной зависимости расхода пара на турбину G 0 от мощности N э и расхода пара в отборG п :

G 0 = G ко + y п G п = G к.х + r к N э + y п G п = G к.х + d н (1- x)N э + y п G п (4)

где G ко = G к.х + r к N э - расход пара на турбину при конденсационном режиме работы без отбора; G к.х - расход пара при холостом хо­де турбины без отбора; r к =( G 0 - G к.х )/ N э - удельный прирост расхода пара при конденсационном режиме, кг/(кВт·ч); y п = (h п -h к) / (h 0 -h к) - отношение использованных теплоперепадов ЧНД и всей турбины (коэффициент недовыработки мощности паром отбора); d н = G ном /N ном - удельный расход пара при номинальной нагрузке и конденсационном режиме работы, кг/(кВт·ч); х= G х.х /G 0 - коэффициент холостого хода.

Основой диаграммы режимов являются граничные линии, построенные для наиболее характерных режимов работы турбины.

Конденсационный режим. Математически зависимость расхода пара от мощности определяется выражением (5) при G п =0:

G 0 = G ко = G к.х + d н (1- x)N э (5)

Графически (рис. 19.2СРС ) построение линии конденсационного режима производится по двум точкам: точке К, ордината которой со­ответствует максимальному пропуску пара в конденсатор при номинальной электрической мощности N ном , и точке О 1 ,определяющей расход пара на турбину G к.х при нулевой мощности (холостом ходе). На оси абсцисс линия конденсационного режима, проходящая через точки К и О 1 , отсекает отрезок О О 2 , условно определяющий потери мощности тур­бины ΔN х.х на преодоление сопротивления хо­лостого хода.

В действительности зависимость G 0 =f(N э ) при конденсационном режиме отличается от прямолинейной и имеет более сложный вид, определяемый системой парораспределения, характером изменения внутреннего относи­тельного КПД, температуры отработавшего в ЧВД пара и т. д.

Режим работы турбины с противодавлением. Изменение расхода пара на турбину определяется выражением (5) при G к =0 и G 0 =G п :

G 0 = G о.п = G п = G к.х + d н (1- x)N э + y п G 0 ,

G 0 = G к.х /(1- y п) + d н (1- x)N э /(1- y п) = G п.х + r п N э (6)

G ко + y п G п = G к.х + r к N э + y п G п = G к.х + d н (1- x)N э + y п G п

где G п.х = G к.х /(1- y п) - расход пара на хо­лостой ход при режиме с противодавлением, кг/с; r п = r к (1- y п) - удельный прирост расхода пара при работе турбины с противодавлением, кг/(кВт·ч).

Так как коэффициент недовыработки y п всегда меньше единицы, расход пара на холо­стой ход и удельный прирост расхода пара при работе турбины с противодавлением выше, чем при конденсационном режиме в (1 /(1- y п)) раз: G п.х > G к.х , r п >r к .

Это объясняется значительно меньшим тепло перепадом в турбине до отбора по сравнению с полным теплоперепадом до конденсатора и соответственно большим удельным расходом пара.

Рис. 19.2СРС . Диаграмма режимов турбины с одним регулируемым отбором пара.

Приближенная зависимость расхода пара от мощности в случае, когда весь пар после ЧВД поступает в отбор, в диаграмме режимов (рис. 19.2СРС ) изображается прямой линией, проходящей через точкуО 2 , характеризующую потерю мощности на холостом ходе, и точку О 3 , в которой G п.х = G 0 . Точка В 0 , лежащая на линии конденсационного режима G к = 0, соответствует режиму работы с максимальным пропуском пара через турбину.

В действительности при работе турбины с противодавлением через конденсатор пропускается незначительный расход пара G к.мин , который определяется условиями надежной работы элементов ЧНД турбины (5-10% рас­хода пара на турбину). В качестве линии режимов работы турбины с противодавлением и минимальным пропуском пара в конденсатор, удовлетворяющей уравнению (5), следует рассматривать прямую К о В , параллельную О 2 В 0 и расположенную ниже нее. Орди­ната точки К о характеризует минимальный пропуск пара в конденсатор G к.мин .

Режим работы с постоянным отбором пара (G п = const ). Характеристики турбины с постоянным отбором пара строят по уравнению (4). Из сравнения выражений (4) и (5) легко установить, что характеристики конденсационного режима и режима работы с постоянным отбором отличаются друг от друга на постоянную величину y п G п . Следовательно, на диаграмме режимов линии, изо­бражающие режим G п = const , будут располагаться параллельно линии конденсационного режима.

Левой границей характеристик турбины при G п = const служит линия работы турбины с противодавлением, на которой G п = G к.мин (при отсутствии нерегулируемых отборов пара), а правой - линия КВ н постоянной номи­нальной мощности турбины N ном . Верхняя часть диаграммы режимов ограничивается отрезком ВВ н на линии максимального пропуска пара через турбину G 0макс = const между линиямиG к.мин = const и N ном = const.

Номинальный отбор пара G п ном отвечает номинальной электрической мощности N ном и максимальному расходу пара на турбину G 0макс (точка В н ). Если максимальный расход пара на турбину достигается при работе с противодавлением при электрической мощности меньше номинальной, то возможен отбор пара больше номинального, так называемый предельный отбор, определяемый в точке В пересечения линий G к.мин = const и G 0макс = const .

Кроме обязательного семейства линий, определяющих зависимость мощности турбины от расхода пара при различных значениях отборов G п = const , диаграмма режимов имеет сетку линий G к = const при постоянных рас­ходах пара в конденсатор (ЧНД). Линии G к = const представляют собой прямые, параллельные характеристике режима работы турбины с противодавлением G к.мин = const . Из этого семейства линий существенное значение имеет линия G к.макс = const , отвечающая максимальному пропуску пара в конденсатор. Обычно от теплофикационной турбины с конденсацией пара требуется полное развитие электрической мощности на чисто конденсационном режиме. В этом случае нижняя линия диаграммы G п = 0 достигает линии N ном = const в точке К при G к =G к.макс . Если же отбор пара устойчивый и обеспеченный на длительный период работы турбоустановки, то нижней границей правой части диаграммы служит линия G к.макс = const , проходящая параллельно линии G к.мин = const выше точки К пересечения линий G п = 0 и N ном . При этом номинальная электрическая мощность достигается при определенном значении отбора.

При одновременном максимальном пропуске пара через ЧВД и ЧНД турбина может развивать максимальную мощность N макс . Эта мощность определяется абсциссой точки В т пересечения линий G 0макс = const и G к.макс = const . Максимальная мощность турбины регламентирована в размере до 20% выше номинальной.

Если принять, что расход пара через ЧНД не должен превышать максимального, то из диаграммы (рис. 19.2СРС ) видно, что при конден­сационном режиме (G п = 0 ) мощность турбины (точка К 1 ) будет меньше максимальной. Такое ограничение мощности турбины с регулируемым отбором пара при работе на конденсационном режиме является неоправданным. Номинальную мощность при конденсационном режиме можно получить за счет уве­личения пропуска пара через ЧНД, что обеспечивается повышением давления пара перед ЧНД. Режимы с расходами пара через ЧНД, превышающими ее пропускную способность при полностью открытых регулирующих органах ЧНД и номинальном давлении пара в регулируемом отборе, в диаграмме режимов выделяются в область «повышенного давления в регулируемом отборе», которая на рис. 19.2СРС заштрихована.

Диаграмма режимов позволяет по двум заданным членам выражения (3) определить третий. Определение расхода отбираемого пара G п N э и расходе пара G 0 происходит следующим образом. По известным N э и G 0 находят точку А , характеризующую заданный режим работы турбины. Через точку А проводят линию постоянного пропуска пара в ЧНД. Ордината точки С пересечения этой линии и линии конденсационного режима G п = 0 определяет расход пара в ЧНД G к . Расход отбираемого пара найдется как разность G п =G 0 -G к .

Расход свежего пара G 0 при известных мощности турбины N э и расходе отбираемого пара G п определяется ординатой точки пере­сечения линий

N э = const и G п = const .

Мощность турбины N э при известных расходах свежего и отбираемого пара G 0 иG п определяется абсциссой точки пересечения линий G 0 = const и

G п = const .

СРС 20.1. Диаграмма режимов турбины с двумя регулируемыми отборами пара. N э , расходом пара на турбину G 0 , расходами пара в верхний (производственный) и нижний (теплофикационный) отборы G п и G т :

G 0 =f(N э, G п, G т). (1)

Влияние остальных параметров уравнения (1) учитывается поправочными кривыми.

При построении диаграммы режимов турбины с двумя регулируемыми отборами пара условно она заменяется фиктивной турбиной с одним верхним отбором пара. Теплофикационный отбор принимается равным нулю, а пар направляется в ЧНД турбины и производит там дополнительную мощность

ΔN т = G т Н i "" η м η эг = kG т (2)

где Н i "" - использованный теплоперепад ЧНД; k -коэффициент пропорциональности.

С учетом (2) выражение (1) можно привести к виду

N э = N э усл - ΔN т = f(G 0 , G п) - G т Н i "" η м η эг (3)

где N э усл = f(G 0 , G п) - мощность, развивае­мая условной турбиной при нулевом теплофикационном отборе.

Диаграмма режимов, отвечающая выражению (3), может быть выполнена на плос­кости в двух квадрантах следующим образом (рис. 6.9). В верхнем квадранте строится зависимость G 0 =f(N э усл, G п ) , которая выражает диаграмму режимов условной турбины при работе с нулевым расходом пара в отопитель­ный отбор. Ее построение выполняется так же, как и для турбины с одним отбором пара (рис. 19.2 СРС ). Нижней границей этой диаграммы служит линия производственного отбора G п = 0 . Сверху диаграмма ограничена линиями максимального расхода пара на турбину G 0макс = const и в производственный отбор G п.макс = const , а также линией G чсд , характеризующей количество пара, входящее в ЧСД.

Рис. 20.1 СРС . Диаграмма режимов турбины с двумя регулируемыми отборами пара.

В нижнем квадранте по (3) строится линия ОК , связывающая нижний отопительный отбор G т с дополнительной мощностью ΔN т , и наносится сетка параллельных ей прямых. Кроме того, здесь же наносятся ограничительные линии G п = const для теплофикационного отбора. Они изображают максимально возможный производственный отбор G п.макс , который определяется из общего парового баланса турбины при условии, чтобы расход пара на выходе из ЧСД не превышал теплофикационного отбора на величину, требуемую для охлаждения ступеней ЧНД:

G т.макс = G 0макс - G п -G кмин .(4)

Построение этих ограничительных линий выполняют следующим образом: из произвольно выбранных точек 1 и 2 для одного и того же значения G п = const проводят вертикально линии вниз. Точки 1" и 2" пересечения этих линий со значениями G т.макс , подсчитанными по формуле (4), соединяют для од­ного значения G п = const прямой, которая является границей возможных режимов. Сни­зу от нее работа турбины недопустимаиз-за G т > G т.макс .

Пользуясь такой диаграммой (рис. 20.1 СРС ), можно для турбины с двумя регулируемыми отборами пара по трем известным величинам уравнения (1) найти четвертую. Пусть, например, заданы N э , G п , G т . Требуется найти G 0 . Сначала по N э и G т находят N ф : из точки А заданной мощности N э проводят прямую АВ, параллельную ОК, до пересечения с линией постоянного расхода G п = const . Отрезок АС изображает дополнительную мощность, выработанную ЧНД за счет дополнительного пропуска пара в количестве G т . Фиктивная мощность турбины N ф определяется в точке С. Пользуясь верхней частью диаграммы режимов, по N ф определяют искомый расход пара на турбину G 0 как ординату точки D пересечения N ф = const и G п = const .

СРС 20.2.Диаграмма режимов турбины с двумя отопительными отборами пара. Диаграмма выражает зависимость между мощностью турбины N э , тепловой нагрузкой Q т , расходом пара на турбину G 0 , температурой сетевой воды t с , идущей потребителю:

F(N э , Q т, G 0 , t с)=0. (5)

Диаграмма режимов строится по методу разделения расхода свежего пара на два потока: теплофикационный G т 0 и конденсационный G к 0 . Соответственно мощность турбины условно принимается равной сумме мощностей теплофикационного N т э и конденсационного N к э потоков. С учетом этого зависимость(5) можно представить в следующем виде:

G 0 = f 2 (N т э , t 2с) + f 3 (N к э) (6)

Диаграмму режимов строят в трех квадрантах (рис. 20.2 СРС ).

Рис. 20.2 СРС Диаграмма режимов турбины с двумя отопительными отборами пара.

В первом (левом верхнем) изображают зависимость расхода пара на турбину от тепловой нагрузки при работе по тепловому графику G т 0 = f 1 (Q т,t 2с) . Во втором (правом верхнем) квадранте представляется зависимость расхода пара на турбину от ее мощности при различных значениях t 2с и работе по тепловому G т 0 = f 2 (N т э, t 2с) . Третий (нижний) квадрант характеризует работу турбины по электрическому графику и выражает зависимость конденсационного расхода пара от мощности, вырабатываемой этим потоком G к 0 = f 3 (N к э). Общий расход пара на турбину в соответствии с (20.2 СРС ) нахо­дят суммированием расходов пара, полученных во втором и третьем квадрантах. В третьем квадранте наносят также линию чисто конденсационного режима турбины без тепловой нагрузки (линия а ), которая лежит ниже линий G к 0 = f 3 (N к э) .

Примеры пользования диаграммой режимов турбины с двумя отопительными отборами пара:

1. Определение мощности турбины и расхода пара при работе турбины по тепловому графику и известных тепловой нагрузке Q т и температуре сетевой воды t 2с .

По заданным значениям Q т и t 2с проводят в квадрантах I и II ломаную АВСDЕ (рис. 20.2 СРС ). В квадранте I в точке С находят расход пара G т 0 , а в квадранте II в точке Е - мощность турбины N т э .

2. Определение расхода пара на турбину, работающую по конденсационному режиму, при известных тепловой нагрузке Q т , мощности N э и температуре сетевой воды t 2с .

По заданным значениям Q т и t 2с определяют мощность N т э , вырабатываемую теплофикационным потоком пара. Разность между заданной мощностью N э и найденным значением N т э определяет мощность N к э , развиваемую кон­денсационным потоком пара. Ей соответствует отрезок ЕЖ на рис. 20.2 СРС . Тогда, проводя из точки Е линию, эквидистантную зависимости G к 0 = f 3 (N к э) , в точке И ее пересечения с линией N э = const находят расход конденсационного потока пара G к 0 (ордината точки И в квадранте III на рис. 20.2 СРС ). Расход пара на турбину определяют суммированием значений G к 0 и G т 0 .

3. Определение расхода пара на турбину при работе турбины при чисто конденсационном режиме G к 0 по заданной мощности N э .

В квадранте III по известной мощности N э и кривой а определяют искомое значение расхода пара G к 0 (линия ЛМН).


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Cтраница 1


Регулируемый отбор пара производится снизу из выхлопного патрубка цилиндра высокого давления при давлении 6 - 8 ата. Кроме того, имеется два нерегулируемых отбора в цилиндре низкого давления после 10 - й и 13 - й ступеней, из которых пар поступает в подогреватели питательной воды. В подогреватель высокого давления пар поступает из регулируемого отбора сверх количества, идущего на производство.  

Регулируемый отбор пара у турбин типа АП имеет производственное назначение; у турбин AT регулируемый отбор предназначен для теплофикационных целей.  


Режим регулируемого отбора пара должен быть таким, чтобы турбина всегда работала с величиной отбора, близкой к номинальному. При небольшой величине отбора следует проверить экономическую обоснованность сохранения турбоустановки в работе.  

Давлением регулируемого отбора пара называется давление пара в отборном патрубке турбины перед запорной задвижкой.  

Давлением регулируемого отбора пара называют его давление в патрубке корпуса турбины, через который производится отбор. Номинальной величиной отбора называют наибольшее количество отбираемого от турбины пара, которое должно обеспечиваться при номинальной ее мощности.  

Турбина имела регулируемый отбор пара (имеющий значение для теплофикации) от 1 до 2 ата.  

Турбины без регулируемого отбора пара отмечены зяездочкой.  

Номинальная величина регулируемого отбора пара из турбины с одним регулируемым отбором - наибольшая величина отбора, при которой турбина развивает номинальную мощность; турбина с двумя регулируемыми отборами пара должна развивать номинальную мощность при номинальных величинах обоих регулируемых отборов.  

Поворотные диафрагмы регулируемых отборов пара проверяют до установки в цилиндр турбины. Для этого собранную диафрагму укладывают на подкладки так, чтобы сторона входа пара в сопла была расположена сверху. Затем на диафрагме собирают поворотное кольцо и через его окна проверяют плотность прилегания уплотнительных поясов. Пластинка щупа толщиной 0 05 мм не должна проходить в их стык. Необходимая плотность стыка достигается шабровкой поясков сначала по краске, а затем по блеску.  

Турбины без регулируемого отбора пара отмечены звездочкой.  

Поворотные диафрагмы регулируемых отборов пара проверяют до их установки в цилиндр турбины. Для этого собранную диафрагму укладывают на подкладки так, чтобы сторона входа пара в сопла диафрагмы была расположена сверху. Затем на диафрагме собирают поворотное кольцо и через его окна проверяют плотность прилегания уплотнительных поясов. Пластинка щупа толщиной 0 05 мм не должна проходить в их стык. Необходимая плотность стыка достигается шабровкой поясков: сначала по краске, а затем по блеску.  

При резервировании регулируемых отборов пара или противодавления теплофикационных турбин автоматическое включение особенно необходимо в тех случаях, когда по требованиям технологии производства не допускаются перерывы в подаче пара.  

Турбины без регулируемого отбора пара отмечены звездочкой. Величины параметров, заключенные в скобки, для вновь проектируемых турбин принимать не рекомендуется.  



Поделиться