Основы оптимизации режимов электрических станций и энергосистем. Оптимизация режимов работы электрооборудования

Существует распространенное заблуждение, что все в жизни сводится ко времени. Ежедневно мы используем такие фразы:

«Если бы у меня было больше времени»
«Мне нужно еще несколько минут»
«Пара часов работы — только и всего»

Мы верим, что всего можно было бы достигнуть, будь у нас немного больше времени. Ошибочно полагаем, что все дело в его количестве, но наш рабочий день уже и так слишком длинный. Как все успевать и при этом не «сгореть на работе» — читайте в нашей сегодняшней статье.

Оковы свободы

С самого детства нас убеждают в важности распорядка дня, основанного на времени. Школьный день длится 8 часов, а структура урока подчиняется времени, а не тому, сколько должно быть изучено. Нас учат, что важнее уложиться в нужное время, чем закончить работу.

Однако сейчас мы все сильнее отходим от этой общепринятой практики. Все больше людей работает удаленно, частично, по контракту или вахтовым методом. Восьмичасовой рабочий день исчезает, но тот ли это отказ от временных рамок, на который мы так надеялись?

Свобода выполнять свои профессиональные обязанности где и когда угодно дает нам возможность работать по любому удобному графику. Это означает, что мы можем уложиться в короткие сроки или потратить на задачи массу времени — главное, чтобы работа была выполнена. Тем не менее исследования доказывают, что те, кому график позволяет работать меньше, в итоге трудятся значительно дольше.

Исследование, посвященное рабочему времени и продуктивности, проведенное Международной Организацией Труда, показало, что среднестатистический рабочий со свободным графиком работает 54 часа в неделю, а тот, кто подчиняется жесткому расписанию, всего 37. Эти 17 дополнительных часов являются следствием «свободы» устанавливать свой собственный график, но что еще хуже — эти часы не влияют на качество и продуктивность работы.

Когда Организация экономического сотрудничества и развития изучила влияние продолжительности работы на производительность в 18 европейских странах на протяжении 60-летнего периода, было обнаружено, что производительность в час при увеличении длительности рабочего времени всегда уменьшается. К тому же было замечено, что и результат ухудшается пропорционально росту рабочего времени.

После определенного момента все становится только хуже, ведь на следующий день часы будут потрачены на то, чтобы найти и исправить сделанные накануне ошибки.

Почему так получается?

Всем нам знакома ситуация, когда чувствуя сильную усталость и умственное истощение, мы продолжаем выполнять работу — просто для того, чтобы на свежую голову переделать большую ее часть. Возможно, это гордость или чувство ответственности, хотя более правильным кажется закон Паркинсона: «Работа занимает ровно столько времени, сколько на нее отведено».

Этот «закон» озвучил Сирил Норткот Паркинсон в рамках юмористического очерка в журнале «Экономист». Паркинсон приводит такой пример:

«Пожилая леди с массой свободного времени может потратить целый день на написание и отправление открытки своей племяннице в Богнор-Регис. Один час будет потрачен на поиски открытки, второй — на поиски очков, полчаса — на попытки вспомнить адрес, час с четвертью на написание и двадцать минут на то, чтобы решить — брать ли с собой зонт, чтобы дойти до почтового ящика на соседней улице. Вся работа, которая у занятого человека заняла бы не более трех минут, может заставить другого упасть замертво после целого дня сомнений, тревог и тяжелого труда».

Чем больше времени мы отводим на выполнение задания, тем больше времени мы на него тратим, а чем больше времени мы тратим, тем хуже в итоге выполняем само задание. Невозможно работать в полную силу в течение нескольких часов подряд. Мотивация, сила воли и сосредоточенность — это ограниченные ресурсы, которые надо использовать экономно в течение дня. Трата большего количества времени только убивает мотивацию и делает выполненную работу хуже.

Итак, если работать меньше, то можно показать высокую продуктивность?

Часто кажется, что у нас нет достаточно времени на встречи с друзьями, поддерживание отношений и все те вещи, которые делают нас счастливыми.

Даже учитывая, что отношения с семьей и друзьями — это основополагающие ценности, эта проблема все же является актуальной для большинства.

Возможность меньше работать дает время на общение и все те вещи, которые нужны для личного благополучия. Звучит безупречно, не так ли? Уделяйте меньше времени работе, и у вас будет больше времени на досуг и встречи с теми, кого вы любите.

Однако это не так.

Исследование Кристобаля Янга и Шаюна Лима из Стенфордского Университета показало, что из 500 000 рабочих у большинства уровень счастья зависит от продолжительности рабочей недели. Мы чувствуем себя абсолютно счастливыми в выходные и наименее довольными в понедельник и вторник. Очевидно, не так ли?

Удивительно, что та же тенденция существует и среди безработных: даже те, кому не нужно было присутствовать на рабочем месте в течение недели, все равно в будни чувствовали себя менее счастливыми. Янг и Лим связывают это с тем, что общение с другими людьми является более важным для нашего благополучия, чем просто свободное время: вы не получите полного удовольствия от выходного дня, если потратите день только на себя.

Уделяйте время только той работе, которая важна

Итак, мы не станем работать лучше, если потратим больше времени на работу, и мы не станем счастливее, если получим больше свободного времени.

Сфокусироваться на продуктивности, а не на конечном результате — вот наша цель.

Оправдывая работу затраченными ресурсами и временем, мы попадаем в ловушку: например, «Я потратил 60 часов/4 месяца/8 лет на это. Я заслужил успех».

Современная поговорка гласит, что дело не во времени, а в самой работе. Для многих удаленных сотрудников или тех, кто работает по гибкому графику, это означает выполнение любой ценой, но радоваться энному количеству затраченного времени вместо гораздо большего количества просто смешно. Если мы будем думать только о том, что сделано, не думая о том, как много времени потрачено на задание и какова продуктивность его выполнения, мы не увидим полной картины.

Как объясняет Линн Ву из Уортонской школы бизнеса, измерять продуктивность работы в ее результатах — бессмысленно. Продуктивность — это не только то, что сделано, но и то, как эффективно вы работали над заданием.

Недавнее исследование Джулиана Биркиншоу из Лондонской школы бизнеса показало, что большинство работников умственного труда — инженеров, писателей и тех, кто «думает, чтобы жить» — тратит в среднем 41% времени на работу, которую легко могли бы сделать другие.

Мы инстинктивно держимся за задания, которые делают нас «занятыми» (а значит, важными). Мы хорошо себя чувствуем, когда наш график расписан по минутам и приходится ждать, что вот-вот станет легче и появится время на наши жизненные потребности. Как ни парадоксально, все мы хотим больше свободного времени и при этом держимся за вещи, которые его отнимают.

Стремление работать более эффективно очень сложно отследить. Инвестирование в навыки, планирование или обучение других для того, чтобы освободиться самому, освобождают время для действительно важной работы — не просто для дел, которые делают нас «занятыми».

Переосмысление работы и жизни

Во всех аспектах жизни — как рабочих, так и личных — дело не в количестве времени. Мы никак не можем на это повлиять: не существует способа добавить часов в сутки. При этом комплексный эффект долгих рабочих дней и бессонных ночей заключается в том, что вы почти всегда показываете плохие результаты.

Дело в качестве, эффективности, умении определить, сколько времени потратить на работу и решить, как эффективнее использовать это время. Когда мы думаем так, мы перестаем воспринимать время как единицу измерения своего дня.

Существует несколько способов решить, как более продуктивно распорядиться своим временем — каждый из них может использоваться как индикатор вашей эффективности.

1. Планируйте задания, а не время

В своем эссе Пол Грэхем предполагает, что единицей измерения времени таких специалистов как писателей и программистов является как минимум половина дня, а не часовые или получасовые интервалы стандартного расписания.

Работа получается лучше всего тогда, когда она не требует соблюдения жестких дедлайнов и графиков. Чтение, сочинительство, редактура — все эти занятия получаются лучше, если не приходится растягивать время или, наоборот, спешить, чтобы уложиться в сроки.

Работа на результат дает ощущение успешности и помогает ответить на вопрос, эффективно ли вы работаете.

2. Когда смысл найден, продолжайте работать

Мотивация и энергия — ограниченные ресурсы, их растрачивание впустую сводит к нулю наши шансы и делает работу бессмысленной.

Эксперименты доктора Стила, посвященные мотивации и прокрастинации, показали, что значимость — самый важный аспект для поддержания мотивации. Когда выполняемая работа кажется нам важной, мы наиболее мотивированы на ее завершение. Так зачем же останавливаться? Встречи можно и перенести, а рабочий азарт не так просто восстановить.

3. Станьте лучше, быстрее, сильнее

Как сказал Генри Дэвид Торо, «Быть занятым недостаточно: таковыми бывают и муравьи. Вопрос в том, чем ты занят».

Необходимо учиться ежедневно сосредотачиваться на чем-то значительном, это позволит нам чувствовать себя состоявшимися.

Не стоит ходить на работу просто для того, чтобы отсидеть рабочий день и похвалить себя — сфокусируйтесь на том, чтобы выполнять свою работу и чувствовать удовлетворение от этого, и только после этого уходите.

Мы можем изменить то, как мы работаем, только если мы изменим свое мышление.

4. Просите помощи

Часто мы настолько погружаемся в работу, что забываем о возможности попросить помощи. Особенно в небольших компаниях, где кажется, что каждый сотрудник загружен работой по-максимуму, сама идея прервать чей-то рабочий процесс своей просьбой кажется странной.

Однако от одного маленького вопроса или коротенькой беседы может зависеть, потратите ли вы на задание 5 минут или целый час.

Используйте знания окружающих вас людей таким образом, чтобы вы вместе могли работать эффективно.

Вместо заключения

Вам не нужно больше времени — вам нужно время, потраченное с умом.
Это приходит только с пониманием, что долгие часы, затраченные на работу, не делают ее хорошей.

Как четко подметил Сет Годин: «Вам не нужно больше времени… вам просто нужно научиться принимать правильные решения». Время — это почти всегда вопрос качества, а не количества, поэтому определяйте цели и достигайте их.

Эффективность использования электрооборудования оценивает­ся по суммарным затратам на единицу наработки и зависит от мно­гих факторов. Большое влияние оказывает мощность нагрузки эле­ктрооборудования. Актуальность правильного выбора нагрузки возрастает в связи с широким применением автоматизированных электроприводов в производстве.

Для электроприводов зависимость критерия эффективности от нагрузки имеет сложный нелинейный характер. При малой нагрузке, т.е. при использовании, например, двигателя завы­шенной мощности, электропривод имеет низкие значения КПД и . Увеличение нагрузки приводит к улучшению энергетиче­ских показателей, но при этом возникают отрицательные по­следствия - перегрев и снижение надежности двигателя. Лишь при оптимальной мощности нагрузки суммарные затраты до­стигают наименьшего значения, а эффективность эксплуатации электропривода будет наивысшей. В соответствии с повсемест­ным применением двигателей даже незначительные погрешнос­ти выбора их нагрузки приводят к большому народнохозяйст­венному ущербу.

Задача обоснования оптимальной нагрузки электрооборудо­вания состоит в том, чтобы выявить и сравнить положительные и негативные последствия, т. е. конкурирующие эффекты, воз­никающие при увеличении нагрузки, и выбрать такую мощность нагрузки, при которой достигается наилучшее значение крите­рия эффективности эксплуатации. В частном случае таким кри­терием служат суммарные потери двигателя.

Оптимизация нагрузки двигателя по суммарным потерям. В теории электрических машин установлено, что суммарные поте­ри двигателя имеют наименьшее значение при коэффициенте нагрузки , равном корню квадратному из отношения потерь двигателя:

где , – потери холостого хода (постоянные) и короткого за­мыкания (переменные), о. е.

Полученный по (4.2) результат - итог решения частной зада­чи, в которой не приняты во внимание потери в системе элект­роснабжения. С целью более точного учета реальных факторов объектом изучения при оптимизации нагрузки должен быть не только двигатель, но и система. Комплексный учет ха­рактеристик двигателя и системы электроснабжения выполняют по выражению оптимальной нагрузки:

где – коэффициент увеличения потерь за счет системы электро­снабжения (=1,1…1,2); – эквивалент реактивной мощности, показывающий зна­чение активных потерь в сетях от каждого кВАр реактивной мощности двигателя (=0,12...0,18 кВт/кВАр); , – реактивные мощности холостого хода (намагничи­вания) и короткого замыкания (рассеивания), о.е.

Реактивная мощность намагничивания двигателя больше его мощности рассеивания и поэтому всегда >– Оптимальная нагрузка по критерию минимума потерь в системе все­гда больше нагрузки, оптимизирующей лишь КПД двигателя. Расчеты выявляют заметное отличие результатов оптимизации по разным критериям (=0,7...0,8; =0,80...0,95) и подтвержда­ют, что полный учет реальных факторов эксплуатации позволя­ет уточнить итоги оптимизации.



Вместе с тем следует отметить высокую устойчивость энерге­тических свойств асинхронных двигателей при изменении их нагрузки. Отступления от оптимума в пределах ±30% приводят к увеличению потерь не более чем на 7% от минимального уровня. Лишь при уменьшении нагрузки ниже 40% наблюдается интен­сивное снижение КПД. Для кардинального уменьшения потерь энергии, обусловленных электроприводами, важно не только правильно выбирать загрузку при эксплуатации двигателей, но и увеличивать номинальный КПД на стадии их разработки и внедрять компенсацию реактивной мощности. Способы сниже­ния потерь эффективны для низковольтных приводов в связи с низким КПД системы электроснабже­ния из-за большой ее протяженности и четырех-шестикратной трансформации электроэнергии.

Математик. Окончил в 1961 году Уральский государственный университет по специальности прикладная математика, кандидат технических наук.

С 1967 года, занимается проблемами оптимизации режимов работы электростанций и энергосистем.
Защитил кандидатскую диссертацию по теме «Методы определения экономичных режимов гидротепловых энергосистем и ТЭС со сложными тепловыми схемами».
Подготовлена докторская диссертация – «Оптимизация режима работы электростанций и энергосистем – основа модели оптового рынка электроэнергии».
Автор более 50 статей.
Разработчик программно-технического комплекса «Многофункциональная математическая модель тепловой электростанции», который в составе проекта, направленного на энергосбережение и повышение энергетической эффективности. Лауреат конкурса Российской ассоциации инновационного развития.

Сложность проектирования моделей оптового рынка электроэнергии во многом определяется особенностью энергетической отрасли, продукт производства которой (электроэнергию) нельзя произвести впрок. Объём производства электроэнергии тесно связан с объёмом её потребления. Электроэнергии производится ровно столько, сколько требует потребитель, поэтому избытка её в принципе быть не может. Эта особенность существенно влияет и определяет структуру оптового рынка электроэнергии. Поэтому при проектировании модели такого оптового рынка возникает далеко непростой вопрос: «Какова должна быть архитектура рыночной модели электроэнергии»?

Здесь уместно напомнить одну из основных целей перехода на рыночные отношения – повышение экономической эффективности производства электроэнергии. Стало быть, механизм конкуренции, закладываемый в модель оптового рынка электроэнергии, должен с неотвратимой неизбежностью в каждом случае приводить к поставленной цели.
Электроэнергия – это социально значимый и высоколиквидный продукт, поэтому общество заинтересовано в производстве его с минимально возможными издержками. Это, в свою очередь, улучшит экологическую ситуацию и создаст благоприятные условия для снижения тарифов. Такой подход необходимо рассматривать как важную составляющую общей проблемы энергоэффективности и энергосбережения, реализуемую на этапе производства электроэнергии. Степень эффективности мероприятий по энергосбережению на этом этапе сопоставима с аналогичным показателем на этапе энергопотребления. Это обстоятельство диктует необходимость комплексного подхода к решению проблемы.
Актуальность решения проблемы энергосбережения резко возросла в связи с переходом энергетики на рельсы рыночной экономики в секторе производства электроэнергии.
Анализ результатов функционирования существующей модели оптового рынка электроэнергии дает основание утверждать, что предложенный механизм далёк от совершенства. Он не соответствует требованиям обеспечения минимизации затрат на топливо при производстве электроэнергии (это легко показать) и потому в принципе не может быть энергосберегающим. Главная причина неэффективности существующей модели оптового рынка электроэнергии заключается в отсутствии в механизме аукционной покупки-продажи электроэнергии оптимизационной процедуры распределения нагрузки между электростанциями, опирающейся на их энергетические характеристики (характеристики относительных приростов затрат на топливо – ХОПЗ).
В основе оптового рыка электроэнергии лежит аукцион ценовых заявок. Это обстоятельство делает ценовую заявку ключевой позицией, определяющей эффективную работу оптового рынка электроэнергии. Поэтому исчерпывающее определение и разъяснение существа (а не только формы) ценовой заявки архиважно. В первую очередь, это важно для обеспечения эффективной работы единой энергетической системы.
Практика работы субъектов рынка, между тем, показывает, что отсутствие каких-либо единых правил формирования ценовых заявок не только по форме, но и по содержанию приводит на деле к поиску некоего эффективного способа их задания, основанного на анализе предшествующих результатов работы на оптовом рынке. Таким образом, лишь опыт и интуиция определяют каждый раз вид ценовой заявки. По существу идёт игра ценовыми заявками. Но никакая игра ни при каких обстоятельствах в принципе не может обеспечить экономически эффективное производство электроэнергии. Налицо несоответствие принятой модели рынка такой специфичной отрасли, как энергетика. А специфика энергетического производства (электроэнергии не может производиться в избытке) не может не накладывать на модель оптового рынка электроэнергии определенного отпечатка.
Чтобы понять, какое влияние оказывает упомянутая специфика энергетической отрасли на модель оптового рынка электроэнергии, проанализируем механизм использования её ключевого звена – ценовой заявки.

Существующий подход предполагает подачу всеми субъектами оптового рынка электроэнергии ценовых заявок для участия в аукционе по продаже электроэнергии на предстоящие сутки. Заявки поступают к администратору торговой системы как от покупателей электроэнергии, указывающих требуемые объёмы электроэнергии и собственные возможности по их оплате, так и от поставщиков, указывающих объёмы гарантированной поставки электроэнергии по ценам, сформированным с учётом всех видов затрат. Для поставщика электроэнергии, однако, весьма проблематично предугадать полные затраты на производство электроэнергии для расчёта ожидаемой цены, поскольку неизвестно, каков будет объём произведенной электроэнергии в предстоящие сутки. Поэтому поставщик электроэнергии, стремясь получить максимальную прибыль, пытается спрогнозировать, исходя из опыта и результатов предыдущих суток, наиболее эффективный уровень цен для разных объёмов реализуемой электроэнергии. По заявкам покупателей строится кривая спроса, а по заявкам поставщиков – кривая предложения (рис. 1 презентации).

В.М.Летун.Рисунки к статье " Оптимизация режимов работы энергосистем - основа модели оптового рынка электроэнергии"

В.М.Летун.Рисунки к стать...ого рынка электроэнергии"


Желание покупателей электроэнергии приобрести бóльший объём электроэнергии по более низкой цене остается неудовлетворённым. Необеспеченный спрос части субъектов рынка может быть реализован на свободном рынке.
Объём Wп является предельным при продаже-покупке электроэнергии на взаимовыгодных условиях, и ему соответствует цена Цп. Таким образом, точка пересечения кривой спроса и кривой предложения соответствует предельной по объёму продажи (покупки) электроэнергии и цене на взаимовыгодных условиях.
Эта нехитрая схема аукциона, реализующая приоритетную покупку дешевой электроэнергии и, тем самым, минимизирующая затраты на покупку электроэнергии, определяет соответствующую загрузку электростанций по активной мощности. Из этого, однако, не следует, что затраты на производство электроэнергии при такой загрузке будут минимальными. Скорее всего, при таком подходе они никогда не будут минимальными, а степень отклонения (по затратам) полученного режима от оптимального будет во многом определяться заданными ценами в ценовых заявках субъектов оптового рынка.
В подобном подходе надежды на «невидимую руку» рынка совершенно беспочвенны. Надо хорошо представлять себе, что «невидимая рука», о которой говорили отцы рыночной экономики, это вовсе не какой-то мистический пассаж в модели рынка, а тонкий экономический инструмент, призванный сделать модель максимально эффективной.
В описанной схеме модели отсутствует такой инструмент, поэтому она изначально запрограммирована на заведомо неэффективное решение с точки зрения затрат при производстве электроэнергии несмотря на некий рыночный антураж. Во главу угла, по существу, ставится конкуренция цен на электроэнергию, которая, в свою очередь, порождает массу негативных явлений (игра с ценовыми заявками, коррупция и т.п.), которые усугубляют неэффективное функционирование энергетики.
По существу произошла замена задачи минимизации затрат на производство электроэнергии задачей минимизации затрат на покупку электроэнергии.
Можно воспользоваться рекомендацией РАО «ЕЭС России». В пункте 12.3 приказа РАО «ЕЭС России» № 52 от 24.01.2006г. «О подготовке к запуску нового оптового рынка электроэнергии (мощности) переходного периода (далее НОРЭМ) с 1 апреля 2006 г.», рекомендуется «считать целесообразной подачу конкурентных ценовых заявок на продажу электроэнергии на основе предельных переменных затрат». По общепринятому определению предельные переменные затраты или маржинальные затраты это первая производная по мощности от функции затрат на производство электроэнергии или, что то же, характеристика относительных приростов затрат.
Воспользуемся этой рекомендацией и зададим в качестве ценовых заявок маржинальные затраты (ХОПЗ), тогда решение, полученное в этом случае, будет заметно ближе к оптимальному в части затрат на производство электроэнергии. Но в этом случае возникает вопрос со смысловой интерпретацией точки пересечения (если она будет) кривой спроса и кривой предложения, так как маржинальные затраты, строго говоря, не есть цена произведенной электроэнергии. Продавать электроэнергию в данной ситуации по цене Цп крайне невыгодно для поставщика, ибо маржинальные затраты всегда меньше реальной цены на электроэнергию.
В этой ситуации напрашивается естественный выход – вести расчёт цен на электроэнергию постфактум, зная объём и график загрузки каждого поставщика электроэнергии и их актуальные энергетические характеристики.
Если посмотреть на проблему более строго, то необходимо изменить архитектуру модели оптового рынка электроэнергии с включением в неё полнокровной системы оптимизации режима загрузки электростанций по критерию минимизации затрат на сжигаемое топливо при производстве электроэнергии. Это и есть «невидимая рука», которая сделает модель эффективной, и это единственно возможный путь сокращения издержек на производство электроэнергии, по максимизации прибыли в целом по единой энергосистеме, по созданию объективных предпосылок для снижения тарифов на электроэнергию.
За основу модели оптового рынка целесообразно взять хорошо в прошлом проработанную иерархическую систему оптимизации режимов работы энергосистем с привязкой к ней системы взаиморасчётов за проданную (купленную) электроэнергию. При таком подходе автоматически решается проблема оптимального производства электроэнергии в указанном выше смысле. Предметом конкуренции становятся экономические характеристики субъектов рынка, которые во многом (если не в основном) определяются использованием высокотехнологичного оборудования, высокой культурой технической эксплуатации этого оборудования и, наконец, оптимальным управлением режимом его загрузки. Субъекты рынка, обладающие такими качествами, будут иметь конкурентное преимущество, которое, в конечном счете, обеспечит им производство электроэнергии в большом объёме и с наименьшими издержками. И в этом гвоздь вопроса.
Теперь скажем несколько слов об общих принципах организации системы взаиморасчётов. Оптимизация режимов на верхних уровнях иерархии сводится к определению объёмов межсистемных перетоков активной мощности. Каждый из перетоков может быть вызван либо дефицитом мощности в соседней энергосистеме, либо замещением «дорогой» электроэнергии, либо тем и другим.
Взаиморасчеты при ликвидации дефицита мощности в соседней энергосистеме. Это классический случай торговых взаимоотношений двух сторон поставщик – потребитель, поэтому в такой ситуации все расчёты за поставленную электроэнергию осуществляются по тарифу, в котором учтены все виды затрат на произведенную электроэнергию.
Взаиморасчеты при замещении «дорогой» электроэнергии. Это вполне реальный вариант установления торговых отношений между двумя самодостаточными энергосистемами, выгодных при определенных условиях для каждой из сторон.
Слово дорогой взято в кавычки по той простой причине, что оно выражает не общепринятый смысл – достаточно большие средние за определенный период затраты на производство 1 МВт∙ч электроэнергии по топливной составляющей, а нечто иное. Это иное можно сформулировать следующим образом: под понятием дорогая электроэнергия подразумевается большой по величине в рассматриваемый момент времени прирост затрат на топливо при увеличении выработки электроэнергии на 1 МВт∙ч. В этом смысле статус электростанции (энергосистемы) – «дорогая» или «дешевая» – может меняться в зависимости от ситуации. Количественную сторону этих приростов затрат отражает характеристика относительных приростов затрат (ХОПЗ).

Таким образом, если две соседние энергосистемы А и В, имеющие эквивалентные ХОПЗ (см. рис. 2 презентации), при покрытии нагрузки потребления вышли на относительные приросты eА и eВ, то у них есть реальная возможность осуществить взаимовыгодную торговую сделку: энергосистема А может заместить свою дорогую мощность в объёме DР (МВт), соответствующей мощностью, купленной в энергосистеме В.
Объём D Р рассчитывается таким образом, чтобы выполнялось соотношение:

e А (Р А потр - D Р ) = e В (Р В потр + D Р ) = e ц . (1)


Продажа электроэнергии энергосистеме А в объёме DР (МВт∙ч) позволит, во-первых, максимально снизить суммарные затраты на производство электроэнергии и, во-вторых, при определенном уровне продажной цены сделать торговую сделку выгодной для каждой из сторон. В качестве такой цены целесообразно выбрать относительный прирост затрат eц или какое-нибудь близкое к нему значение.
Очевидно, что если в такой ситуации осуществлять продажу электроэнергии по цене, включающей все виды затрат и потому существенно большей чем eц, то покупающей стороне выгоднее будет производить этот объём электроэнергии DР, используя свои генерирующие мощности.
И, наконец, если одна из соседних энергосистем не только дефицитная, но ещё и «дорогая», то расчёт с ней за поставленную электроэнергию из соседних энергосистем будет осуществляться по двум тарифам: за покрытый дефицит электроэнергии – по одному тарифу, за замещённую дорогую электроэнергию – по другому тарифу.
Таким образом, на уровне энергосистемы (уровень РДУ) в иерархической системе процесса оптимизации режимов определятся структурированные по тарифам межсистемные перетоки активной мощности. Располагая прогнозом нагрузки потребления, энергетическими характеристиками электростанций, можно оптимизировать распределение активной мощности между электростанциями с учётом сетевого фактора и межсистемных перетоков мощности в следующей последовательности:
при нарушении баланса генерации и потребления в некоторых интервалах времени выбирается состав работающего оборудования;
оптимизируется режим загрузки электростанций энергосистемы;
предварительные графики нагрузки передаются на электростанции энергосистемы для уточнения состава работающего оборудования и, в случае его изменения, соответствующего перерасчета энергетических характеристик ХОПЗ электростанций;
в соответствии с новыми ХОПЗ в РДУ повторно оптимизируется режим загрузки электростанций энергосистемы для уточнения их графиков нагрузки.
В конце процесса оптимизации по каждой энергосистеме определится необходимый объём информации для проведения коммерческих расчётов: тарифы за межсистемные перетоки мощности, почасовая себестоимость производства электроэнергии для каждой электростанции энергосистемы по топливной составляющей, почасовые объёмы производства электроэнергии и т.п. Используя эти данные в купе с утверждёнными условно-постоянными затратами для каждой электростанции, можно рассчитать тарифы на электроэнергию в целом для региона, который находится в сфере обслуживания энергосистемы. Для этого на уровне энергосистем должны существовать соответствующие трейдерские службы.

Выводы:

1. Переход от конкуренции цен на электроэнергию к конкуренции технологий, конкуренции владения культурой технического обслуживания оборудования, конкуренции в оптимальном управлении загрузкой электростанций и энергосистем, которая найдет свое выражение в ХОПЗ, обеспечит максимальное сокращение издержек на производство электроэнергии.

2. Реализация такого подхода повысит надежность работы единой энергетической системы за счет следующих факторов:
исключения из технологических функций системного оператора при оптимальном управлении режимом работы энергосистем различных коммерческих наслоений, отвлекающих от решения производственных задач;
распределенного по уровням диспетчерского управления технологических задач (например, выбор состава оборудования) по принципу наступления события и учета места их возникновения.

3. Система становится в высокой степени контролируемой. Показатели ХОПЗ (эквивалент ценовых заявок), подаваемые электростанциями на уровень РДУ, могут быть легко проверены аналитическими службами РДУ.

4. Система оказывает стимулирующее влияние на внедрение новых технологий, на повышение культуры технического обслуживания оборудования, на развитие принципов оптимального управления режимами загрузки основного оборудования электростанций и в целом энергетических систем.

5. Повышается ответственность системного оператора (РДУ) по бесперебойному снабжению электроэнергией потребителей региона.

6. Высокий уровень и объективность производственно-экономической информации в результате функционирования такой системы дают богатую пищу для эффективного выбора вектора развития энергетических систем.

Список литературы :

1. Стивен Стофт. Экономика энергосистем. Введение в проектирование рынков электроэнергии.: Пер. с англ. – М.: Мир, 2006.
2. Марков М.В. Микроэкономика.- СПб.: Издательский Дом «Нева», 2003.

Оптимизация режимов работы тепловых сетей относится к организационно-техническим мероприятиям, не требующих значительных финансовых затрат на внедрение, но приводящая к значительному экономическому результату и снижению затрат на топливно-энергетические ресурсы.

В работе по управлению и наладке режимов работы тепловых сетей задействованы практически все структурные подразделения «Тепловых сетей», которые разрабатывают оптимальные тепло-гидравлические режимы и мероприятия по их организации, анализируют фактические режимы, выполняют разработанные мероприятия и наладку систем автоматического регулирования (САР), а также оперативно управляют режимами и контролируют потребление тепловой энергии и др.

Разработка режимов (в отопительный и межотопительный периоды) проводится ежегодно с учетом анализа режимов работы тепловых сетей в предыдущие периоды, уточнения характеристик по тепловым сетям и системам теплопотребления, ожидаемого присоединения новых нагрузок, планов капитального ремонта, реконструкции и технического перевооружения. С использованием данной информации осуществляются теплогидравлические расчеты с составлением перечня наладочных мероприятий, в том числе с расчетом дроссельных устройств (дроссельные диафрагмы и сопла элеваторов). Расчет дроссельных устройств осуществляется для каждого теплового узла с учетом снижения температуры теплоносителя за счет потерь тепловой энергии по трубопроводам от источника до теплового узла. Расчеты на отопительный период выполняются при 3-х режимах: наладочный (соотношение долей ГВС открытой схемы из подающего и обратного трубопровода соответственно 60 и 40%), в результате которого определяются диаметры дроссельных устройств, зимний (при расчетной температуре наружного воздуха и ГВС открытой схемы 100% из обратного трубопровода) и переходный (при температуре наружного воздуха, соответствующей началу/окончанию отопительного периода и ГВС открытой схемы 100% из подающего трубопровода). При проведении расчетов в последние два года к расчетным (договорным) нагрузкам применяются повышающие или понижающие коэффициенты, определенные по фактическому потреблению тепловой энергии. Учет фактических тепловых нагрузок позволяет более точно рассчитывать режимы, проводить наладку и, в конечном итоге, свести к минимуму отклонения от расчетных режимов.

Разработка режимов работы тепловых сетей в течение последних 10 лет ведется при помощи программного обеспечения «СКФ-ТС». По системе централизованного теплоснабжения города Омска сформирована подробная схема тепловых сетей и база данных, содержащая характеристики всех элементов схемы (участки магистральных и внутриквартальных трубопроводов, насосного оборудования, запорной и регулирующей арматуры, ПНС, ЦТП и ТПНС, схемы присоединения и нагрузки тепловых узлов (потребителей). В настоящее время в базе данных содержатся характеристики более 130 тысяч элементов (рисунок).

Помимо расчетов оптимальных режимов и разработки наладочных мероприятий «СКФ-ТС» также позволяет оперативному и инженерно-техническому персоналу в едином информационном пространстве выполнять:

1) анализ технического состояния системы теплоснабжения, фактического состояния сетей, режимов, повреждаемости трубопроводов;

2) моделирование нештатных ситуаций, в том числе аварийных;

3) оптимизацию планирования замен трубопроводов с расстановкой приоритетов замены;

4) проектирование и модернизацию систем теплоснабжения, в том числе оптимизировать планирование модернизации и развития тепловых сетей.

Основным критерием оптимизационной задачи при разработке режимов и перераспределению тепловых нагрузок является снижение затрат на производство и транспорт тепловой энергии (в частности, загрузка наиболее экономичных тепловых источников ТЭЦ-5 и ТЭЦ-3, разгрузка ПНС) при имеющихся технологических ограничениях (располагаемые мощности и характеристика оборудования тепловых источников, пропускная способность тепловых сетей и характеристики оборудования перекачивающих насосных станций, допустимые рабочие параметры систем теплопотребления и т.д.).

Разработанные режимы работы тепловых сетей согласовываются с тепловыми источниками, утверждаются и направляются для руководства и планирования режимов работы оборудования на тепловые источники и в эксплуатационные подразделения. При разработке режимов также разрабатываются и утверждаются необходимые мероприятия по организации режимов по магистральным тепловым сетям и по системам теплопотребления, которые выдаются в эксплуатационные районы и потребителям для исполнения до начала отопительного периода. По системам теплопотребления установка дроссельных устройств выполняется жилищными управляющими компаниями и другими собственниками под контролем персонала абонентских отделов тепловых районов при приемке в повторную эксплуатацию. Кроме того, специалистами осуществляется контроль за исполнением данных мероприятий, в том числе выборочно по системам теплопотребления. После начала отопительного периода проводятся наладочные работы на узлах регулирования, настраиваются регуляторы, проводятся регулировочные работы по системам теплопотребления.

В течение отопительного периода осуществляется многоуровневый контроль и анализ отпуска и потребления тепловой энергии.

1) Оперативный контроль осуществляет диспетчерская служба по дистанционно передаваемым данным с приборов учета тепловых источников, а также по периодически передаваемым данным с контрольных точек.

2) Ежесуточный контроль параметров теплоносителя, отпуска тепловой энергии и теплоносителя по каждой тепломагистрали и в целом по тепловому источнику передается на сервер (расходы сетевой, подпиточной и исходной воды, температуры и давление теплоносителя) с внесением оперативных корректировок в диспетчерский график тепловых нагрузок.

3) Контроль за потреблением тепловой энергии потребителями осуществляется инспекторами и специалистами абонентских отделов с периодичностью 1 раз в месяц. Также по распечаткам с приборов учета производится анализ режимов потребления потребителей с приборами учета для выявления нарушений потребления тепловой энергии (увеличенный расход, превышение температуры обратной сетевой воды и т.д.).

4) Контроль температуры обратной сетевой воды по границам и по ответвлениям (проводится еженедельно персоналом теплового района для выявления ответвлений с повышенной температурой обратной сетевой воды и проведением регулировки).

По вопросам регулирования режимов теплоснабжения и наладки еженедельно проводятся рабочие совещания, в которых участвуют руководители и специалисты управления, инспекции, абонентских отделов, оперативно-ремонтный персонал тепловых районов. Кроме того, еженедельно проводятся совещания в СП «Тепловые сети» по вопросу прохождения отопительного периода с рассмотрением всех проблемных вопросов по теплоснабжению и горячему водоснабжению города. На данных совещаниях присутствуют представители Управляющих компаний жилищного фонда, транспортирующей организации МП «Тепловая компания», ОАО «Омскводоканал», Администрации города.

Наладка гидравлических режимов неразрывно связана с регулированием температурных режимов от тепловых источников. Основной задачей регулирования в системах теплоснабжения является поддержание температуры воздуха внутри отапливаемых помещений в заданных допустимых пределах при изменении внешних и внутренних возмущающих факторов.

В соответствии с «Правилами технической эксплуатации» температура воды в подающей линии водяной тепловой сети в соответствии с графиком задается по усредненной температуре наружного воздуха за промежуток времени в пределах 12-24 ч, определяемый диспетчером тепловой сети в зависимости от длины сетей, климатических условий и других факторов . В связи с отсутствием разработанных методик и рекомендаций, определение задаваемых параметров теплоносителя (температура, давление) и времени задания, как правило, осуществлялось на основе опыта и интуиции диспетчера.

Возрастание доли автоматизации систем теплопотребления и переход на количественно-качественное регулирование при низкой гидравлической устойчивости системы приводит к существенной переменности гидравлических режимов, поэтому требования к организации и оперативному управлению тепловыми и гидравлическими режимами систем ЦТ существенно возрастают.

Анализ динамики изменения среднесуточной температуры наружного воздуха в г. Омске в отопительные периоды показывает, что изменение температуры носит случайный характер, при этом в отдельные периоды имеют место значительные амплитуды изменения суточных температур (до 15÷17 О С), что при качественном регулировании предполагает изменение температуры в подающих трубопроводах более 30 О С.

Постоянные изменения внешних возмущающих факторов приводят к необходимости изменения тепловой нагрузки, режимов и состава работающего оборудования ТЭЦ, а также к возникновению знакопеременных напряжений в трубопроводах тепловых сетей, что увеличивает вероятность их повреждений и снижает надежность.

В целях исключения негативных моментов при оперативном регулировании тепловых нагрузок в тепловых сетях Омского филиала ОАО «ТГК-11», упрощения процесса разработки диспетчерского графика тепловых нагрузок разработана «Инструкция по заданию температурного режима работы теплоисточников» и форма расчета температурных параметров на последующие сутки. Основные положения данной инструкции основаны на модели, учитывающей динамические характеристики системы теплоснабжения, аккумулирующие способности зданий, а также динамику изменения и влияние основных возмущающих воздействий (температура наружного воздуха) в течение нескольких дней (фактические и прогнозные) на тепловой режим отапливаемых зданий.

При формировании диспетчерского графика также предусмотрена корректировка задания, которая может быть введена по внешней инициативе, либо при значительном отклонении фактических температур от прогнозных. Данная температура может быть задана на период регулирования либо, с учетом корректировки, на несколько периодов регулирования.

В тепловых сетях Омского филиала ОАО «ТГК-11» с 2009 г. применяется регулирование с учетом динамических характеристик системы теплоснабжения. Как показала практика, в определенных пределах изменения внешних факторов позволяют увеличить периоды регулирования до 24-72 ч и более, при этом увеличение периода практически не влияет на качество теплоснабжения потребителей, что дает возможность эксплуатировать оборудование тепловых источников и тепловых сетей в более «щадящем» режиме .

В системе ЦТ от тепловых источников Омского филиала ОАО «ТГК-11» в результате планомерно проводимой работы по оптимизации и наладке режимов функционирования тепловых сетей в течение последних 6-7 лет кардинально улучшилось качество теплоснабжения потребителей и повышена эффективность всей системы централизованного теплоснабжения от тепловых источников ОАО «ТГК-11», а именно:

1) решены вопросы теплоснабжения и горячего водоснабжения в целых микрорайонах города (пос. 40 лет Октября, пос. Сибзавода, пос. Свердлова, микрорайонов № 5, № 6, № 10, № 11 Левого берега, Центральной части города, жилых кварталов по ул. Поселковая, ул. Тюленина, ул. Труда), а также отдельных потребителей;

2) полностью исключены работы систем теплопотребления «на сброс» по причине недостаточных располагаемых напоров;

3) сокращены излишние расходы топлива за счет перегрева потребителей в переходные периоды;

4) сокращены расходы электроэнергии на перекачку теплоносителя на 14% (с 53 до 46 млн кВт.ч) за счет сокращения циркуляционных расходов теплоносителя при одновременном подключении новых потребителей;

5) сокращены расходы топлива на выработку электроэнергии за счет снижения и приведения в норму температуры обратной сетевой воды;

6) сокращены расходы подпиточной воды на 21% (с 40,2 до 31,9 млн м 3);

7) подключены новые потребители;

8) снижена повреждаемость трубопроводов. Таким образом, при комплексном подходе к процессу управления режимами работы могут быть оптимизированы режимы и значительно повышена эффективность функционирования системы ЦТ.

Литература

1. Правила технической эксплуатации электрических станций и сетей Российской Федерации. - М.: НЦ ЭНАС, 2008. - 264 с.

2. Жуков Д.В., Дмитриев В.З. Повышение эффективности работы систем централизованного теплоснабжения путем оптимизации теплогидравлических режимов. - В сб. «Труды ВНПК «Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем» - Энерго - 2010. В 2 томах. - М.: Издательский дом МЭИ, 2010. - T. 1. 304 с. ил. С. 229-232.

> Оптимизация рабочего времени

Оптимизация рабочего времени

Время это часто недооцененный ресурс. Сколько и на что его тратится, часто не понятно. Конечно, люди не роботы и не могут всё время работать, совершать трудовые подвиги. Небольшие паузы в течение рабочего дня даже приветствуются. Но если паузы затягиваются и рабочее время используется не эффективно. То стоит задуматься и предпринять решительные действия. Ведь потери времени напрямую связаны с потерей денег.

Недостатки организации работы

Хуже всего, если работа не организована вообще. Каждый сотрудник выполняет такую задачу, которую он считает в данный момент важной. В то же время другой сотрудник может полдня провести без работы, даже не подозревая, что его коллега даже не приступал к документу, который он ожидает. Часто потерям времени способствуют и сами руководители. Ставят задачу, через пять минут другую, через полчаса приказывают отложить эти задачи и заняться другой работой. Поэтому руководителю стоит начать с организации себя, своих задач. Работа руководителя организовать рабочие процессы, установить приоритет для задач.

К недостаткам в организации работы можно отнести и необеспеченность ресурсами. Например, в принтере неожиданно закончилась бумага. И, как не странно, её нет вообще. На офисе один телефон и сотрудники по очереди им пользуются. Сотрудники, ожидающие своей очереди, предпочитают ничего не делать.

Отсутствие учёта рабочего времени, нормативов, временных рамок

Учёт рабочего времени уже дисциплинирует своим наличием. Нередко сотрудники пользуются благосклонностью руководителя. Очередная поездка "по делам" даёт сотруднику возможность зайти в парикмахерскую, магазин и навестить приятеля. Даже если руководитель периодически проведёт проверку, то это временно. Через пару недель снова можно решать свои дела в рабочее время. Поэтому важно, чтобы учёт рабочего времени, контроль, был постоянным. Особенно в тех случаях, когда сотрудники не демонстрируют высокой производительности труда, а компания зарабатывает мало.

Для задач рационально устанавливать временные рамки, сроки выполнения. В большинстве случаев, для многих видов работ это приемлемо. Если сотрудник не уложится в отведённое время, то всегда можно посмотреть, почему и, при необходимости, дать больше времени в следующий раз.

Если задачи простые, часто повторяются, то можно устанавливать нормативы времени.

В проектах большое значение имеет план-график работы . Если его никто не придерживается, то руководителю или менеджеру проекта стоит задуматься над вопросом "почему так".

Чередование времени работы и отдыха

Бывают случаи, когда руководители перегибают палку. Сотрудники работают в активном режиме, на грани в течение целого дня. В итоге производительность падает, время выполнения задач затягивается по причине обычной усталости. Со временем усталость может перерасти в хроническую усталость и ценный кадр можно считать потерянным. Руководителю стоит присматриваться к работникам, их личному ритму. А также, по возможности индивидуально, устанавливать соответствующий график работы.

Нелишне продумать паузы в рабочем процессе. Пять-десять минут отдыха после каждого часа работы не позволят снизиться производительности. После серьёзных, напряжённых проектов вполне можно устроить день отдыха. Уставшие, психологически и умственно истощённые сотрудники не дадут нужного результата.

Вынужденные простои

В процессе работы всё-таки возможны простои по объективным причинам. Такие паузы серьёзно влияют на рабочий настрой, охлаждают пыл работников. Поэтому руководителю неплохо бы эти паузы заполнить. Естественно, с выгодой для компании и человека. Потому что в большинстве случаев сотрудники заполняют паузы сами, общением в социальных сетях, программами мгновенного обмена сообщениями, развлекательными сайтами. Поэтому даже когда пауза закончится, отрываться от такого времяпровождения сотруднику совсем не хочется.

Вынужденные паузы сотрудник может заполнить личным развитием . Например, пройти тест. Или сделать упражнение на развитие внимания . Почитать книгу по работе, посетить профессиональный сайт. Роль руководителя здесь высока, ведь он может сам наладить такой процесс и поощрять тех, кто не тратит время попусту.

В конце концов, паузы можно заполнить элементарным наведением порядка на рабочих столах, в офисе и возле офиса.

В некоторых случаях для ликвидации вынужденных простоеd можно использовать гибкие графики. Например, известно, что дизайнер закончит дизайн и передаст его верстальщику не раньше обеда. Зачем верстальщику приходить утром? Возможно, он потратит это время с большей пользой для себя и будет только благодарен.

Оптимальное использование рабочего времени напрямую зависит от руководителя. Поэтому используйте максимально свои возможности, приведённые советы и ищите собственные пути оптимизации рабочего времени.

Если Вы хотите посмотреть, на что и как сотрудники расходуют рабочее время, попробую бесплатную , в которой есть инструмент для оценки временных затрат сотрудников. Зарегистрируйтесь по ссылке и пригласите в программу Ваших сотрудников.



Поделиться