Внутритрубная диагностика проводится с целью. Диагностика оборудования насосных и компрессорных станций

До проведения внутритрубной диагностики выбор участка для капитального ремонта проводился на основе статистики аварий, результатов электрометрических испытаний, данных визуального контроля при проведении шлифования.

Ограниченность информации при таком выборе участка под ремонт не обеспечивала достоверность и не позволяла своевременно выявить участки трубопровода, нуждающиеся в ремонте в первую очередь. При проведении гидроиспытания на предмет обнаружения дефектов также, как и при ремонте участков необходимо было останавливать трубопровод на длительный период, а сброс воды после гидроиспытаний значительно ухудшал экологическую обстановку. К началу 90-х годов в связи с увеличением сроков эксплуатации традиционно применяемые средства и методы по предотвращению аварий и прямых потерь нефти исчерпали свои возможности, возникла необходимость поиска новых подходов к решению задачи обеспечения безопасности эксплуатации магистральных трубопроводов, основанных на анализе их фактического технического состояния и обеспечивающих целенаправленное использование на выборочный ремонт с экономическим эффектом.

Применение подобного направления привело к созданию в 1991г. на базе АК “ Транснефть” дочернего предприятия по диагностике “Диаскан”.

1.1.Общие понятия и определения технической диагностики трубопроводов

Диагностирование – это направленное воздействие на объект или систему для сохранения, поддержания функционирования их количественных и качественных характеристик.

Качественные оценки предполагают проверку соответствия системы в целом общим принципом и ее отдельных подсистем, имеющимся частным рекомендациям.

Для количественных оценок определяют критерии эффективности как для всей системы, так и отдельных ее частей, сравнивают полученные критерии, а также различные варианты, рассчитанные с учетом полученных критериев с заданными значениями и находят рациональные показатели при едином экономическом критерии функционирования системы.

При диагностировании применяют параметрические и непараметрические методы контроля. Параметрические методы предусматривают первоначально контроль и оценку самих параметров во времени, определяется их изменение в процессе работы оборудования. По значениям комплекса контролируемых параметров принимают решение в системе диагностирования оборудования. При непараметрических методах контроля используют значения изменения выходных величин элемента или подсистемы (их статистические и динамические характеристики). Чаще всего применяют непрерывные функции или интегрально осредненные величины, куда явно или неявно входят значения параметров элемента или подсистемы.

При решении технической диагностики не только определяют техническое состояние объекта в данное время, но и прогнозируют его состояние на некоторое время вперед, что очень важно для определения структуры ремонтных циклов и интервалов между проверками оборудования, машин и механизмов. Для этого применяют интегральный подход, с помощью которого строятся математические модели, с помощью которых можно будет получить информацию об изменении параметров. Кроме того с помощью математических моделей, построенных с учетом эксплуатационных данных и соответствующих алгоритмов, находят рациональные способы воздействия на технологические процессы технического или экономического характера. При этом должно предусматриваться максимальное использование существующих организационных структур системы трубопроводного транспорта.

Ни один из современных способов внутритрубной диагностики трубопроводов с применением интеллектуальных поршней, использующих магнитные и ультразвуковые методы обследования, не позволяет выявить за один прогон снаряда 100% дефектов. Объясняется это, прежде всего тем, что каждый из применяемых методов имеет те или иные ограничения по выявлению дефектов определённого типа. В частности, серьёзным недостатком ультразвукового метода обследования является необходимость наличия контактной жидкости или геля, что делает его практически неприемлемым для диагностирования газопроводов.

Одним из методов, лишённых такого недостатка является метод электромагнитно-акустического преобразования (ЭМАП).

Принцип действия ЭМАП способа заключается в трансформации электромагнитных волн в упругие акустические. Как и в контактных ультразвуковых методах контроля, при дефектоскопии с применением ЭМАП используют преимущественно два способа генерации и регистрации ультразвуковой волны - импульсный и резонансный. Для реализации импульсного метода, наиболее часто применяемого для целей диагностики, в основном применяют те же электронные блоки, что и в традиционных ультразвуковых приборах, в которых возбуждение и приём ультразвука осуществляется с помощью пьезопреобразователей. Различие заключается в том, что вместо пьезоэлемента используется катушка индуктивности и имеется устройство для возбуждения поляризующего магнитного поля. В результате взаимодействия силы Лоренца и магнитострикции (магнитострикция - явление изменения формы и размеров тела при намагничивании; характерна для ферромагнитных веществ и измеряется относительной величиной удлинения ферромагнетика при намагничивании) с металлической поверхностью возникает акустическая волна, распространяющаяся в стенке трубы. В данном случае обследуемый материал сам является преобразователем.

Считается, что для уверенной работы ЭМА дефектоскопа необходимы магнитные поля с напряжённостью порядка 106 А/м. Современные дефектоскопы с использованием в конструкции разрезного магнитопровода с контролируемым прижимом постоянных магнитов к внутренней стенке трубы позволяют создать напряжённость магнитного поля в области действия ЭМА преобразователей (ЭМАП) до 30 кА/м.

Трещины и коррозионное растрескивание нарушают направленную ультразвуковую волну, что вызывает отражённый эхо-сигнал. На основе анализа отражённого эхо-сигнала делаются выводы о состоянии стенки трубы.

Таким образом одним из главных достоинств дефектоскопа с использованием ЭМАП является его уникальная способность по выявлению дефектов, обусловленных взаимодействием металла в напряжённым состоянии и коррозионной среды - стресс-коррозионного растрескивания, а также растрескивания вследствие водородного насыщения.

Следует отметить, что стресс-коррозионные поражения характерны для газопроводов высокого давления и являются крайне опасными дефектами, выявление и локализация которых представляет собой очень сложную задачу.

Побочным эффектом разработки внутритрубных инспекционных снарядов с использованием ЭМАП оказалась их способность выявлять состояние изоляционного покрытия. При этом по характеру зарегистрированных сигналов можно разделить состояние изоляционного покрытия трубопровода на категории:

  • отслоение без нарушения целостности;
  • нарушение целостности (отсутствие) изоляционного покрытия;

что очень важно при реализации программы переизоляции трубопроводов, находящихся в эксплуатации длительные сроки.

Технические возможности наиболее передовых компаний, занимающихся разработками внутритрубных инспекционных снарядов, позволяют оснастить дефектоскопы инерциальными измерительными системами на базе оптоволоконных гироскопов. Указанная система выполняет картографирование трубопровода, т.е. определяет его пространственное положение в координатах DGPS. В дальнейшем, при обработке данных обследования, для каждого выявленного дефекта определяются координаты DGPS, которые заносятся в общую электронную базу данных обследования, которая передаётся оператору трубопровода.

Оперируя базой данных обследования, оператор трубопровода может самостоятельно разработать программу ремонта. При этом, если ранее, когда исчерпывающая информация о состоянии изоляции трубопроводов была недоступна операторам трубопроводов, т.е. о её состоянии судили по косвенным признакам (результаты дефектоскопии на потерю металла, выборочные шурфовки, обследование состояния системы ЭХЗ и т.п.), то при появлении на внутритрубном диагностическом рынке технологии ЭМАП отпадает необходимость в глобальной переизоляции трубопроводов. Что позволяет операторам трубопроводов экономить колоссальные средства. А если учесть, что данный вид инспекционных снарядов даёт дополнительную информацию по трещиноподобным дефектам, экономический эффект от их применения оказывается ещё больше.

Инспекционный снаряд с использованием ЭМАП состоит из следующих системных компонентов:

  • батареи;
  • устройства записи и хранения информации;
  • блока определения трещин;
  • блока определения отслоения изоляции;
  • блока одометра;
  • блока контроля скорости (опция)

Полевые испытания снарядов ЭМАП подтверждают, что прибор с высокой точностью определяет плоские трещины и различные степени нарушения изоляции:




Изоляция, нанесённая в полевых условиях, и соответствующие данные обследования

К основным преимуществам снаряда ЭМАП можно отнести следующие:

  • сенсоры не требуют контактной жидкости, что позволяет использовать снаряд для обследования как жидкостных, так и газовых трубопроводов;
  • на сигналы ЭМАП не оказывает влияния среда, вследствие чего достигается высокая точность измерений;
  • особые возможности обнаружения стресс-коррозионного растрескивания; колоний трещин и различных видов отдельных трещин (сетка трещин, внешние продольные трещины на границе сварного шва, усталостные трещины), а также трещины в продольных швах или в зоне, примыкающей к ним;
  • это единственный внутритрубный инспекционный снаряд, определяющий наружное отслоение изоляции;
  • возможность комбинирования с другими инспекционными технологиями для создания высокоэффективного инспекционного снаряда; например, возможна комбинация с блоком картографирования и блоком контроля скорости (скорость снаряда до 5 м/с при скорости потока перекачиваемой среды до 12 м/с - не уменьшается пропускная способность трубопровода).

Отправить заявку на эту услугу

Внутритрубная ультразвуковая диагностика газонефтепроводов

2. Внутритрубная диагностика газонефтепроводов

Внутритрубная дефектоскопия зарекомендовала себя как наиболее информативный метод и по существу является основным при диагностике линейной части газопроводов. Многолетний опыт работы по внутритрубной дефектоскопии на трубопроводах позволил сформулировать основные критерии выбора метода внутритрубной инспекции для различных трубопроводов.

Решение об обследовании промысловых трубопроводов приборами внутритрубной дефектоскопии принимает заказчик. Обследование следует проводить исходя из технико-экономической целесообразности и в соответствии с требованиями действующих нормативно-технических документов.

Внутритрубная инспекция проводится после завершения подготовки участка магистрального нефтепровода к диагностированию предприятием, эксплуатирующим участок нефтепровода и направления предприятию, выполняющему диагностические работы, документации, подтверждающей эту готовность. Ответственными за проведение диагностических работ на участке магистрального нефтепровода являются главные инженеры предприятий, эксплуатирующих участки нефтепроводов. Готовность к диагностированию обеспечивается проверкой исправности камеры пуска-приема и запорной арматуры, проведением очистки внутренней полости трубопровода, созданием необходимых запасов нефти для обеспечения объемов перекачки в соответствии с режимами. При использовании запасов нефти из резервуаров должна быть предотвращена возможность попадания в транспортируемую нефть осадка из резервуара.

Необходимая полнота контроля участка магистрального нефтепровода достигается на основе реализации 4-х уровневой интегрированной системы диагностирования, предусматривающая определение параметров следующих дефектов и особенностей трубопровода, выходящих за пределы допустимых значений, оговоренных в утвержденных методиках определения опасности дефектов:

дефектов геометрии и особенностей трубопровода (вмятин, гофр, овальностей поперечного сечения, выступающих внутрь трубы элементов арматуры трубопровода), ведущих к уменьшению его проходного сечения;

дефектов типа потери металла, уменьшающих толщину стенки трубопровода (коррозионных язв, царапин, вырывов металла и т.п.), а также расслоений, включений в стенке трубы;

поперечных трещин и трещиноподобных дефектов в кольцевых сварных швах;

продольных трещин в теле трубы, продольных трещин и трещиноподобных дефектов в продольных сварных швах.

Работы по внутритрубной диагностике в общем случае включают в себя:

Пропуск скребка-калибра, снабженного калибровочными дисками, укомплектованными тонкими мерными пластинами, для определения минимального проходного сечения трубопровода перед пропуском профилемера. Диаметр калибровочных дисков должен составлять 70% и 85% от наружного диаметра трубопровода. По состоянию пластин после прогона (наличию или отсутствия их изгиба) производится предварительное определение минимального проходного сечения участка нефтепровода. Минимальное проходное сечение линейной части нефтепровода, безопасное для пропуска стандартного профилемера, составляет 70% от наружного диаметра трубопровода;

Пропуск шаблона-профилемера для участков первичного обследования, имеющих подкладные кольца, с целью предупреждения застревания и повреждения профилемера деформированными подкладными кольцами;

Пропуск профилемера, определяющего дефекты геометрии: вмятины, гофры, а также наличие особенностей: сварных швов, подкладных колец и других выступающих внутрь элементов арматуры трубопровода. При первом пропуске профилемера маркерные передатчики устанавливаем с интервалом 5-7 км. При втором и последующих пропусках профилемера установка маркеров производится только в тех точках, где по результатам первого пропуска обнаружены сужения, уменьшающие проходное сечение трубопровода от согласованного максимального уровня наружного диаметра, представляемого в таблицах технического отчета по результатам прогона профилемера. По результатам профилеметрии предприятие, эксплуатирующее участки нефтепровода, устраняет сужения, уменьшающие проходное сечение на величину менее 85% от наружного диаметра трубопровода с целью предупреждения застревания и повреждения дефектоскопа;

Пропуск очистных скребков для очистки внутренней поверхности трубопровода от парафиносмолистых отложений, глиняных тампонов, а также удаления посторонних предметов;

Пропуск дефектоскопа. Установка маркеров при первом пропуске снарядов-дефектоскопов осуществляется с интервалом 1,5-2 км. При втором пропуске снарядов-дефектоскопов установка маркеров производится в тех точках, где имелись пропущенные маркерные пункты при первом пропуске и где по данным первого пропуска снаряда-дефектоскопа имеют место потери информации. Перед запуском инспекционного снаряда персонал предприятия, выполняющего диагностические работы, обязан провести проверку исправности внутритрубного снаряда с составлением акта установленной формы.

Внутритрубная ультразвуковая диагностика газонефтепроводов

Техническое диагностирование трубопровода - определение технического состояния трубопровода, поиск мест и определение причин отказов (неисправностей), а также прогнозирование его технического состояния...

Динамометрирование скважинной штанговой насосной установки

В ПО "DinamoGraph" используются следующие алгоритмы (разработка ООО НПП "ГРАНТ"): - расчета периода и начала динамограммы, позволяющие автоматизировать обработку данных...

Капитальный ремонт линейной части магистрального газопровода Уренгой-Помары-Ужгород с заменой трубы

На каждый газопровод на основании результатов анализа технической документации разрабатывается индивидуальная программа диагностирования, которая включает: Рисунок 1...

Методы диагностики тягового электродвигателя (ТЭД)

Методы оценки технического состояния газоперекачивающих агрегатов

При вполне удовлетворительном техническом состоянии агрегата и его опорных узлов необходимо иметь сведения об интенсивности и характере износа поверхностей трения...

Моделирование неисправностей шарикоподшипников качения на примере двухрядного сферического подшипника

Подшипник качения является самым распространенным и наиболее уязвимым элементом любого роторного механизма...

Основные этапы монтажа аппаратуры автоматического регулирования и управления

Приводы путевых машин

Испытание проводится в рабочем режиме для каждого контура. Присутствует напряжение на соленоидах распределителя Р и клапана КП. Шток Ц полностью выдвинут...

Приводы путевых машин

Испытание проводится в режиме холостого хода для каждого насоса. КП находится в режиме переливного. Напряжение на соленоидах распределителей и клапанов отсутствует. Вторичная защита отключена. ГТ установлен в напорной линии насоса перед КП...

Приводы путевых машин

Испытание ГЦ осуществляется в рабочем режиме. Производится переключение Р1 или Р2 во все рабочие позиции и втягивание/выдвижение штоков цилиндров на полный ход. Вторичная защита отключена...

Приводы путевых машин

Испытание гидромотора производится в рабочем режиме путем установки гидротестера в линии после распределителя. Распределитель переведен в рабочую позицию. КП первичной защиты работает в режиме предохранительного, вторичная защита отключена...

Проектирование цеха роликовых подшипников

Большое количество роликовых подшипников, находящихся в эксплуатации, выдвигает повышенные требования к надежности их работы в буксовых узлах колесных пар...

Развитие теоретических принципов технической диагностики

С начала 1970-х годов проблеме диагностики и изоляции отказов динамических процессов стали уделять все большее внимание. Было изучено и разработано большое количество методологий основанных на физической и аналитической избыточности...

Системы обнаружения утечек в нефте- и нефтепродуктопроводах

Метод основан на звуковом эффекте (в ультразвуковом диапазоне частот), возникающем при истечении жидкости через сквозное отверстие стенке трубопровода. Ультразвуковые волны создают звуковое поле внутри трубопровода...

Современные технологии ремонта оборудования производства на базе аутсорсинга

Диагностика осуществляется с помощью специальных систем мониторинга и диагностических устройств...

Предоставление услуг по диагностике трубопроводов с минимальным временем простоя.

Как наиболее надежный поставщик решений по внутритрубной диагностике и обеспечению бесперебойной транспортировки продукта, компания Т.Д. Вильямсон предоставляет индивидуальные услуги по внутритрубной диагностике трубопроводов, разработанные специально для оптимизации производительности систем трубопроводов с минимальным временем простоя. Технологии внутритрубной диагностики компании Т.Д. Вильямсон рассчитаны на обеспечение целостности трубопровода при самых сложных условиях среды, а также на предоставление наиболее точных данных, как правило, за один проход.

Слишком высокая скорость прохождения снаряда влияет на качество данных. Технология активного управления скоростью диагностического снаряда специально разработана для совместного применения с технологией диагностики MFL в газопроводах с высокой скоростью потока.

Технология разработана с применением датчиков, рассчитанных на проход непосредственно по внутренней стенке трубы, а не перед снарядом, что увеличивает их чувствительность. Данные высокого разрешения, полученные с помощью этих инструментов, могут быть проанализированы на признаки наличия вмятин и помогают точно измерить участки расширения труб.

Обеспечивает точное обнаружение и определение размеров внутренней и внешней потери металла и других аномалий. Рассчитана на преодоление сужений и снижение сопротивлений трению для обеспечения более стабильной скорости прохождения снаряда.

Обеспечивает точное обнаружение и определение размеров внутренней и внешней потери металла и других отклонений.

Экономичный и удобный с точки зрения эксплуатации метод диагностирования коротких, неудобных для внутритрубной диагностики участков трубопровода.

Обеспечивает наиболее точную на сегодняшний день диагностику продольных сварных швов без значительного увеличения длины снаряда.

Изобретение относится к измерительной технике и может найти применение в диагностике стенок трубопроводов. Способ внутритрубной диагностики включает определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, совмещение и дополнение результатов исследований в процессе анализа полученных данных, согласно изобретению дополнительно производится исследование стенки трубопровода магнитооптическим способом, результаты которого совмещаются с результатами исследований ультразвуковым методом и методом магнитных истечений. Техническим результатом изобретения является повышение надежности внутритрубной диагностики за счет повышения точности определения длины трещины и возможность диагностирования, в частности, паутиной и многоканальной коррозии и длинношовного усталостного растрескивания, питтинга.

Изобретение относится к измерительной технике и может найти применение в диагностике стенок трубопроводов. Известен способ магнитооптической дефектоскопии, заключающийся в нахождении трещин в ферромагнитном материале с помощью устройства, состоящего из источника поляризованного света, формирователя светового пучка, пленки магнитооптического материала с защитным покрытием, анализатора, оптической системы формирования изображения дефектов, расположенных последовательно по ходу светового пучка, источника постоянного магнитного поля для возбуждения магнитного потока в исследуемом образце параллельно плоскости магнитооптического материала, полюса источника магнитного поля расположены симметрично с двух сторон относительно магнитооптического материала (Вилесов Ю.Ф, Вишневский В. Г. , Грошенко Н.А. Устройство для визуализации и топографирования магнитных полей. ИЛ 38-98, Крымский ЦНТИ, 1998). Устройство позволяет визуализировать скрытые дефекты в ферромагнитных материалах. Для этого в исследуемом образце создается магнитный поток. На дефектах исследуемого образца, например в трещинах в его объеме, образуются магнитные заряды, которые создают поле рассеяния, перпендикулярное поверхности образца. Поля рассеяния индуцируют в магнитооптическом материале структуру намагниченности, перпендикулярную ее поверхности, которая визуализируется за счет эффекта Фарадея. Скрытые дефекты ферромагнетика проявляются и наблюдаются в виде соседствующих темной и светлой областей. Недостатком способа является невозможность точного определения глубины дефекта. Магнитооптическим способом формируется детальное "плоское" изображение дефекта, но его глубина определяется с меньшей точностью. Дефекты, имеющие равные размеры, но расположенные на разной глубине, имеют различную яркость изображения. И наоборот, дефекты, видимые как равной интенсивности, могут иметь разную глубину. Поэтому затруднено точное определение степени опасности выявленного дефекта и эксплуатационной пригодности исследуемой части трубопровода. Известен также способ внутритрубной диагностики, включающий ультразвуковое сканирование стенки трубопровода, и исследование по истечениям магнитного потока (К.В. Черняев Анализ возможностей внутритрубных снарядов различных типов по обнаружению дефектов трубопроводов. //Трубопроводный транспорт нефти. 4, 1991. С.27-33.). В способе производят последовательное исследование трубопровода ультразвуковым и магнитным методом, сопоставляют результаты обследований, определяют дефекты, препятствующие возможности дальнейшей эксплуатации участка трубопровода. Недостатком способа является ограниченная разрешающая способность, уменьшающая точность определения параметров дефектов и не позволяющая диагностировать, в частности, паутинную и многоканальную коррозию и длинношовное усталостное растрескивание, межкристаллитную проникающую коррозию, питтинги. Низкая точность определения длины трещины снижает надежность внутритрубной диагностики. В основу изобретения поставлена задача усовершенствовать способ внутритрубной диагностики путем повышения надежности диагностики за счет увеличения точности определения параметров дефектов и расширения спектра регистрируемых дефектов. Поставленная задача решается тем, что в способе внутритрубной диагностики, включающем определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, сопоставление результатов исследований в процессе анализа полученных данных, согласно изобретению дополнительно производится исследование стенки трубопровода магнитооптическим способом, результаты которого сопоставляются с результатами исследований ультразвуковым методом и методом магнитных истечений. Магнитооптическим способом хорошо обнаруживаются дефекты с малыми геометрическими размерами, например паутинная и многоканальная коррозия и длинношовное усталостное растрескивание, межкристаллитная проникающая коррозия, питтинги. За счет более высокого разрешения повышается точность определения длины обнаруженных трещин в стенке трубопровода и формируется детальное, с высоким разрешением, "плоское" изображение дефекта. Каждый из способов внутритрубной диагностики по отдельности хорошо регистрирует отдельные типы дефектов и неудовлетворительно другие типы дефектов. Наиболее качественное, с высоким разрешением, изображение дефекта формируется магнитооптическим способом. Однако глубина дефекта магнитооптическим способом определяется с ограниченной точностью. Сопоставление магнитооптического способа с акустическим и методом магнитных истечений позволяет преобразовать "плоское" изображение дефекта в "объемное". Акустооптический способ диагностики формирует "глубину" магнитооптического изображения дефекта. Совмещение трех типов диагностики позволяет как расширить спектр диагностируемых дефектов, так и повысить достоверность диагностики за счет сопоставления независимых результатов измерения. Способ реализуется следующим образом. Производится очистка внутренней поверхности трубопровода от грязи и ржавчины. Далее последовательно производят внутритрубную диагностику ультразвуковым и магнитным методами. Определяются дефекты, допускающие дальнейшую эксплуатацию, дефекты, не допускающие эксплуатацию трубопровода без проведения ремонтных работ, и дефекты, идентификация которых затруднена. После чего производится исследование неидентифицированных дефектов магнитооптическим способом диагностики. Если трещина в металле развивается, то ее концы имеют меньшую ширину, чем центральная часть, и не обнаруживаются способом-прототипом. Причем узкая часть трещины может иметь длину, превышающую продиагностированную способом-прототипом, и зафиксированную как допускающую процесс дальнейшей эксплуатации. Кроме того, несколько относительно мелких дефектов (допускающих по отдельности эксплуатацию трубопровода) могут быть связаны между собой трещинами в единый большой дефект, но способом-прототипом этот дефект не диагностируется вследствие малого пространственного разрешения. Дополнительное магнитооптическое исследование устраняет неточность определения длины трещины и повышает надежность диагностики. Пример. Дефект, обнаруженный ультразвуковым методом и методом магнитных истечений, дополнительно подвергается исследованию магнитооптическим методом. Для этого в исследуемом образце создается магнитный поток и производится визуализация полей рассеяния дефектов. На дефектах в стенках трубопровода, например трещинах, образуются магнитные заряды, которые создают поля рассеяния, силовые линии которых выходят из образца и наводят в магнитооптическом материале визуализатора структуру намагниченности, перпендикулярную ее поверхности. Геометрия структуры намагниченности, перпендикулярной поверхности магнитооптического материала, совпадает с геометрией дефектов. Освещают пленку магнитооптического материала поляризованным светом. Свет, отраженный от участков магнитооптического материала, соответствующих бездефектным областям исследуемого образца, гасится. Свет, прошедший через участки магнитооптического материала, содержащие перпендикулярную поверхности структуру намагниченности, изменит вследствие эффекта Фарадея ориентацию плоскости поляризации на ортогональную первоначальной и будет зарегистрирован. Сформируется изображение бездефектной области в виде темного поля и дефектов в виде светлых участков. Геометрические размеры и формы светлого участка на изображении воспроизводят геометрические размеры и форму дефекта в исследуемом образце, что позволяет дополнить картину изображения дефекта, полученного ультразвуковым способом и способом магнитных истечений новыми деталями и, соответственно, более точно определить параметры дефекта и эксплуатационную пригодность данного участка трубопровода. При наличии трещин в стенках трубопровода, отходящих от обнаруженного способом-прототипом дефекта, или связи между несколькими дефектами через трещины, не обнаруживаемые способом-прототипом, заявляемый способ позволяет более точно определить истинные диагностируемые параметры трубопровода. Точность определения параметров дефекта определяется периодом доменной структуры магнитооптического материала и разрешающей способностью оптики. Характерные размеры периода доменной структуры лежат в диапазоне 5 - 50 мкм. Соответственно магнитооптический метод позволяет обнаруживать дефекты с минимальными размерами порядка 10 - 100 мкм, что значительно превышает разрешающую способность заявляемого способа по сравнению со способом-прототипом. Более высокая разрешающая способность магнитооптического метода повышает точность определения параметров дефекта, например длины трещины и позволяет повысить надежность диагностики. Заявляемый способ позволяет повысить надежность внутритрубной диагностики за счет повышения точности определения параметров дефекта, например длины трещины, и позволяет диагностировать, в частности, паутинную и многоканальную коррозию и длинношовное усталостное растрескивание, межкристаллитную проникающую коррозию, питтинги. Более точная диагностик позволяет сократить расходы на обслуживание трубопровода и определение параметров дефекта визуальными методами. Дополнительная магнитооптическая диагностика трубопровода незначительно увеличит эксплуатационные расходы на диагностику, так как производится после ультразвуковой и методом магнитных истечений, и только тех дефектов, которые являются потенциально опасными для продолжения эксплуатации трубопровода.

Формула изобретения

Способ внутритрубной диагностики, включающий определение дефектов ультразвуковым методом, определение дефектов методом магнитных истечений, совмещение и дополнение и результатов исследований в процессе анализа полученных данных, отличающийся тем, что дополнительно производят исследование стенки трубопровода магнитооптическим способом, результаты которого сопоставляют с результатами исследований ультразвуковым методом и методом магнитных истечений.

Похожие патенты:

Изобретение относится к трубопроводному транспорту и может быть использовано для контроля движения очистных и диагностических объектов в трубопроводах в потоке перекачиваемого продукта, например скребков, разделителей, контейнеров, дефектоскопов и т.д

Изобретение относится к защитным устройствам, предотвращающим большие потери рабочей среды при разрушении трубопроводов (внезапной разгерметизации), и может быть использовано в гидро- и пневмосистемах в качестве пассивной защиты, перекрывающей расход рабочей среды в замкнутом контуре при аварийной ситуации, в частности для отсечения разгерметизированной части контура охлаждения ядерного реактора корпусного типа и предотвращения опорожнения (обезвоживания) активной зоны



Поделиться