Повышенной надежности и эффективности. Прямые затраты и совокупный экономический результат

1.4.1. Введение. Самодействующие клапаны поршневых компрессоров

Клапан - самостоятельная сборочная единица в составе ступени компрессора. Он служит для периодического подключения рабочей камеры к полостям всасывания и нагнетания.

Рис. 5.9. Принципиальная схема клапана.

1 – седло, 2 – ограничитель, 3 – пружина, 4 ­– запорный орган.

Несмотря на многообразие конструкций клапанов, их можно свести к единой принципиальной схеме, показанной на рис. 5.9. В общем случае клапан состоит из седла 1, ограничителя 2, запорного органа 4, и одной или нескольких пружин 3, а также содержит элементы крепления седла с ограничителем. В некоторых конструкциях в качестве запорного органа применяют упругий элемент, одновременно выполняющий и функции пружины. В собранном виде запорный орган клапана прижат к седлу и отделяет полости с различным давлением относительно друг друга.

В соответствии с рис. 5.9 поток газа через клапан возможен лишь при перемещении запорного органа на величину 0 < h ≤ h кл в случае р 1 > р 2 . Условием начала перемещения запорного органа является превышение газовой силы , действующей на запорный орган, над упругой силой пружин .

Упругая сила пружин при определяется соотношением

Из данного выражения следует, что при известном числе пружин , действующих на пластину клапана, их жесткости и предварительном натяге в собранном клапане величина .

Сила определяется давлениями газа, действующими с обеих сторон на лобовую поверхность запорного органа , т.е.

где - коэффициент, учитывающий форму эпюры давлений на поверхностях запорного органа, определяемый, как правило, экспериментальным путем. Примем: – давление газа в цилиндре ступени компрессора переменное по углу поворота вала при давлении нагнетания . При выполнении условия клапаны компрессорных ступеней автоматически открываются. По этому признаку их и называют самодействующими, т.е. автоматически открывающимися при определенной разности давлений в полостях, разделенных клапаном. При снижении действующего перепада давлений клапан автоматически закрывается под действием пружин.

По конструктивному исполнению проточная часть клапана представляет собой совокупность одного или нескольких каналов близких по закономерности изменения сечений в направлении потока газа к соплово­му. При этом сечения каналов на входе (со стороны седла) и выходе (со стороны ограничителя) постоянны, в то время как сечение в щели клапана минимально, зависит от перемещения запорного органа и меняется в процессе работы в диапазоне , где – максимальная величина геометрического сечения щели для полностью открытого клапана. Объем газа, содержащийся в каналах клапанов, составляет основную долю мертвого объема ступени компрессора и с этой точки зрения подлежит минимизации.

По сути протекающих физических процессов клапан можно рассматривать как местное сопротивление с геометрическим сечением и эквивалентным сечением , где – коэффициент расхода газа через клапан, зависящий от формы каналов клапана.

Особенностью работы клапанов является возникновение ударных напряжений в элементах клапана при контакте запорного органа с седлом и ограничителем, величина которых зависит в первую очередь от высоты перемещения запорного органа и частоты вращения вала компрессора n.

На проталкивание газа через клапан требуется дополнительная затрата работы пропорциональная действующему перепаду давления


,

где –плотность газа на входе в каналы клапана;

m – массовый расход газа через клапан.

Из приведенного выражения следует, что для снижения величины эквивалентное сечение щели клапана должно выбираться максимально возможным. Однако это приводит к увеличению мертвого пространства в каналах клапанов и, как правило, сопровождается увеличением высоты перемещения запорных органов, что ухудшает показатели эффективности и надежности работы ступени компрессора.

Учитывая сказанное, к конструкции клапанов предъявляется ряд требований. Выделим среди них основные:

1. Высокий уровень эффективности работы клапанов, обеспечиваемый за счет максимально возможного увеличения сечения щели при заданных поверхностях ступени компрессора, на которых размещаются клапаны. При этом обычно ограничивают дополнительные затраты энергии в клапанах величиной для стационарных компрессоров и 12÷15% для передвижных и специальных компрессоров высокого давления от индикаторной мощности.

2. Гарантируемый уровень надежности, показателем которого обычно является расчетная наработка клапана до первого отказа. В современных конструкциях поршневых компрессоров эта величина лежит в диапазоне от 2 до 10 тысяч часов, где верхний предел соответствует крупным стационарным компрессорам, а нижний - высокооборотным малорасходным компрессорам.

Указанные требования вступают в противоречие друг с другом. В частности, желание повысить эффективность обычно приводит к снижению надежности работы клапана. Поэтому при проектировании клапанов, как правило, идут по пути отыскания компромиссного решения.

Кроме указанных выше, к клапанам предъявляется ряд дополнительных требований, среди которых отметим следующие:

Динамическая герметичность, т.е. своевременность их за­крытия;

Статическая герметичность клапанов в закрытом состоянии;

Минимальное мертвое пространство в каналах клапанов;

Удобство монтажа, демонтажа и ремонтопригодность, особенно в случаях работы на загрязненных газах и при отсутствии смазки цилиндров;

Минимальные массогабаритные параметры, стоимость и сроки поставки;

Гарантированное сервисное обслуживание фирмой-изготовителем.

Характеризуя конструкцию клапанов, обычно рассматривают 2 основных сечения каналов для прохода газа: сечение в седле и в щели полностью открытого клапана. В общем случае величина определяется уравнением

F щ = П∙h кл,

где П – уплотняемый периметр закрытого клапана;

– максимальная величина перемещения пластины клапана.

Величины П и для основных типов клапанов приведены в табл. 5.3.

Таблица 5.3

Параметры сечения щели самодействующих клапанов.

Примечание: L(l), B(b) – размеры запорного органа;

– средний диаметр кольцевой пластины;

– диаметр отверстия на входе в клапан;

Z – число подвижных элементов клапана.

Основной задачей при предварительном обосновании конструкции клапана выбранного типа для рассматриваемой ступени компрессора является определение требуемого сечения щели зависящего от числа клапанов Z, активной площади поршня , его средней скорости с п, температуры газа на входе в клапан Т , газовой постоянной R и показателя адиабаты k. Связь указанных параметров для полностью открытого клапана описывается критериальной зависимостью

,

где М – критерий скорости потока газа в клапане. Его величина для современных конструкций клапанов лежит в диапазоне ;

– коэффициент расхода клапана.

Величину для конкретного типа клапана обычно определяют экспериментальным путем, рассматривая ее зависящей от текущей высоты перемещения клапанных пластин. Для полностью открытых клапанов можно рекомендовать величины, приведенные в табл. 5.4.


Таблица 5.4

Коэффициент расхода основных конструкций клапанов

В справочной литературе клапан характеризуется эквивалентным сечением . Его величина согласно приведенной выше критериальной зависимости будет равна

По найденной величине Ф подбирается стандартный клапан или разрабатывается новый со специфическими геометрическими параметрами.

Подобный метод подбора клапанов не гарантирует требуемого уровня показателей эффективности и надежности. Поэтому на заключительном этапе целесообразно выполнение расчетного анализа работы выбранных клапанов в составе реальной ступени компрессора. Для этого используют апробированные программы расчета, предусматривающие математическое моделирование комплекса рабочих процессов и динамики движения запорных органов, которые позволяют на стадии проектирования обосновывать оптимальное сочетание геометрических параметров элементов клапанов применительно к компрессору с заданной геометрией ступеней, известными режимными параметрами и свойствами рабочего вещества.

Показателем надежности разработанных клапанов, сформировавшимся в результате многолетнего опыта ряда поколений исследователей, изготовителей и потребителей компрессорной техники, является выполнение условия: расчетная (на стадии проектирования) или экспериментально определённая скорость посадки пластин клапана на седло W с ≤ 1.5 м/с .

Окончательно оценка эффективности и надежности клапанов принимается на основании расширенных теплотехнических испытаний компрессоров, предусматривающих определение производительности, потребляемой мощности, температур нагнетания по ступеням и наработку до 1-го отказа.

В приведенных ниже материалах автор ставит и решает задачу разработки, исследования и создания самодействующих клапанов, эффективность и надежность которых обосновываются на стадии проектирования при использовании модернизированной программы КОМДЕТ-М.

1.4.2. Основы оптимизации клапанов поршневых компрессоров

Выбор характерных параметров клапанов по величине эквивалентного сечения в щели полностью открытых клапанов Ф щ не гарантирует оптимального сочетания конструктивных параметров клапанов (толщины δ пл и массы m пл подвижных клапанных пластин, их максимального перемещения h кл, жесткости С пр, числа Z пр и предварительного натяга пружин h 0 , действующих на отдельные пластины клапана), а следовательно, не позволяет прогнозировать действительный уровень статической ν пр и динамической ν пер не герметичности клапанов с выбранными в ходе предварительного термодинамического расчета габаритными размерами или посадочными диаметрами d 1 . Следствием такого подхода является расхождение в той или иной степени между расчетной и фактической производительностью, мощностью на валу машины и показателями надежности и эффективности работы ступеней и агрегата в целом.

С учетом указанных факторов целесообразным является выполнение комплексного поверочного расчета в виде численного эксперимента , в ходе которого проводится сравнительный анализ вариантов ступени компрессора укомплектованного клапанами различного конструктивного исполнения. По результатам численного эксперимента рекомендуется «оптимальныйвариант » клапанов, при которых обеспечивается требуемая производительность ступени, современный уровень эффективности и надежности клапанов при работе на номинальном и других режимах.

Подробно данный аспект работы представлен в разделе 7.

1.4.3. О целесообразности применения клапанов грибкового типа

в составе ступеней оппозитных компрессоров

Под «грибковыми» клапанами в литературе понимают индивидуальные клапаны с запорным органом в виде круглой пластины, поверхность которой со стороны седла выполнена по профилю, обеспечивающему минимальное газодинамическое сопротивление при течении газа по каналам клапана. Подвижный орган клапанов внешне напоминает грибок со «шляпкой» сферической формы, обращенной в сторону седла клапана. Конструктивно грибковые клапаны практически не отличаются от клапанов с пластинами сферической формы (см. рис. 5.10-А и 5.10-Б). В силу ряда особенностей клапаны подобного типа находят применения, как правило, в малорасходных машинах объёмного действия и на ступенях высокого давления с малыми диаметрами цилиндров. Существующие методы расчета сферических клапанов вполне применимы и при анализе работы ступеней компрессоров укомплектованных грибковыми клапанами.

В настоящем разделе работы автор анализирует целесообразность применения грибковых клапанов в ступенях современных высокооборотных (n ≥ 750 об/мин) оппозитных компрессорах с поршнями двойного действия, что предопределяет боковое расположение индивидуальных клапанов с посадочным диаметром d 1 на боковых стенках цилиндра.

Поскольку грибковые клапаны конструктивно идентичны сферическим, то их расчетный анализ может быть выполнен на основе прикладной программы КОМДЕТ-М. Программа хорошо зарекомендовала себя в практике расчетных и конструкторских подразделений ОАО «КОМПРЕССОР» г. С.Петербург на стадии разработки и обоснования оптимальных вариантов малорасходных компрессоров низкого, среднего и высокого давления на У-образных базах.

Рис. 5.11. Наборный грибковый клапан

с неметаллическими запорными органами

с посадочным диаметром 125 мм (Z кл =20)

Главным преимуществом клапанов тарельчатого типа (грибковых и сферических) с неметаллическими запорными органами считается их повышенная герметичность в закрытом состоянии.

Главный недостаток – низкий коэффициент использования лобовой поверхности клапанной плиты с посадочным диаметром d 1 , в пределах которой устанавливается n-е количество сферических или грибковых клапанов (см. рис. 5.11).

В качестве объекта исследования выбрана I ступень газового компрессора 4ГМ2.5-6.67/4-50С с поршнями двойного действия. Рабочие полости ступени (А и Б) могут быть укомплектованы разнотипными индивидуальными клапанами с посадочным диаметром ø125 мм с размещением их на боковой поверхности цилиндра. В ходе численного эксперимента оценивалась эффективность работы ступени при комплектации её прямоточными (ПИК), ленточными (ЛУ), полосовыми (ПК) и грибковыми клапанами при сохранении режимных параметров.

На предварительном этапе исследования определялась оптимальная величина подъёма запорного органа грибкового клапана. Результаты исследования приведены в табл. 5.6. Их анализ позволил обосновать оптимальный вариант клапана ГрК125-20-14 -2.0 с диаметром отверстия в седле d с = 14 мм и высотой подъёма запорного органа h кл.опт = 2 мм.

Результаты 2-го этапа исследования, приведенные в табл. 5.7 и на рис. 5.12 в виде текущих и интегральных параметров ступени компрессора укомплектованной клапанами различного типа, позволяют сделать следующие выводы:

1. Наборные грибковые клапаны, смонтированные в плите с посадочным диаметром ø125, при расположении на боковой поверхности цилиндра проигрывают клапанам других типов по основным показателям, включая:

Снижение производительности - на 4.3 %;

Увеличение суммарных относительных потерь в клапанах χ вс+нг в 2 раза;

Снижение изотермного индикаторного КПД η из.инд - на 8.0 %;

Повышение температуры нагнетаемого газа - на 14 К.

Таблица 5.6

Интегральные параметры I ступени компрессора 4ГМ2.5-6.67/4-50С при комплектации клапанами грибкового типа с переменной высотой подъёма h кл

Параметры Размер-ность Число и тип установленных клапанов:
Z кл = 1 вс + 1 нг, тип – Грибковые
Обозначение клапана I ст. - ГрК125- 20-14-1.5 ГрК125- 20-14-1.8 ГрК125- 20-14-2.0 ГрК125- 20-14-2.2 ГрК125- 20-14-2.5
h кл мм 1.5 1.8 2.0 2.2 2.5
р нг / р вс МПа 1.2 / 0.4
П = р нг /р вс - 3.0
а 0.34
Т вс К
T ст 345.2 334.9 343.1 342.9 342.7
T нг.ц 433.5 430.3 428.3 427.8 427.4
m 1.А кг/ч 513.44 517.26 519.94 518.58 523.88
V н.у.1А нм 3 /мин 7.1011 7.154 7.1911 7.1723 7.2455
N инд.1А кВт 20.470 20.150 19.961 19.826 19.974
N ном.1А 16.736 16.781 16.841 16.796 16.938
∆N ∑ 3.634 3.369 3.120 3.030 3.036
χ вс - 0.118 0.108 0.103 0.103 0.100
χ нг 0.105 0.093 0.082 0.077 0.079
L уд кДж/кг 143.5 140.2 138.2 137.6 137.3
h вс 528.87
h нг. S 637.43
h нг 670.56 667.33 665.24 664.66 664.33
η из.инд - 0.643 0.658 0.667 0.670 0.672
λ 0.5304 0.5344 0.5372 0.5358 0.5412
λ д 0.9521 0.9632 0.9664 0.9609 0.9709
λ т 0.9619 0.9631 0.9642 0.9658 0.9639
λ о 0.5669 0.5733 0.5746 0.5719 0.5769
∆λ вс - 0.0225 - 0.0123 - 0.0104 - 0.0139 - 0.0131
∆λ нг 0.0026 0.0021 0.0007 0.0005 0.0041
ρ 3 кг/м 3 9.919 9.962 9.988 9.984 10.005
ρ 1 4.362 4.418 4.437 4.419 4.458
ρ 3 /ρ 1 - 2.274 2.255 2.251 2.259 2.244
W с.вс м/с 1.14 0.91 0.96 1.21 2.26
W с.нг 1.94 1.93 1.39 1.42 2.42

Шифр варианта - ГМ25-6.7-4-12-Г. Рабочая полость– А .

ВОЗДУХ,D ц. I = 200 мм, S п = 110 мм, L ш = 220 мм, n = 980 об/мин, с п = 3.593 м/с

Таблица 5.7

Параметры I ступени дожимающего компрессора 4ГМ2.5-6.67/4-50С

при комплектации клапанами различного типа

Z кл = 1 + 1, δ усл.кл = 1 мкм, ρ вс.реальная = 4.7635 кг/м 3

Параметры Размер-ность Вариант исполнения I ступени
А Б В Г
Тип клапанов - ПИК125- 1.0БМ-1.5 ЛУ125-9- 96-8-0.6-1.8 ПК125-9- 96-8-0.6-1.8 ГрК125- 20-14-2
Т нг К 412.9 414.6 413.7 428.3 + 14 К
m 1.А кг/ч 532.3 545.4 542.2 519.9
V н.у.1А нм 3 /мин 7.362 7.544 7.499 7.191 - 4.3%
V вс.1А м 3 /мин 1.862 1.908 1.897 1.819
N инд.1А кВт 18.221 18.809 18.568 19.961
∑∆N кл 1.036 1.502 1.392 2.957 в 2 раза
χ вс - 0.034 0.048 0.044 0.103
χ нг 0.026 0.039 0.037 0.082
η из.инд 0.749 0.743 0.748 0.667 -8%

Рис. 5.12. Текущие параметры I ступени компрессора

4ГМ2.5-6.67/4-50С при n = 980 об/мин

ГрК125-20-12-2 ------ ПК125-9-96-8-0.6-1.8

2. Высокая частота и амплитуда колебаний клапанных пружин в периоды всасывания и нагнетания (см. рис. 5.12) способствуют преждевременному выходу их из строя.

Обобщая полученные данные, следует указать, что применение набора грибковых клапанов в клапанной плите круглой формы в составе ступеней крупных оппозитных компрессоров с поршнями двойного действия при высоких частотах вращения вала не целесообразно. Исключение могут составлять отдельные случаи применения грибковых клапанов при комплектации ступеней низкооборотных компрессоров, сжимающих «тяжёлые»-«легкие» газы (например, ВОЗДУХ - Водород и Водород-содержащие смеси) в период пуско-наладочных испытаний.

Список литературы

1. Прилуцкий И. К., Прилуцкий А.И. Расчет и проектирование

поршневых компрессоров и детандеров на нормализованных базах:

Учебное пособие для студентов вузов. – СПбГАХПТ, 1995 . – 194 с.

2. Поршневые компрессоры: Учебное пособие для студентов вузов.

Б.С. Фотин, И.Б. Пирумов, И.К. Прилуцкий, П.И. Пластинин.

– Л.: Машиностроение, 1987. - 372 с.

3. Френкель М. И. Поршневые компрессоры.

– Л.: Машиностроение, 1969. - 744 с.

– М.: Машиностроение, 1979. - 616 с.

4. Каталог электродвигателей. Филиал ООО «Элком». – Москва, Россия

Ворошилов - Рыжков :

1. Дожимающие компрессоры без охлаждения цилиндров -

тепловая задача (эксперимент и Колеснев) +

оребрение крышек (эксперимент с участием представителя ККЗ и Галяева??)

2. Унификация клапанов I и II ступеней компрессора 4ГМ2.5-6.67/11-64

3. Рациональные технические решения Маша, Демпфирование, Унификация – Z кл 3:1 (ПАИ)

4. Прямоугольные клапаны транспортных компрессоров - альтернатива индивидуальным клапанам круглой формы форсированных по средней скорости поршня и частоте вращения вала (УКЗ-Демаков и ККЗ)

5. Разработка форсированной по средней скорости базы 4У4 ………….

6. Достигнутый технический уровень компрессоров.

Перспективы его дальнейшего повышения

7. Комплексный расчетно-теоретический анализ (2ВМ2.5-14/9) ………..

В понятие эффективности входит отношение результата деятельности к целям, которое некоторые исследователи называют "целевой эффективностью". Отношение результата к целям является определенной мерой соответствия результата и цели. Это соответствие принято считать надежностью. Таким образом, если система функционирует надежно, т. е. результат ее деятельности соответствует целям, то отношение результата к цели близко к максимальному.

Если при определении эффективности рассмотреть предельный случай, задав большой приоритет частного критерия, характеризующего отношение результата к целям, то получим тождественность эффективности и надежности. В общем случае повышение надежности может различным образом отразиться на повышении эффективности: последняя может остаться без изменений, повыситься или понизиться - здесь многое зависит от того, как возрастут затраты, т. е. что произойдет с экономической эффективностью, и как поведут себя ценностная и потребностная составляющая эффективности. Повышение эффективности в общем случае также не вызывает неизбежного повышения надежности. Первое может произойти независимо от второго, за счет увеличения других отношений, определяющих эффективность. Однако, в последнее время именно надежность, выраженная в отношении результата к целям, начинает играть доминирующую роль в определении эффективности. В подтверждение этому можно привести достаточно аргументов.

Выясним, куда мы должны отправиться "в поисках эффективного управления". Воспользуемся здесь советом авторов одноименной книги, которые сделали свои выводы на основании исследования опыта лучших компаний. Их совет таков: "Качество прежде всего!" Что же они понимают под качеством? Оказывается, вот что - бездефектная (безошибочная) работа, отсутствие брака как непосредственно на стадии продукта, так и на всех других стадиях производственного процесса. Но безошибочность является одним из главных условий надежности. Значит первое и основное требование к эффективному управлению сегодня, его, так сказать, необходимое условие, как показывает опыт лучших компаний, есть надежность как свойство, обеспечивающее соответствие процесса функционирования системы его норме. Вторым требованием к эффективному управлению, по мнению авторов, является партисипативный стиль управления, который они определяют как "взаимную ответственность в системе взаимоотношений руководителей и подчиненных". Итак, основными требованиями, предъявляемыми к эффективному управлению, являются надежность и ответственность или, как это формулируется у Т. Питерса, Р. Уотермена, Дж. Харрингтона, У. Деминга, качество и ответственность.

Мы упоминали, что в управлении понятие "качество" стало использоваться самостоятельно позднее, чем понятия "эффективность" и "надежность". Его появление было во многом обусловлено тем, что количество произведенной продукции, так называемый вал, перестало гарантировать успех на рынке, что в конечном счете не позволяло обеспечивать соответствующее "качество жизни" и безопасность страны. Поэтому на смену количеству пришло качество. Именно оно стало тем новым идеалом, на достижение которого предполагалось бросить все основные силы и ресурсы. Предметом профессиональной ответственности менеджеров провозглашалась качественная работа. Основным содержанием понятия "качество" в управлении стала бездефектность. Почему именно данное содержание стало основным в понятии качества в сфере управления? Стремление удовлетворить растущий спрос, который после второй мировой войны значительно превышал предложение, приводило к расширению производства как в сфере увеличения производственных площадей, закупки нового оборудования, так и в сфере привлечения новой, часто не достаточно обученной рабочей силы. Все это вместе с усложняющейся технологией приводило к появлению большого количества брака. Какое-то время это считалось естественным. Поэтому при планировании производства заранее предусматривали участки по обнаружению и исправлению дефектов. Эти участки комплектовались самыми квалифицированными рабочими, поскольку всегда значительно сложнее что-то переделывать, чем сразу делать правильно. Быстрое устранение дефектов считалось более предпочтительным, чем разработка долгосрочных мероприятий по их предотвращению. Такое положение считалось нормальным, пока это приносило успех.

Но увеличение предложения на рынке товаров и услуг привело к тому, что продукцию с наличием даже незначительных дефектов потребители перестали покупать даже по сниженным ценам. Эмпирические замеры показали, что "высококачественная продукция приносит примерно на 40% больше прибыли на инвестированный капитал, чем продукция низкого качества". Поэтому инвесторы стремились вкладывать финансы туда, где качество продукции было выше, стимулируя таким образом иное отношение к наличию дефектов в выпускаемой продукции. В конце концов, именно более высокое качество привело к повышенному спросу на японские товары во всем мире и обеспечило Японии успех в конкурентной борьбе на мировом рынке товаров и услуг.

В условиях превышения предложения над спросом потребитель диктует свои условия производителю. В первую очередь его начинают волновать "качество и надежность по умеренной цене", что косвенно находит свое подтверждение в содержании рекламы. "Качество" и "надежность" стали одними из ключевых слов, используемых в рекламных целях.

Итак, поскольку потребителя все больше начинает не удовлетворять наличие дефектов в продукции, и корпорации теряют достаточно большие деньги на бракованной продукции (так, в 1984 г. США потеряли на этом свыше 7,8 млрд. долл.), то основным содержанием понятия "качество" в управлении становится именно отсутствие дефектов, правильность, безошибочность. Последние, как мы отмечали, являются одними из условий надежности. Поэтому, по существу, такое содержание понятия качества было узким и превращало качество в один из критериев надежности.

С другой стороны, указанное содержание понятия "качество" совпадает с тем, которое Котарбиньский вкладывал в понятия правильности и эффективности, поскольку соответствует введенным им критериям полезности, точности, искусности и чистоты. Следовательно, понятие качества, сложившееся в управлении, становится тождественным понятию эффективности, введенному Котарбиньским.

Однако, самой распространенной точкой зрения по поводу соотношения качества и эффективности в управлении является признание того, что качество является одним из критериев эффективности. "Одним из оптимальных способов повышения эффективности является всемерное повышение качества". В теории менеджмента сформировался новый подход - "управление качеством", основными представителями которого считаются Ф. Б. Кроссби, У. Э. Деминг, А. В. Фейгенбаум, К. Исикава, Дж. М. Джуран, Дж. Харрингтон и др. Методологической основой данного подхода является признание в качестве основополагающих принципов деятельности фирмы следующих двух:

1. Работники, выполняющие порученную им работу, должны понимать ее суть и нести ответственность за качество результатов своей деятельности.

2. Необходимо создать механизм контроля эффективности труда каждого исполнителя с одновременным правом внесения изменений в процессе труда и обеспечением его средствами постоянного повышения качества работы.

Если говорить кратко, то ключевыми моментами любой деятельности они провозглашали качество и ответственность, причем ответственность рассматривалась ими как необходимое условие обеспечения качества.

Необходимо отметить, что сторонники этого подхода принципиально не стремились к единой трактовке понятия "качество". "Первым основным правилом" они провозгласили: "Качество - это субъективное понятие, и каждый определяет его по-своему". Так, например, Ф. Кроссби определяет его как "соответствие требованиям", У. Деминг считает, что качество - это "соответствие запросам рынка", Дж. Джуран рассматривает качество как "соответствие назначению", А. Фейгенбаум называет качество "совокупностью сложных рыночных технических, производственных и эксплуатационных характеристик изделия (или услуги), благодаря которым используемое изделие (или услуга) отвечает ожиданиям потребителя", Дж. Харрингтон определяет качество как "удовлетворение или превышение требований потребителя по приемлемой для него цене" и т. д.

Важно подчеркнуть следующее. Несмотря на разнообразие формулировок при определении понятия "качество" в управлении, цель совершенствования, сформулированная в "третьем основном правиле", едина для всех - устранение ошибок. Подобное единство цели вполне естественно. Поскольку качество всегда определяется как соответствие чему-либо, то "не качество" определяется как "несоответствие", а несоответствие трактуется затем как ошибка. Таким образом, устранение ошибок есть устранение несоответствий, это есть устранение "не качества", т. е. повышение качества.

Часто происходит отождествление понятий "ошибка" и "отказ" или, по крайней мере, ошибки считаются основной причиной наступления отказа. Такая тенденция имеет свои корни в отождествлении функционирования человека и техники. Именно на этом основании, например, традиционная для социальной психологии проблематика ошибок в профессиональной деятельности была включена в возникшую гораздо позднее проблематику надежности. Исходя из этого мы можем констатировать, что проблематика качества в управлении, связанная преимущественно с устранением ошибок, включается в более общую проблематику надежности.

Следует особо подчеркнуть следующий факт. В теории надежности признается объективный характер ошибок, ошибки рассматриваются как "нормальное" явление, тем самым косвенно постулируется принцип, что безошибочной деятельности не бывает, "не ошибается тот, кто ничего не делает". Поэтому в теории надежности основной акцент делается на то, как при наличии ошибок в функционировании отдельных элементов системы добиться требуемого функционирования системы в целом. Это приводит к тому, что особую роль в обеспечении надежности начинает играть устранение последствий ошибок, а не причин.

В управлении в теоретических разработках по проблеме качества акценты ставятся совершенно иные. Это связано с тем, что там признается преимущественно субъективный характер ошибок. Следовательно, более целесообразно устранять причины ошибок, а не бороться с их последствиями. "Возможно, человеку и свойственно ошибаться, но платить ему за это может только бог. Наш деловой мир принимал ошибки как само собой разумеющееся". Но деловой мир вынужден был сменить такое отношение к ошибкам как только стало ясно, что это экономически не выгодно. Принцип "качество требует денег" изжил себя и был заменен иным принципом - "качество приносит деньги", смысл которого состоит в том, что затраты на повышение качества окупаются сторицей.

Если в теории надежности исходят из того, что возможно построить надежную систему из ненадежных элементов, то в разработках по управлению качеством особое значение придается тому, что недостаточно говорить о качестве продукции (некоторой целостной характеристике фирмы), необходимо требовать высокого качества от каждого элемента системы. Только качественная работа всех элементов может действительно обеспечить качество продукции.

Если исходить из влияния ошибок на качество и надежность, то можно утверждать, что и качество, и надежность системы существенным образом связаны с безошибочностью. Однако, теория надежности и теория "управления качеством" занимают противоположные позиции как по отношению к главным причинам ошибок, так и по отношению к влиянию ошибок отдельных элементов на ошибки всей системы. Это делает их методологически различными и взаимно дополняющими. В теории надежности исповедуется холистский принцип, что "целое больше своих частей"; управление качеством основывается на том, что "качество системы складывается из качества ее элементов", т. е. руководствуется принципом редукционизма. Выявленные нами различия во многом детерминируются тем, что указанные теории развивались в рамках различных направлений исследования управления. Теория надежности первоначально формировалась в области управления техническими системами, а управление качеством разрабатывалось в менеджменте. Различие объектов управления, предметов исследования и сложившейся методологии обусловили отмеченные существенные различия в отношении ошибок в теории надежности и в управлении качеством.

Можно признать, что разработки в области управления качеством принесли определенные практические результаты, на основании чего попытались сделать вывод о его теоретической значимости. В целом теория качества осталась разработанной весьма неудовлетворительно, что и привело впоследствии к тому, что очередная мода в управлении постепенно сошла на нет.

Прежде всего эта неудовлетворительность, на наш взгляд, связана с весьма ограниченной трактовкой качества, которое было сведено, по существу, к безошибочной работе. Попытки контроля качества на каждом рабочем месте и за каждым производственным процессом позволили первоначально добиться определенных результатов, но затем они стали все менее заметны. Это вполне объяснимо. В этом вполне проявляется принцип системности (команда звезд не есть команда звезда). Повышение качества в отдельных элементах системы не всегда приводит к повышению качества системы в целом, а иногда даже снижает его, поскольку изменение качества отдельного элемента требует перестройки всей системы, которая не может осуществиться мгновенно. Более того, подобная перестройка может привести к существенному изменению качества других элементов, которое не всегда возможно предвидеть и оценить и которое может снизить качество системы в целом. Использование понятия "качество" в управлении должно существенно опираться на философско-методологический анализ категории качества, в котором выявляются такие ее необходимые признаки, которые, с одной стороны, выражают универсальные связи вещей и явлений объективного мира, а с другой - позволяют понять все смысловые оттенки различных ситуаций, в которых может использоваться это понятие. Драчева Е.Л., Юликов Л.И. Менеджмент: Учебное пособие. - М.: Академия, 2005.

Гегель определил качество как тождественную с бытием определенность. Несмотря на всю абстрактность этого определения, оно позволяет сделать ряд выводов, характеризующих наиболее существенные аспекты качества. Качество, будучи тождественной с бытием определенностью, не отделимо от существования соответствующего объекта, поэтому оно отделяет его от всех других объектов и тем самым является границей его существования. Теряя качество, объект становиться чем-то другим. Поэтому качество характеризует объект с точки зрения сохранения его определенности. Поскольку одним из существенных аспектов управления является функциональный, то качественная определенность как системы управления, так и ее элементов преимущественно связана с функциями, которые выполняются ими. Именно через функции и выражается качество системы управления. Система остается данной системой, т. е. обладает своим качеством, лишь постольку, поскольку она выполняет свою функцию. В управлении, следовательно, самотождественность объекта связана с его способностью выполнять заданные функции, а не с иными проявлениями его существования. Таким образом, особый интерес к функционированию в управлении обусловил выделение функционального аспекта качества системы. (Заметим, что в этом вновь проявляется "техническая" ориентация управления.) Анализ качественной определенности в ее функциональном аспекте позволяет ввести понятие эффективности. Это возможно на том основании, что функциональность предполагает наличие вполне определенного эффекта (действия) в тех взаимодействиях, в которых проявляется качественная определенность объекта. Таким образом, становится легко усматриваемой связь эффективности и качества. Именно качество элементов принципиально ограничивает возможности функционирования синтезированной из них системы. Определенное качество системы в целом и ее отдельных элементов обусловливает эффективность как самой системы, так и ее отдельных элементов. Сама возможность изменить эффективность системы зависит о изменения качества ее элементов или ее структуры.

Поскольку заданное функционирование системы может быть обеспечено только вполне определенным качеством, то проблема качества в управлении должна решиться в единстве как с проблемой эффективности, так и с проблемой надежности.

Большую роль при исследовании качества играет переход к количественным оценкам. Здесь можно отметить, что среди всех работ, связанных с исследованиями эффективности, надежности и качества, подавляющее большинство посвящено именно количественным методам оценивания.

Гегель определил количество как определенность, безразличную к бытию. Тем самым он в общей форме выразил относительную независимость количественной определенности от качества тех же объектов. Это определение фиксирует двоякий аспект независимости количества от качества. Во-первых, одна и та же количественная определенность присуща качественно различным объектам. И, во-вторых, количественная определенность может иметь смысл и логично мыслиться даже в тех случаях, когда не существует объектов с такой качественной определенностью.

Однако, относительную независимость количественной определенности от соответствующего качества нельзя переоценивать. Существует определенное единство качества и количества, которое Гегель назвал мерой.

Мера как единство качества и количества имеет несколько аспектов, находящих свое отражение в трех законах меры, которые кратко можно сформулировать следующим образом. Согласно первому закону любое количественное изменение является изменением качественным. Из второго закона следует, что всякое количественное изменение не затрагивает множества свойств данного объекта, и именно потому оно количественное. Третий закон заключается в том, что количественные изменения любого свойства материального объекта необходимо имеют верхнюю и нижнюю границу. В общем случае эта граница определена как поверхность, разделяющая пространство меры для соответствующего качества и пространство мер других качеств. Переход от одного качественного состояния к другому сам образует некоторое пространство состояний. Поэтому возникает вопрос о выделение некоторого признака, который характеризует типы состояний объекта. Одним из таких признаков является устойчивость.

Таким образом, устойчивость является результатом развития понятия меры. Универсальность понятия меры ведет к универсальности понятия устойчивости. Именно поэтому всякая наука, исследующая свою область с точки зрения закономерной связи количественных и качественных изменений, обязательно сталкивается с понятием устойчивости. Устойчивость характеризует способность объектов сопротивляться внешним воздействиям, когда они достаточно малы. Интересно отметить, что проблема устойчивости приобретала значение в конкретной науке только тогда, когда были открыты основные законы, которыми описывается поведение объектов данной области исследования. При рассмотрении качественной определенности объектов на уровне устойчивости мы выходим на уровень целостности. Это косвенно отражает тот факт, что понятие устойчивости играет завершающую роль в системе категорий меры. Драчева Е.Л., Юликов Л.И. Менеджмент: Учебное пособие. - М.: Академия, 2005.

Дудникова, Вера Викторовна

Ученая cтепень:

Кандидат технических наук

Место защиты диссертации:

Ростов-на-Дону

Код cпециальности ВАК:

Специальность:

Материаловедение (по отраслям)

Количество cтраниц:

1. СОСТОЯНИЕ ВОПРОСА, ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Амализ методов обеспечения заданного усталостного ресурса деталей машин.

1.2. Анализ методов определения минимальной усталостной прочности деталей машин.

1.3. Анализ методов определения максимальной нагруженности деталей машин.

1.4. Выводы, цели и задачи исследований.

2. МОДЕЛЬ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ КУЛЬТИВАТОРА ЗА СЧЕТ УВЕЛИЧЕНИЯ ЕГО НАДЕЖНОСТИ.

2.1. Модель обеспечения заданного усталостного гамма-процп ithoeo ресурса стойки культиватора .

2.2. Модель надежности культиваторного узла (группы стоек).

2.3. al 1али гическое определение параметров вероят1ioctiюго paci 1рнделения совокуш юсти конечного объема прочности и ресурса по их выборочным данным.

2.4. алгоритм и расчет эффективности работы культиватора за счет увеличения его надежности

2.5. Выводы.

3. РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ МИНИМАЛЬНОЙ УСТАЛОСТНОЙ ПРОЧНОСТИ, НАГРУЖЕННОСТИ И РЕСУРСА ДЕТАЛИ НА СТАДИИ ПРОЕКТИРОВАНИЯ.

3.1. расчетно-эксперименталыюе определение минимальной усталостной прочнос ти образцов (деталей) для совокупности конечного объема по выборочным данным.

3.2. расчетно-экспериментальное определение максимальной нагруженности деталей.

3.3. расчетно-экспериментальное определение гамма-процентного ресурса де тали.

3.4. Выводы.

4. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ.

4.1. методика повышения эффективности функционирования культиватора за счет увеличения его надежности.

4.2. Обеспечение гамма-процентного ресурса стойки культиватора.

4.3. Методика и результаты подтверждения расчетного гамма-процентного ресурса с тойки культиватора акв-4 после внедрения рекомендаций.

4.4. Расчет экономического эффекта от увеличения гамма-процентного ресурса стойки культиватора.

Введение диссертации (часть автореферата) На тему "Повышение надежности и эффективности функционирования культиватора за счет увеличения ресурса стоек"

Рост производительности труда в сельском хозяйстве связан с повышением эффективности функционирования сельскохозяйственных машин за счет увеличения их надежности. Большое значение имеет повышение эффективности работы машин начального этапа сельскохозяйственного производства; к ним относятся, в том числе культиваторы. При ограничении сроков подготовки почвы культиваторам предъявляются высокие требования по надежности. Отказы культиваторов приводят к простоям в ремонте и к ущербу от простоя техники, вызванному смещением сроков выполнения технологического процесса выращивания сельхозкультур.

В группу деталей, отказывающих и лимитирующих надежность культиваторов, входят S-образные пружинные стойки. Повышение надежности стоек культиватора, а также оптимизация их ресурса обеспечит снижение величины потока отказов, затрат на ремонт, сократит сроки и экономический ущерб вследствие уменьшения продолжительности технологического цикла.

Исследования эффективности и надежности сельскохозяйственных машин проводили Андросов A.A., Беленький Д.М., Грошев Л.М., Далальянц А.Г., Ермольев Ю.И., Жаров В.П. Полушкин O.A., Спиченков В.В., Хозяев И.А., однако выполненный анализ исследований в области эффективности и надежности сельхозмашин показал, что имеются резервы дальнейшего улучшения методов повышения их надежности.

Целью данного исследования является разработка метода повышения надежности и эффективности функционирования культиватора за счет увеличения ресурса его стоек.

Для достижения поставленной цели требуется решить, следующие задачи: разработать метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, учитывая аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности; разработать модель надежности культиваторного узла (группы стоек); разработать алгоритм расчета оптимальной вероятности безотказной работы Б-образной стойки культиватора; определить расчетно-экспериментальным методом параметры прочности, нагруженности и ресурса стойки культиватора на стадии проектирования; оптимизировать гамма-процентный ресурс стойки культиватора и подтвердить его стендовыми испытаниями; рассчитать экономический эффект от увеличения гамма-процентного ресурса группы стоек культиватора.

В первой главе выполнен анализ методов повышения надежности, эффективности и обеспечения заданного усталостного ресурса деталей машин. Освещены различные подходы к определению минимальной усталостной прочности и максимальной нагруженности деталей машин.

Во второй главе диссертации приводится описание модели, разработанной для повышения надежности и эффективности работы культиватора и обеспечения заданного усталостного ресурса его деталей.

В третьей главе приводится расчетно-экспериментальное определение параметров прочности, нагруженности и ресурса деталей на стадии проектирования. Определяется расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки культиватора для совокупности конечного объема по выборочным данным. Рассмотрен метод расчетно-экспериментального определения максимальной нагруженности деталей. Приведено расчетно-экспериментальное определение гамма-процентного Б-образной стойки культиватора.

В четвертой главе изложена методика повышения эффективности функционирования культиватора за счет увеличения ресурса стоек. Дана характеристика обеспечения гамма-процентного ресурса стойки культиватора, АКВ-4, выпущенной ЗАО «Красный Аксай ». Приведен расчет экономического эффекта от увеличения гамма-процентного ресурса группы стоек культиватора.

В заключении сделаны выводы о проделанной работе.

Научная новизна выполненной работы состоит в следующем:

Разработана модель, позволяющая установить закономерности повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющая оптимизировать гамма-процентное значение ресурса стоек по критерию - удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора. Получены аналитические решения для определения параметров трехпараметрического распределения Вейбулла прочности и ресурса для совокупности конечного объема по выборочным данным.

Практическая значимость: выполненных аналитических и экспериментальных исследований заключается в следующем:

Разработан алгоритм расчета эффективности работы культиватора за счет увеличения ресурса его стоек;

Определена расчетно-экспериментальным методом минимальная усталостная прочность 8-образной стойки для совокупности конечного объема но выборочным данным;

Представлен разработанный алгоритм расчетно-экспериментального определения гамма-процентного ресурса детали; достигнуто увеличение вероятности безотказной работы стойки культиватора с 0,90 до 0,99 (оптимальное значение) при этом расчетный гамма-процентный ресурс составит около 229 ч (Р=0,99), что превышает заданный техническими условиями ресурс 200 ч.

Основные положения и результаты работы докладывались и обсуждались на научно-технических конференциях в Ростовском государственном строительном университете в 2001 - 2006 гг.

Заключение диссертации по теме "Материаловедение (по отраслям)", Дудникова, Вера Викторовна

ОБЩИЕ ВЫВОДЫ

1. Разработан метод повышения надежности и эффективности работы культиватора за счет увеличения ресурса его стоек, позволяющий оптимизировать гамма-процентное значение ресурса по критерию -удельные суммарные затраты на изготовление и эксплуатацию стоек культиватора; получен аналитический переход от выборочных распределений прочности, нагруженности и ресурса к распределениям совокупности.

2. Предложена для стадии проектирования модель надежности культиваторного узла (группы стоек), в которой в качестве критерия оптимизации используются удельные затраты на создание и эксплуатацию стоек, а оптимальное значение у для ресурса определяется в интервале 0,9 - 0,94 при априорно установленном размахе ресурса 11=40-60; определен суммарный поток отказов для группы стоек. Разработан алгоритм определения параметров трехпараметрического распределения Вейбулла, описывающего распределения ресурса стоек и расчета этих параметров для потока отказов группы стоек.

3. Разработан алгоритм расчета оптимального гамма-процентного ресурса стойки культиватора. Проведенный расчет показал, что в результате применения мероприятий по увеличению прочности и снижению нагруженности стойки культиватора вероятность безотказной работы увеличивается с 0,9 до оптимального значения 0,99.

4. Для расчетно-экспериментального определения минимальной усталостной прочности для совокупности конечного объема по выборочным данным произведены испытания образцов из 13-ти углеродистых и легированных марок сталей, применяемых для изготовления деталей сельскохозяйственных машин. Получены для этих сталей значения относительной величины расхождения параметров сдвига для совокупности конечного объема и выборки: при Ь>2 расхождение S = 3-14%, при b

5. Для аппроксимации действующих напряжений в виде средневзвешенного напряжения использовано вероятностное распределение Фишера-Типпета, определяемого по аналогии с прочностью для выборки деталей. Выполнен вероятностный расчет с помощью метода статистических испытаний ресурса стойки для различных условий (размахи прочности =1,1-1,5, нагруженности Rctcb=1,16-1,5, значений у=80-99,99%, объем совокупности Nc=103-105).

6. Для увеличения вероятности безотказной работы S- образной стойки из стали 55С2 с 0,9 необходимо повысить качество ее наружной поверхности в области опасного сечения путем шлифования, что даст повышение коэффициента, учитывающего шероховатость поверхности, с 0,65 до 0,85, а предела выносливости в 1,3 раза, а также увеличить момент сопротивления с j

533 до 602 мм и сечение детали на 13% - это приведет к возрастанию вероятности безотказной работы до оптимального значения 0,99.

7. В результате внедрения предложенных рекомендаций достигается повышение эффективности работы культиватора: сокращение количества отказов стоек, снижение затрат на ремонт, сокращение простоев и сроков подготовки почвы для посевов. Ускоренные стендовые испытания S-образных стоек культиватора АКВ-4 производства ЗАО «Красный Аксай » подтвердили достоверность прогноза гамма-процентного ресурса.

8. Экономический расчет показал, что при прогнозируемом увеличении вероятности безотказной работы стойки культиватора с Р=0,9 до Р=0,99 эффект от внедрения результатов исследований составит 21060 рублей при годовой программе выпуска культиваторов 500 шт.

Список литературы диссертационного исследования кандидат технических наук Дудникова, Вера Викторовна, 2007 год

1. Абдуллаев A.A., Курбанов Ш.М., Саттаров A.C. О надежности хлопковых культиваторов // Тракторы и сельскохозяйственные машины. 1992. - №2. - С. 32-33.

2. Агамиров J1.B. О закономерностях рассеяния долговечности в связи с формой кривой усталости // Вестник машиностроения. 1997. - №5.- С. 37.

3. Агафонов Н.И. Эффективное использование сельскохозяйственной техники. М.: Знание 1997, № 4. - 63 с.

4. Александров A.B., Лащеников Б.Я., Шапошников H.H. Строительная механика. Тонкостенные пространственные системы. М.: Стройиздат, 1983.-488 с.

5. Андрющенко Ю.Е., Марисов А.Ф., КушнаревВ.И. Оценка требуемого уровня надежности элементов привода // Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ ДГТУ . Ростов-на-Дону, 1993. №5. - С. 16-21.

6. Анилович В.Я. и др. Прогнозирование надежности тракторов. М.: Машиностроение, 1986. - 224 с.

7. Аржанов М.И. Интерпретация значения нижней доверительной границы для вероятности безотказной работы // Надежность и контроль качества. 1993.-№5.-С. 6-11.

8. Беленький Д.М., Бескопыльный А.Н. Обеспечение высокой надежностидеталей строительно-дорожных машин // Строительные и дорожные машины, 1995. №4. - С. 24-27.

9. Беленький Д.М., Касьянов В.Е. Повышение надежности серийных машин путем увеличения ресурсов лимитирующих деталей // Вестник машиностроения, 1980. №1. - С. 12-14.

10. Беленький Д.М., Касьянов В.Е., Кубарев А.Е., Вернези H.JI. Определение установленных показателей надежности машины и ее составных частей (на примере одноковшового экскаватора) // Надежность и контроль качества. 1986.-№5.-С. 17-22.

11. Беленький Д.М., Ряднов В.Г. О законе распределения предельных напряжений. //Проблемы прочности. 1974. - №2. - С. 73-76.

12. Биргер И.А. Принципы построения норм прочности и надежности в машиностроении //Вестник машиностроения, 1988. № 7. - С. 3-5.

13. Бойцов Б.В. Надежность шасси самолета. М.: Машиностроение, 1976. -216.

14. Бойцов Б.В., Орлова Т.М., Сигалев В.Ф. Определение" закона распределения ресурса деталей машин и механизмов методов статистических испытаний // Вестник машиностроения. 1983. № 2. - С. 20-22.

15. Болотин В.В. Значение механики материалов и конструкций для обеспечения надежности и безопасности технических систем // Проблемы машиностроения и надежности машин. 1990. №5. - С. 3-8.

16. Болотин В.В. Ресурс машин и конструкций. М.: Машиностроение. 1990. -446 с.

17. Бондарович Б.А., Даугелло В.А. Метод статистического моделирования Монте-Карло при расчетах металлических конструкций землеройных машин на прочность //Строительные и дорожные машниы. 1990. № 12. -С. 20-21.

18. Василенко П.М., Бабий П.Г. Культиваторы, конструкции, теория и расчет. Киев, 1961.

19. Величкин И.Н. К вопросу обеспечения требуемой надежности машин // Тракторы и сельхозмашины. 1980. № 4. - С. 6-7.

20. Величкин И.Н. Улучшить нормирование показателей надежности машин // Тракторы и сельскохозяйственные машины. 1990. - №4. - С. 24-27.

21. Величкин И.Н., Коварский E.K. Пути повышения надежности парка тракторов // Тракторы и сельхозмашины, 1987. № 6. - С 32-36.

22. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. - 576 с.

23. Веремеенко A.A., Дудникова В.В. Определение напряженно-деформированного состояния стойки культиватора АКВ-4. //Деп. в ВИНИТИ №1586-в 2005.

24. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. М.: Наука, 1965. - 524 с.

25. Гнеденко Б.В., Ушаков И.А. О некоторых современных проблемах теории и практики надежности // Вестник машиностроения. 1988. - №12. - С. 3-9.

26. Гоберман В.А. Вопросы качества и надежности зерноуборочных комбайнов «Дон-1500» // Стандарты и качество, 1988. № 8. - С. 30-34.

27. ГОСТ 11.007-75. Прикладная статистика. Правила определения оценок и доверительных границ для параметров распределения Вейбулла. М.: Изд-во стандартов, 1975

28. ГОСТ 25.502-83. Надежность в технике. Прогнозирование надежности изделий при проектировании.

29. ГОСТ 25.504-82. Расчеты и испытания на прочность. Методы расчета характеристик сопротивления усталости.

30. Грошев JI.M. Оценка рассеивания характеристик нагруженности сельскохозяйственных машин // Динамика, прочность и надежность сельскохозяйственных машин / РИСХМ. Ростов -на- Дону, 1991. С.44-48.

31. Грошев JI.M., Дмитриченко С.С., Рыбак Т.И. Надежность сельскохозяйственной техники. Киев: Урожай, 1990. 188 с.

32. Гумбель Э. Статистика экстремальных значений. М.: Мир, 1965. - 464 с.

33. Гусев A.C. Сопротивление усталости и живучесть конструкций при случайных нагрузках. М.Машиностроение, 1989. - 248 с.

34. Гусев A.C. Структурный анализ случайных процессов с учетом реализационного рассеивания. // Проблемы машиностроения и надежности машин. 1995. - №2. - С. 42-47.

35. Даниев Ю.Ф., Кущ И.А., Переверзев Е.С. Нижняя и верхняя оценки надежности технических устройств// Надежность и контроль качества, 1993. -№ 11.-С. 11-16.

36. Диллон Б., Сингх Г. Инженерные методы обеспечения надежности систем. -М.: Мир, 1984.-318 с.

37. Димитров В.П. Об организации технического обслуживания машин с использованием экспертных систем // Вестник ДГТУ, 2003. - № 1 С. 5-10.

38. Дмитриченко С.С., Артемов В.А. Опыт расчета на усталость металлоконструкций тракторов и других машин //Вестник машиностроения, 1989. № 10. - С. 14-16.

39. Дмитриченко С.С., Егоров Д.К. Расчет долговечности корпусов мостов трактора //Вестник машиностроения, 1989. № 5. - С. 43-44.

40. Дмитриченко С.С., Завьялов Ю.А., Артемов В.А. Параметры случайных процессов нагружения металлоконструкций колесного трактора //Тракторы и сельскохозяйственные машины. 1987. № 1. - С. 21-26.

41. Дудникова В.В. Исследование причин отказа и рекомендации по увеличению гамма-процентного ресурса стойки культиватора АКВ 4.// Деп. в ВИНИТИ, № 1471 - в 2005.

42. Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975. - 472 с.

43. Зорин В.А. Основы долговечности строительных и дорожных машин. М.: Машиностроение, 1986. - 248 с.

44. Игнатенко И.В. Исследование динамических характеристик крепления опор ротационных узлов на панели зерноуборочных комбайнов. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1970.

45. Капур К., Ламберсон Л. Надежность и проектирование систем. М.: Мир, 1980. - 640 с.

46. Карасев Г.Н. Технико-экономическая оценка конструкций строительных экскаваторов // Строительные и дорожные машины. 1997. - №4.- С. 1115.

47. Карпенко А.Н. и др. Сельскохозяйственные машины. Изд. 3-е, перераб. и доп. М., «Колос », 1975.

48. Касьянов В.Е, Анабердиев А.Х. М., Роговенко Т.Н. Оценка ресурса деталей с усталостными отказами методом статистических испытаний //Эксплуатационная нагруженность и прочность сельскохозяйственных машин/ДГТУ. - Ростов-на-Дону. 1993. С. 67-71.

49. Касьянов В.Е, Андросов A.A., Роговенко Т.Н. Обеспечение минимального ресурса рамы энергосредства «Дон-800». // Вестник машиностроения, 2003, № 3.

50. Касьянов В.Е, Дудникова В.В., Ямоков С.Г. Модель и определение надежности культиваторного узла (группы стоек). // Деп. в ВИНИТИ, № -2006.

52. Касьянов В.Е. Анализ применения трехпараметрического распределения Вейбулла в расчетах надежности машин // Надежность и контроль качества. 1989. - №4. - С. 23-28.

53. Касьянов В.Е. и др. МР-92-83. Определение экономической эффективности повышения надежности выпускаемых машин. М.: ВНИИНМАШ, 1983. -24 с.

54. Касьянов В.Е. и др. МС-248-88. Надежность в технике. Методы расчета показателей надежности для моделей «прочность-нагрузка». М.: Издательство стандартов, 1988. - 20 с.

55. Касьянов В.Е. и др. Р 50-109-89. Надежность в технике. Обеспечение надежности изделий. Общие требования. М.: Издательство стандартов, 1989.- 15 с.

56. Касьянов В.Е. и др. РД 50-576-85. Методические указания. Надежность в технике. Установление норм показателей надежности изделий. Основные положения. М.: Издательство стандартов, 1985. - 22 с.

57. Касьянов В.Е. Интегральная оценка, повышение и оптимизация надежности машин (на примере одноковшового экскаватора) // Вестник машиностроения. 1990. - №4. - С. 7-8.

58. Касьянов В.Е. Принципы создания практически безотказных" машин. //Стандарты и качество. 1988. - №7. - С. 39-42.

59. Касьянов В.Е. Системное обеспечение надежности машин, применяемых в мелиоративном строительстве: Автореф. дис. . д-ра техн. наук. Ростов-на-Дону.-1991.-48 с.

60. Касьянов В.Е., Аннабердиев А. Х.-М. Определение статистического распределения действующих напряжений при нестационарном нагружении деталей одноковшовых экскаваторов. Деп. в ЦНИИТЭСТРОЙМАШ №51сд-85Деп., 20.04.85.

61. Касьянов В.Е., Кузьменко A.B. Определение плотности распределения отказов для машин. Деп в ВИНИТИ 8.04.04, №585.

62. Касьянов В.Е., Кузьменко A.B., Ямоков С.Г. Аналитический метод определения параметров распределения Вейбулла для совокупностиконечного объема действующих напряжений в деталях машин. Деп в ВИНИТИ № в 2006.

63. Касьянов В.Е., Прянишникова Л.И., Дудникова В.В., Кузьменко A.B. Определение параметров распределения Вейбулла для совокупности конечного объема по выборке прочностных характеристик сталей Деп в ВИНИТИ № 389 в 2004.

64. Касьянов В.Е., Прянишникова Л.И., Роговенко Т.Н., Дудникова В.В. Определение гамма процентного значения гипотетическогораспределения выборочных сдвигов для прочностных характеристик сталей // Деп. в ВИНИТИ №1411, 17.07.03.

65. Касьянов В.Е., Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса рамы машины // Вестник машиностроения. 1999. -№6. -С. 10-12.

66. Касьянов В.Е., Роговенко Т.Н. Выбор показателя степени кривой усталости в сверхмногоцикловой области/ Рост. гос. акад. стр-ва. Ростов н/Д, 1993. -8 с. - Деп. в ВИНИТИ №1594 - В95 от 31.05.95.

67. Касьянов В.Е., Роговенко Т.Н. Статистическая оценка прочности сталей с помощью полинома. //Надежность и контроль качества. 1996. - №8. - С. 28-36

68. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В. Анализ методов расчета усталостного ресурса деталей машин. / Деп. в ВИНИТИ № 827, 28.04.03.

69. Касьянов В.Е., Роговенко Т.Н., Дудникова В.В, Кузьменко A.B. Определение средневзвешенных напряжений в деталях машин при переменных напряжениях. Деп. в ВИНИТИ 12.05.03, № 910.

70. Касьянов В.Е., Роговенко Т.Н., Кинсфатор A.A. Статистическая оценка механических характеристик сталей с помощью полинома рациональных степеней. Деп. ВИНИТИ №835 В00 в 2000.

71. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Анализ методов расчета минимального ресурса деталей машин // Деп. в ВИНИТИ №3002-В99, 8.07.99.

72. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение корреляционной связи параметров функции распределения генеральной совокупности конечного объема деталей и выборочных распределений // Деп. в ВИНИТИ №3038-В99, 11.10.99.

73. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение минимальных значений прочности деталей машин. // Методы менеджмента качества, 2001, № 12, с. 38-41.

74. Касьянов В.Е., Роговенко Т.Н., Топилин И.В. Определение связи между минимальными значениями ресурса деталей для генеральной совокупности конечного объема и выборки. Деп. в ВИНИТИ №611-В99, 26.02.99.

75. Касьянов В.Е., Роговенко Т.Н., Щулькин Л.П. Основы теории и практики создания надежных машин. // Вестник машиностроения, 2003, № 10, с. 3-6.

76. Касьянов В.Е., Топилин И.В. Определение функции распределения средневзвешенных напряжений по амплитудным значениям напряжений для расчета усталостного ресурса деталей методом Монте-Карло. Деп в ВИИТИ №364-В99,13.02.99.

77. Касьянов В.Е., Щулькин Л.П. Теоретические основы системного обеспечения надежности строительных машин // Известия высших учебных заведений «Строительство », 2001. №7. - 90-96.

78. Когаев В.П. Определение надежности механических систем по условию прочности. М.: Знание, 1976. - 48 с.

79. Когаев В.П. Расчеты на прочность при нагружениях переменных во времени. М.: Машиностроение, 1977. - 233 с.

80. Когаев В.П., Бойцов Б.В.Рассеивание пределов выносливости деталей машин в связи с конструктивными и технологическими факторами. // Надежность и контроль качества, 1969. № 10. - С. 53-66.

81. Когаев В.П., Махутов H.A., Гусенков А.П. Расчеты деталей машин и конструкций на прочность и долговечность. М.: Машиностроение. 1985. - 224 с.

82. Когаев В.П., Петрова И.М. Расчет функции распределения ресурса деталей машин методом статистических испытаний //Вестник машиностроения. 1981. -№ 1.-С. 9-11.

83. Колокольцев В.А., Волжнов Е.Д. О расчете ресурса и сопротивлении усталости деталей машин при нерегулярных стационарных режимах нагружения // Вестник машиностроения. 1995. - №11. - С. 23-27.

84. Коновалов JI.B. Нагруженность , усталость, надежность ■ деталей металлургических машин. М.: Машиностроение. 1981. - 256 с.

85. Косов В.П., Сиделев В.И., Каменев M.JI., Морозов В.М. Методика определения надежности картофелеуборочных комбайнов // Тракторы и сельскохозяйственные машины. 1986. - №3. - С. 33-34.

86. Крамер Г. Математические методы статистики. М.: Мир, 1975. - 648 с.

87. Кугель Р.В. Надежность машин массового производства. М.: Машиностроение, 1981. 244 с.

88. Левицкий C.B. Исследование виброэффекта упругой подвески рабочих органов скоростного лапового культиватора с целью снижения тягового сопротивления. Диссертация на соискание ученой степени канд. техн. наук. Ростов-на-Дону, РИСХМ, 1980.

89. Лукинский B.C., Зайцев E.H. Прогнозирование надежности автомобилей. -Л.: Политехника, 1991. 224 с.

90. Марковец М.П. определение механических свойств металлов по твердости. -М.: Машиностроение, 1979. 191 с.

91. Методика испытаний пружинных стоек. Порядок проведения H 043.14.514. Ростов-на-Дону,ЗАО «Красный Аксай » (В.И. Гасилин , В.Г. Торгало), 2005 г. с.5.

92. Методы оценки конструктивной прочности машин (Грошев Л.М., Спиченко В.В., Андросов A.A. и др.) Учебное пособие. Ростов-на-Дону.: Издательский центр ДГТУ. 1997. 163 с.

93. Миркитанов В.И., Журавель А.И., Почтенный Е.К., Щурик К.В. Расчетно-экспериментальная оценка долговечности несущих систем// тракторы и сельскохозяйственные машины. 1988. № 7. - С. 44-45.

94. Михлин В.М. Управление надежностью сельскохозяйственной техники. -М.: Колос, 1984.-335 с.

95. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет: B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 5.: Проектный анализ надежности / Под ред. В.И. Патрушева и А.И. Рембезы. -316с.

96. Надежность и эффективность в технике: Справочник: Ют. / Ред. Совет:

97. B.C. Авдуевский (пред) и др. М.: Машиностроение, 1988. - Т. 6: Экспериментальная отработка и испытания / Под. Общ. Ред. P.C. Судакова , О.И. Тескина. - 376 с.

98. Нахатакян Р.Х., Клятис JI.M., Карпов Л.И. Прогнозирование надежности новых машин по результатам приемочных испытаний // Тракторы и сельскохозяйственные машины. 1991. - №11. - С. 30-32.

99. Оболенский Е.П., Сахаров Б.И., Стрекозов Н.П. Прочность агрегатов оборудования и элементов систем жизнеобеспечения летательных аппаратов. М.: Машиностроение, 1989. - 248 с.

100. Оськин C.B. Технико-экономическая оценка эффективности эксплуатации оборудования //Механизация и электрификация социалистического сельского хозяйства, 2006. № 1. - С. 2-3.

101. Почтенный Е.К., Капуста П.П. Вероятностные диаграммы многоцикловой усталости деталей машин. //Вестник машиностроения, 1993. № 12.1. C. 5-7.

102. Прянишникова Л.И., Прянишников A.B., Дудникова В.В. Аналитическое определение у процентного минимального значения для совокупности конечного объема по выборочным данным (случай средней гарантии) //Деп. в ВИНИТИ, № 1852 - в 2003.

103. Решетов Д.Н., Иванов A.C., Фадеев В.З. Надежность машин. М.: Высшая школа. - 1988.-238 с.

104. Роговенко Т.Н. Вероятностно-статистическая оценка гамма-процентного ресурса ответственных деталей машин: Автореф. дис. канд. техн. наук. -Ростов-на-Дону, -1995. 24 с.

105. Роговенко Т.Н. Методы определения минимального значения прочности сталей для некоторых выборок // Рост. гос. акад. стр.-ва. Ростов-на-Дону, 1993. - 8 с. - Деп. В ВИНИТИ № 1593 - В95 от 31.05.95.

106. Ротенберг Р.В. Основы надежности системы водитель-автомобиль-дорога-среда. М.: Машиностроение, 1986. - 216 с.

107. Ряхин В.А. Нагруженность металлоконструкций строительных и дорожных машин циклического действия при оценке живучести // Строительные и дорожные машины. 1995. - №11. - С. 23-25.

108. Самойлов Д.Н., Ахтариев М.Р. Прогнозирование технического состояния автомобилей // Механизация и электрификация социалистического сельского хозяйства, 2006. № 7. - С. 30-31.

109. Седов Л.И. Механика сплошной среды. М.: Наука, 1976. Т. 1. - 536 е., Т. 2.-576 с.

110. Секулович М. Метод конечных элементов.-М.:Стройиздат,1993. 664 с.

111. ПЗ.Серенсен C.B., Когаев В.П., Шнейдерович P.M. Несущая способность ирасчет деталей машин на прочность. М.: Машиностроение, 1975. ~ 488 с.

112. Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука, 1969.- 512 с.

113. Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1973. - 280 с.

114. Соколов С.А. Вероятностные основы расчета ресурса металлических конструкций по методу предельных состояний // Проблемы машиностроения и надежности машин. 1997. - №4. - С. 105-111.

115. Соколовский В.В. Теория пластичности. М.: Высшая школа, 1969.-608 с.

116. Сопротивление материалов. Под ред. Писаренко Г.С. , Киев: Выща школа, 1979.-693 с.

117. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. М.: Гиле, 1969. 200 с.

118. Тензометрия в машиностроении. Справочное пособие. Под. Ред. канд. техн. наук P.A. Макарова. М.: Машиностроение, 1975. 288 с.

119. Ткаченко В.А., Львов Б.В., Стопалов С.Г. О показателях безотказности и долговечности высоконадежных изделий // Тракторы и сельскохозяйственные машины. 1991. - №1. - С. 43-45.

120. Топилин И.В. Определение связи между значениями ресурса для генеральной совокупности конечного объема и выборки / Известия РГСУ : Сб. ст. Ростов-на-Дону: РГСУ. - 1999. - №4. - с. 237 - 238.

121. Уилкс С. Математическая статистика. Перевод с англ. Наука, 1967. -632 с.

122. Федосов В.В., Шабанов Б.М. Оценка надежности несущих конструкций грейферных погрузчиков //ДГТУ. Ростов- на-Дону, 1993. С. 54-59.

123. Форрест П. Усталость металлов. Перевод с англ. Под ред. Академика АН УССР С.В. Серенсена. М. «Машиностроение ». 1968.

124. Хазов Б.Ф. Эффективность повышения показателей долговечности машин и комплексов // Строительные и дорожные машины. 1990. - №7. - С. 2224.

125. Хазов Б.Ф. Эффективность функционирования и надежность машин ремонтируемого класса // Вестник машиностроения. 1988.- №12.-С. 1821.

126. Халфин М.А. Управление надежностью машин в эксплуатации// Механизация и электрификация социалистического сельского хозяйства, 1982.-№ 1.-С. 46-52.

127. Хейвуд Р.Б. Проектирование с учетом усталости. М.: Машиностроение, 1969.-504 с.

128. Хозяев И.А. Исследование надежности машин для животноводства и кормопроизводства и оптимизация их показателей // Машины и оборудование для животноводства и кормопроизводства: Сб. тр. -ВНИИКОМЖ. М. 1985. - С. 24-30.

129. Хозяев И.А. Основы обеспечения надежности при проектировании производственных линий животноводческих ферм и комплексов: Учебное пособие /РИСХМ. Ростов-на-Дону, 1984. - 94 с.

130. Храмцов Л.Д, Сорваниди Ю.Г., Карпенко В.Д. Оценка надежности комбайнов «Дон-1500» в эксплуатационных условиях // Тракторы и сельскохозяйственные машины. 1991. - №12. - С. 44-46.

131. Червяков И.В. Математические методы теории надежности и контроль качества // Методы менеджмента качества. 2005. - № 5. С. 37-42.

132. Шевцов В.Г. Основные аспекты повышения конкурентоспособности отечественных сельскохозяйственных тракторов // Тракторы и сельскохозяйственные машины. 1992. - №7. - С.9-16.

133. Шор Я.Б. Статистические методы анализа и контроля качества и надежности. М.: Советское радио, 1962. - 552 с.

134. Dubey S.D. Hyper efficient of the location parameter of the Weibull laws // Naval Research Logistics Quarterly. 1966. - N13. - P.253.

135. Epstein B. Application о the theory extreme values in fracture problems, J. Amer. Statist. Assoc. 1948, v.43, p. 403-412.

136. Fisher R.A., Tippet L.H.C. Limiting forms of the frequency distribution of longest of smallest member of a sample. OCPS, 24 (1928). 180 p.

137. Gumbel E.J. Les valeurs extremes des distributions statistiques, Annales de Г Institute Henri Poincare, 1935. v. 4, Fasc, 2 p 115.

138. Isermann R., Balle P. Trends in the application of model based Fault detection and diagnosis of technical processes. 13th World congress of IFAC. Preprints, Vol. 4, 1996.-P. 1-12.

139. Newton D.W. Reliability Mathematics. In: Reliability Engineering (Ed.: O"Connor PDT), Hemisphere Publishing Corporation, Washington, 1998.

140. Oakland J.S. Total quality management: The route to improving performance. -2nd edition. Butterworth Heinemann Professional Publishing Ltd., Oxford, 1994.

141. Sholtes P. Total quality or performance appraisal: choose one // Nation Prod Rev, 1993. 12. - №3. - P. 349 - 363.

142. Weibull W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951. p. 293-297.

143. Weibull W. A statistical theory of the strength of materials, Ing. Vetenskaps Akad. Handl, N151.1939.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Повышение надёжности и эффективности системы бюджетирования в компании ТОО «SIKA KAZAKHSTAN»

Предприятия, занимающиеся производством строительных смесей и бетонных добавок, играют важную роль в экономике страны, поскольку выполняют функцию производства и обеспечения государства и промышленных организаций ресурсами для всего строительства, необходимыми для их нормального функционирования. Если в Казахстане в последние 5 лет наблюдается снижение индекса строительства на 2-3%, то Алматинская область демонстрирует устойчивые темпы роста производства, сухих и жидких смесей бетонных добавок: индекс в 2014 г. по отношению к 2013 г. составил 103%. Вероятно, рост обусловлен, главным образом, увеличением цены на производимые и импортируемые товары. В сущности, изношенность основных фондов, недостаточность ресурсов и использование устаревших технологий производства позволяют говорить о кризисном состоянии мощностей, занимающихся производством сухих и жидких смесей Алматинской области.

С конца 2012 года, а именно с момента образования ТОО “Sika Kazakhstan» ситуация стала меняться в лучшую сторону, но о полном решении всех проблем говорить рано.

Существуют и специфические особенности в функционировании этих предприятий: сезонный характер доходов при реализации некоторых видов продукции (сторительства) при условно-постоянном характере затрат; необходимость учета величины пиковой нагрузки оборудования; наличие определенных категорий компании, имеющих льготы по оплате за задолженности, компенсации по которым происходят с отставанием во времени.

Естественно, что эта специфика присуща и ТОО «Sika Kazakhstan».

В настоящее время следует признать, что высший менеджмент признаёт необходимость повышения надёжности и эффективности существующей системы бюджетирования в ТОО «Sika Kazakhstan». Таким образом, первый шаг в совершенствовании данной системы был сделан.

Решение вопроса, каким путём реформировать систему, назрело по ходу деятельности: стало ясно - дальнейшее функционирование системы бюджетирования на основе системы таблиц MS Excel недопустимо из-за существенных недостатков данного подхода. Было принято решение провести автоматизацию данного процесса.

Автоматизация потребует много времени и ресурсов, но ожидается, что эффект от внедрения программных продуктов перекроет все затраты.

Автоматизация системы бюджетирования позволит четко и формализованно определить основные факторы, характеризующие результаты деятельности, их детализацию для каждого уровня управления и конкретные задачи для руководителей структурных подразделений, обеспечивающих их выполнение.

Автоматизация бюджетирования, сможет обеспечить лучшую координацию хозяйственной деятельности, повысить управляемость и адаптивность предприятий, занимающихся производством и перепродажи, к изменениям во внутренней и внешней среде. Она способна снизить возможность злоупотреблений и ошибок в системе планирования, обеспечить взаимосвязь различных аспектов хозяйственной деятельности, сформировать единое видение планов предприятия и возникающих в процессе их осуществления проблем, обеспечить более ответственный подход специалистов к принятию решений и лучшую мотивацию их деятельности.

Для постановки системы бюджетирования необходимым элементом является наличие на предприятии основных внутренних регламентирующих организационно-распорядительных документов и формализованных процессов управления (правил, описание процедур и т.д.). Необходимость регламентации вызвана тем, что формирование информации о производстве как бы повторяет ход самого производственного процесса и предопределено движением материальных ресурсов по стадиям технологического процесса и нарастанием трудовых затрат по мере обработки исходных материалов. Организационная структура предприятия фактически обеспечивает согласованность отдельных видов хозяйственной деятельности предприятия по выполнению основных задач и целей. Поэтому организационная и производственная структура предприятия, его внутрихозяйственный механизм являются базисом при реформировании планирования и внедрении автоматизированного бюджетирования .

Это было принято во внимание менеджментом ТОО «Sika Kazakhstan» и в настоящее время уже осуществляются процедуры по разработке и согласованию регламента для автоматизированной системы бюджетирования, который придёт на смену существующему.

Преимущества автоматизации системы бюджетирования заключаются в следующем :

  • 1. Значительно повышается качество работы по реализации стратегии, так как стратегические цели формализованы и доведены до каждого отдела.
  • 2. Появляется возможность более объективной оценки вклада каждого ЦФО за счет обоснованности планов и стимулирования их четкого выполнения.
  • 3. Автоматизированная система бюджетирования обеспечивает произведение оценки эффективности разработанных мероприятий на протяжении всего управленческого цикла бюджетирования.

Таким образом, руководство компании стоит на верном пути, отдавая предпочтение стратегии реагирования на вызовы времени. Принимаемые меры позволят в будущем компании достигать стратегические цели и развивать бизнес. Но весьма важно не «сбиться» с намеченного пути, а это в процессе решения такой задачи как повышение надёжности и эффективности системы бюджетирования компании, очень вероятно.

Для недопущения просчётов менеджменту компании следует расширить своё сотрудничество с более широким кругом фирм, предлагающих услуги по автоматизации систем бюджетирования, чтобы иметь возможность выбора наиболее оптимального варианта платформы.

Кроме этого, было бы целесообразным привлечение независимых специалистов в качестве консультантов при выборе системы, учитывающей специфику деятельности ТОО «Sika Kazakhstan».

В целом, принимаемые в компании меры позволят реализовать намеченные цели. Но при игнорировании вышеуказанных аспектов вектор процесса может сместиться, что всё же не позволит получить полную отдачу от внедрённой системы.



Поделиться