Прежде всего использование научных подходов. Основные научные подходы к определению понятия компетентности

Специальная теория относительности (СТО) физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности СТО проявляются при больших (сравнимых со скоростью света) скоростях. Законы классической механики в этом случае не работают. Причина этого заключается в том, что передача взаимодействий происходит не мгновенно, а с конечной скоростью (скоростью света).

Классическая механика является частным случаем СТО при небольших скоростях. Явления, описываемые СТО и противоречащие законам классической физики, называют релятивистскими . Согласно СТО одновременность событий, расстояния и промежутки времени являются относительными.

В любых инерциальных системах отсчета при одинаковых условиях все механические явления протекают одинаково (принцип относительности Галилея). В классической механике измерение времени и расстояний в двух системах отсчета и сравнение этих величин считаются очевидными. В СТО это не так.

События являются одновременными , если они происходят при одинаковых показаниях синхронизированных часов. Два события, одновременные в одной инерциальной системе отсчета, не являются одновременными в другой инерциальной системе отсчета.

В 1905 г. Эйнштейн создал специальную теорию относительности (СТО). В основе его теории относительности лежат два постулата:

  • Любые физические явления во всех инерциальных системах отсчета при одинаковых условиях протекают одинаково (принцип относительности Эйнштейна).
  • Скорость света в вакууме во всех инерциальных системах отсчета одинакова и не зависит от скорости источника и приемника света (принцип постоянства скорости света).

Первый постулат распространяет принцип относительности на все явления, включая электромагнитные. Проблема применимости принципа относительности возникла с открытием электромагнитных волн и электромагнитной природы света. Постоянство скорости света приводит к несоответствию с законом сложения скоростей классической механики. По мысли Эйнштейна, изменения характера взаимодействия при смене системы отсчета не должно происходить. Первый постулат Эйнштейна непосредственно вытекает из опыта Майкельсона–Морли, доказавшего отсутствие в природе абсолютной системы отсчета. В этом опыте измерялась скорость света в зависимости от скорости движения приемника света. Из результатов этого опыта следует и второй постулат Эйнштейна о постоянстве скорости света в вакууме, который вступает в противоречие с первым постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и правило сложения скоростей. Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

Следствия из постулатов СТО

Если проводить сравнение расстояний и показаний часов в разных системах отсчета с помощью световых сигналов, то можно показать, что расстояние между двумя точками и длительность интервала времени между двумя событиями зависят от выбора системы отсчета.

Относительность расстояний:

где ​\(I_0 \) ​ – длина тела в системе отсчета, относительно которой тело покоится, ​\(l \) ​ – длина тела в системе отсчета, относительно которой тело движется, ​\(v \) ​ – скорость тела.

Это означает, что линейный размер движущегося относительно инерциальной системы отсчета уменьшается в направлении движения.

Относительность промежутков времени:

где ​\(\tau_0 \) ​ – промежуток времени между двумя событиями, происходящими в одной точке инерциальной системы отсчета, ​\(\tau \) ​ – промежуток времени между этими же событиями в движущейся со скоростью ​\(v \) ​ системе отсчета.

Это означает, что часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями (замедление времени).

Закон сложения скоростей в СТО записывается так:

где ​\(v \) ​ – скорость тела относительно неподвижной системы отсчета, ​\(v’ \) ​ – скорость тела относительно подвижной системы отсчета, ​\(u \) ​ – скорость подвижной системы отсчета относительно неподвижной, ​\(c \) ​ – скорость света.

При скоростях движения, много меньших скорости света, релятивистский закон сложения скоростей переходит в классический, а длина тела и интервал времени становятся одинаковыми в неподвижной и движущейся системах отсчета (принцип соответствия).

Для описания процессов в микромире классический закон сложения неприменим, а релятивистский закон сложения скоростей работает.

Полная энергия

Полная энергия ​\(E \) ​ тела в состоянии движения называется релятивистской энергией тела:

Полная энергия, масса и импульс тела связаны друг с другом – они не могут меняться независимо.

Закон пропорциональности массы и энергии – один из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами.

Важно!
Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи.

Энергия покоя

Наименьшей энергией ​\(E_0 \) ​ тело обладает в системе отсчета, относительно которой оно покоится. Эта энергия называется энергией покоя :

Энергия покоя является внутренней энергией тела.

В СТО масса системы взаимодействующих тел не равна сумме масс тел, входящих в систему. Разность суммы масс свободных тел и массы системы взаимодействующих тел называется дефектом масс – ​\(\Delta m \) ​. Дефект масс положителен, если тела притягиваются друг к другу. Изменение собственной энергии системы, т. е. при любых взаимодействиях этих тел внутри нее, равно произведению дефекта масс на квадрат скорости света в вакууме:

Экспериментальное подтверждение связи массы с энергией было получено при сравнении энергии, высвобождающейся при радиоактивном распаде, с разностью масс исходного ядра и конечных продуктов.

Это утверждение имеет разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на \(\Delta m \) , то при этом должна выделиться энергия ​\(\Delta E=\Delta m\cdot c^2 \) ​.

Кинетическая энергия тела (частицы) равна:

Важно!
В классической механике энергия покоя равна нулю.

Релятивистский импульс

Релятивистским импульсом тела называется физическая величина, равная:

где ​\(E \) ​ – релятивистская энергия тела.

Для тела массой ​\(m \) ​ можно использовать формулу:

В экспериментах по исследованию взаимодействий элементарных частиц, движущихся со скоростями, близкими к скорости света, подтвердилось предсказание теории относительности о сохранении релятивистского импульса при любых взаимодействиях.

Важно!
Закон сохранения релятивистского импульса является фундаментальным законом природы.

Классический закон сохранения импульса является частным случаем универсального закона сохранения релятивистского импульса.

Полная энергия ​\(E \) ​ релятивистской частицы, энергия покоя ​\(E_0 \) ​ и импульс ​\(p \) ​ связаны соотношением:

Из него следует, что для частиц с массой покоя, равной нулю, ​\(E_0 \) ​ = 0 и ​\(E=pc \) ​.

Вы сидите лицом по ходу движению звездолета и смотрите на лампочку, которая находится в его носовой части. Свет от лампочки, не обращая внимания на ее движение, перемещается относительно звезд со скоростью С = 300 000 км/с. Вы движетесь навстречу свету со скоростью , стало быть, относительно вас свет должен иметь скорость

Вы измеряете эту скорость, сопоставляете ее с известным значением С и приходите к выводу, что двигаетесь со скоростью 50 000 км/с, таким образом, электромагнитные явления вроде бы позволяют отличить покой от равномерного прямолинейного движения. То есть получается парадокс: с одной стороны скорость света 300 000 км/с не должна зависеть от того, движется или покоится источник света, с другой стороны, согласно классическому закону сложения скоростей, она должна зависеть от выбора системы отсчета.

Выходы предлагались разные, одно из мнений, сторонником, которого был Лоренц, гласило: инерциальные системы отсчета, равноправные в механических явлениях, не являются равноправными в законах электродинамики.

То есть в электродинамике существует некая привилегированная, главная, абсолютная система отсчета, которую ученые связывали с так называемым эфиром.

Проверить справедливость наличия системы отсчета, связанной с эфиром, и наличие собственно этого эфира попытались американские ученые Майкельсон и Морли. Они проверяли, существует ли так называемая абсолютная система отсчета, связанная с эфиром, и движущиеся относительно нее все остальные системы отсчета, то есть так называемый эфирный ветер, которые могли влиять на величину скорости света. И, как вы только что убедились, никакого эфирного ветра не существует. Физика того времени столкнулась с неразрешимым парадоксом: что же справедливо - классическая механика, электродинамика Максвелла или что-то другое.

На момент публикации своей работы Альберт Эйнштейн не был признанным мировым ученым, идеи, которые он высказал, казались настолько революционными, что в первое время у них практически не было сторонников. Тем не менее огромное количество экспериментов и измерений, которые были проведены после этого, показали справедливость точки зрения Альберта Эйнштейна.

Сформулируем еще раз проблемы, с которыми столкнулась физика того времени и поговорим о тех решениях, которые предложил Эйнштейн.

Не удается обнаружить привилегированную систему отсчета, связанную с неподвижным мировым эфиром.

Значит, ее нет вовсе, нет этой привилегированной абсолютной системы отсчета? Альберт Эйнштейн расширил действие принципа Галилея в механике на всю физику, и так получился принцип относительности от Эйнштейна: всякое физическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчета .

То есть не всякое механическое явление, а любое физическое явление.

Следующая трудность: электродинамика противоречит механике в том, что уравнения Максвелла не инвариантны относительно преобразований Галилея, то есть это как раз та трудность, связанная со скоростью света.

Может, Максвелл неправ? Ничего подобного, электродинамика Максвелла вполне справедлива. Значит, все остальные области физики несправедливы, неверны преобразования Галилея, которые связывают эти части физики? Ведь из них вытекает классический закон сложения скоростей, который мы используем при решении задач, таких как: поезд едет со скоростью 40 км/ч, а пассажир идет по вагону со скоростью 5 км/ч и относительно наблюдателя на земле, этот пассажир будет двигаться со скоростью 45 км/ч (рис. 2).

Рис. 2. Пример классического сложения скоростей ()

Эйнштейн фактически заявляет: раз преобразования Галилея несправедливы, то и этот закон сложения скоростей несправедлив. Полный слом устоев, абсолютно очевидный жизненный пример, абсолютно очевидный жизненный закон оказывается несправедливым, в чем же здесь проблема? Проблема глубоко внутри тех основ классической механики, которые закладывались еще Ньютоном. Оказывается, что главная проблема классической механики состоит в том, что предполагается, что все взаимодействия в рамках механики распространяются мгновенно. Рассмотрим, например, гравитационное притяжение тел.

Если сместить одно из тел в сторону, то, согласно закону всемирного тяготения, второе тело почувствует этот факт мгновенно, как только изменится расстояние от него до первого тела, то есть взаимодействие передается с бесконечной скоростью. В реальности механизм взаимодействия состоит в следующем: изменение положения первого тела меняет гравитационное поле вокруг него. Это изменение поля начинает бежать с какой-то скоростью во все точки пространства, и, когда достигает точки, в которой находится второе тело, соответствующим образом изменяется и взаимодействие первого и второго тел. То есть скорость распространения взаимодействия обладает какой-то конечной величиной. Но если взаимодействия передаются с какой-то конечной скоростью, значит, в природе должна существовать какая-то предельно допустимая скорость распространения этих взаимодействий, максимальная скорость, с которой взаимодействие может передаваться. Об этом гласит второй постулат, который отводит исключительную роль скорости света, принцип инвариантности скорости света: в каждой инерциальной системе отсчета свет движется в вакууме с одной и той же скоростью. Величина этой скорости не зависит от того, покоится или движется источник света .

Таким образом, описанный выше пример с лампочкой в звездолете в реальности нам провести не удастся, это будет противоречить этому постулату теории Эйнштейна. Скорость света относительно наблюдателя в звездолете будет равна С, а не С +V, как мы говорили до этого, и наблюдатель не сможет заметить факт движения звездолета. Классический закон сложения скоростей применительно скорости света не работает, как это ни странно для нас, но скорость света для наблюдателя на Земле и для космонавта будет совершенно одинаковой и равной 300 000 км/с. Именно это положение лежит в основе теории относительности и было вполне успешно доказано огромным количеством экспериментов.

Механика, которая была построена на основании этих двух постулатов, носит название релятивистской механики (от английского relativity - «относительность»). Может показаться, что релятивистская механика отменяет классическую механику Ньютона, поскольку в ее основе лежат другие постулаты, но дело в том, что классическая механика Ньютона - это частный случай релятивистской механики Эйнштейна, который проявляется при скоростях, значительно меньших, чем скорость света. В окружающем нас мире мы и живем в таких скоростях, скорости, с которыми мы сталкиваемся, гораздо меньше скорости света. Поэтому для описания нашей жизни достаточно классической механики Ньютона.

Для небольших скоростей, значительно меньших скорости света, мы вполне успешно пользуемся классической механикой, если же мы работаем со скоростями, близкими к скорости света, или хотим большой точности в описании явлений - мы должны пользоваться специальной теорией относительности, то есть релятивистской механикой.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Pppa.ru ().
  2. Sfiz.ru ().
  3. Eduspb.com ().

Домашнее задание

  1. Дать определение принципу относительности Эйнштейна.
  2. Дать определение принципу относительности Галилея.
  3. Дать определение принципу инвариантности Эйнштейна.

Специальная теория относительности Эйнштейна (СТО) расширяет границы классической ньютоновской физики, действующей в области нерелятивистских скоростей, малых по сравнению со скоростью света с, на любые, в том числе релятивистские, т.е. сравнимые с с, скорости. Все результаты релятивистской теории при переходят в результаты классической нерелятивистской физики (принцип соответствия).

Постулаты СТО. Специальная теория относительности опирается на два постулата:

Первый постулат (принцип относительности Эйнштейна): все физические законы - как механические, так и электромагнитные - имеют одинаковый вид во всех инерциальных системах отсчета (ИСО). Иными словами, никакими опытами нельзя выделить какую-то одну систему отсчета и назвать именно ее покоящейся. Этот постулат является расширением принципа относительности Галилея (см. разд. 1.3) на электромагнитные процессы.

Второй постулат Эйнштейна: скорость света в вакууме одинакова для всех ИСО и равна с Этот постулат содержит сразу два утверждения:

а) скорость света не зависит от скорости источника,

б) скорость света не зависит от того, в какой ИСО находится наблюдатель с приборами, т.е. не зависит от скорости приемника.

Постоянство скорости света и независимость ее от движения источника следуют из уравнений электромагнитного поля Максвелла. Казалось очевидным, что такое утверждение может быть верным только в одной системе отсчета. С точки зрения классических представлений о пространстве - времени, любой другой наблюдатель, двигаясь со скоростью должен для встречного луча получить скорость а для испущенного вперед луча - скорость . Такой результат означал бы, что уравнения Максвелла выполняются только в одной ИСО, заполненной неподвижным «эфиром, относительно которого и распространяются световые волны. Однако попытка обнаружить изменение скорости света, связанное с движением Земли относительно эфира, дала отрицательный результат (опыт Майкельсона- Морли). Эйнштейн предположил, что уравнения Максвелла, как и все законы физики, имеют один и тот же вид во всех ИСО, т.е. что скорость света в любой ИСО равна с (второй постулат). Это предположение привело к пересмотру основных представлений о пространстве - времени.

Преобразования Лоренца. Преобразования Лоренца связывают между собой координаты и время события, измеренные в двух ИСО, одна из которых движется относительно другой с постоянной скоростью V. При таком же выборе осей координат и отсчета времени, как в преобразованиях Галилея (формула (7)), преобразования Лоренца имеют вид:

Часто удобно пользоваться преобразованиями для разности координат и времен двух событий:

где для краткости введено обозначение

Преобразования Лоренца переходят в преобразования Галилея при . Они выводятся из второго постулата СТО и из требования линейности преобразований, выражающего условие однородности пространства. Обратные преобразования из в К можно получить из (42), (43) заменой V на -V:

Сокращение длины. Длина движущегося отрезка определяется как расстояние между точками, где концы отрезка находились одновременно (т.е. Рассмотрим твердое тело, которое движется поступательно со скоростью и свяжем с ним систему отсчета Из уравнения (43) (в котором надо положить получим, что продольные размеры движущегося тела сокращаются:

где - собственный продольный размер, т.е. измеренный в системе отсчета К, в которой тело неподвижно. Поперечные размеры движущегося тела не изменяются.

Пример 1. Если квадрат движется со скоростью вдоль одной из своих сторон, то он превращается в прямоугольник с углом между диагоналями, равным .

Относительность хода времени. Из преобразований Лоренца видно, что время протекает по-разному в разных ИСО. В частности, события, происходящие в системе К одновременно но

в разных точках пространства, в К могут быть не одновременными: может быть как положительным, так и отрицательным (относительность одновременности). Часы, движущиеся вместе с системой отсчета (т.е. неподвижные относительно или показывают собственное время этой ИСО. С точки зрения наблюдателя в системе А, эти часы отстают от его собственных (замедление хода времени). Рассматривая два отсчета движущихся часов как два события, из (45) получим:

где - собственное время движущихся часов (точнее, связанной с ними Равноправие всех ИСО проявляется в том, что с точки зрения наблюдателя К часы, неподвижные относительно , будут отставать от его собственных. (Заметим, что для контроля за движущимися часами неподвижный наблюдатель в разные моменты времени использует разные часы.) Парадокс близнецов заключается в том, что СТО предсказывает различие в возрасте двух близнецов, один из которых оставался на Земле, а другой путешествовал в глубоком космосе (космонавт будет моложе); казалось бы, это нарушает равноправие их систем отсчета. На самом деле, только земной близнец все время находился в одной ИСО, космонавт же поменял ИСО для возвращения на Землю (его же собственная система отсчета неинерциальна).

Пример 2. Среднее собственное время жизни нестабильного мюона , т.е. Благодаря эффекту замедления времени, с точки зрения земного наблюдателя космический мюон, летящий со скоростью близкой к скорости света (7 1), живет в среднем пролетает от места рождения в верхних слоях атмосферы расстояние порядка что позволяет регистрировать его на поверхности Земли.

Сложение скоростей в СТО. Если частица движется со скоростью относительно то ее скорость относительно К можно найти, выразив из (45) и подставив в

При с происходит переход к нерелятивистскому закону сложения скоростей (формула Важное свойство формулы (48) состоит в том, что если V и меньше с, то и будет меньше с. Например, если мы разгоним частицу до а затем, перейдя в ее систему отсчета, снова разгоним ее до то результирующая скорость окажется не Видно, что превзойти скорость света не удается. Скорость света является максимально возможной скоростью передачи взаимодействий в природе.

Интервал. Причинность. Преобразования Лоренца не сохраняют ни величину интервала времени, ни длину пространственного отрезка. Однако можно показать, что при преобразованиях Лоренца сохраняется величина

где называется интервалом между событиями 1 и 2 . Если то интервал между событиями называют времениподобным, так как в этом случае существует ИСО, в которой т.е. события происходят в одном месте, но в разное время. Такие события могут быть причинно связанными. Если, наоборот, то интервал между событиями называют пространственно-подобным, так как в этом случае существует ИСО, в которой т.е. события происходят одновременно в разных точках пространства. Между такими событиями не может существовать причинной связи. Условие означает, что луч света, испущенный в момент более раннего события (например, из точки не успевает достигнуть точки к моменту времени События, отделенные от события 1 времениподобным интервалом, представляют по отношению к нему или абсолютное прошлое или абсолютное будущее порядок следования этих событий одинаковый во всех ИСО. Порядок следования событий, отделенных пространственноподобным интервалом, может быть разным в разных ИСО.

Лоренцовы 4-векторы. Четверка величин которые при переходе из системы К в систему К преобразуются так же, как т.е. (см. (42)):

называется лоренцовым четырехмерным вектором (или, коротко, лоренцовым -вектором). Величины называются пространственными компонентами -вектора, - его временной компонентой. Сумма двух -векторов и произведение -вектора на число - тоже -векторы. При изменении ИСО сохраняется величина, аналогичная интервалу: а также скалярное произведение Физическое равенство, записанное в виде равенства двух -векторов, остается верным во всех ИСО.

Импульс и энергия в СТО. Компоненты скорости преобразуются не так, как компоненты 4-вектора (сравните уравнения (48) и (50)), потому что в выражении преобразуются как числитель, так и знаменатель. Поэтому величина соответствующая классическому определению импульса, не может сохраняться во

всех ИСО. Релятивистский -вектор импульса определяют как

где - бесконечно малое изменение собственного времени частицы (см. (47)), т.е. измеренное в ИСО, скорость которой равна скорости частицы в данный момент не зависит от того, из какой ИСО мы наблюдаем за частицей.) Пространственные компоненты -вектора образуют релятивистский импульс

а временная компонента оказывается равной где Е - релятивистская энергия частицы:

Релятивистская энергия включает в себя все виды внутренней энергии.

Пример 3. Пусть энергия покоящегося тела увеличилась на Найти импульс этого тела в системе отсчета, движущейся со скоростью .

Решение. В соответствии с формулами релятивистского преобразования (54) импульс равен Видно, что увеличение массы соответствует формуле (58).

Основной закон релятивистской динамики. Приложенная к частице сила равна, как и в классической механике, производной от импульса:

но релятивистский импульс (51) отличается от классического. Под действием приложенной силы импульс может неограниченно возрастать, но из определения (51) видно, что скорость будет меньше с. Работа силы (59)

равна изменению релятивистской энергии. Здесь были использованы формулы (см. (56)) и .

Специальная теория относительности, созданная Эйнштейном в 1905 году, по своему основному содержанию может быть названа физическим учением о пространстве и времени. Физическим потому, что свойства пространства и

времени в этой теории рассматриваются в теснейшей связи с законами

совершающихся в них физических явлений. Термин «специальная»

подчеркивает то обстоятельство, что эта теория рассматривает явления только в инерциальных системах отсчета.

Прежде чем перейти к ее изложению, сформулируем основные принципы

ньютоновской механики:

1) Пространство имеет 3 измерения; справедлива евклидова геометрия.

2) Время существует независимо от пространства в том смысле, в котором

независимы три пространственных измерения.

3) Промежутки времени и размеры тел не зависят от системы отсчета

4) Признается справедливость закона инерции Ньютона - Галилея (I закон

5) При переходе от одной ИСО к другой справедливы преобразования Галилея для координат, скоростей и времени.

6) Выполняется принцип относительности Галилея: все инерциальные системы отсчета эквивалентны друг другу в отношении механических явлений.

7) Соблюдается принцип дальнодействия: взаимодействия тел распространяются мгновенно, то есть с бесконечной скоростью.

Эти представления ньютоновской механики вполне соответствовали всей

совокупности экспериментальных данных, имевшихся в то время.

Однако обнаружилось, что в ряде случаев механика Ньютона не работала. Первым подвергся проверке закон сложения скоростей. Принцип относительности Галилея утверждал, что все ИСО эквивалентны по своим механическим свойствам. Но их, наверное, можно отличить по электромагнитным или каким-либо другим свойствам. Например,

можно заняться экспериментами по распространению света. В соответствии с

существовавшей в то время волновой теории существовала некая абсолютная

система отсчета(так называемый «эфир»), в которой скорость света была равна

с. Во всех остальных системах скорость света должна была подчиняться

закону с’ = c - V. Это предположение взялись проверить сначала Майкельсон, а затем и Морли. Целью эксперимента являлось обнаружение « истинного »

движения Земли относительно эфира. Было использовано движение Земли по

орбите со скоростью 30 км в секунду.

время прохождения расстояния SAS

В качестве исходных позиций специальной теории относительности Эйнштейн

принял два постулата, или принципа, в пользу которых говорит весь

экспериментальный материал (и в первую очередь опыт Майкельсона):

1) принцип относительности,

2)независимость скорости света от скорости источника.

Первый постулат представляет собой обобщение принципа относительности

Галилея на любые физические процессы:

все физические явления протекают одинаковым образом во всех инерциальных

системах отсчета; все законы природы и уравнения, их описывающие,

инвариантны, т. е. не меняются, при переходе от одной инерциальной

системы отсчета к другой.

Другими словами, все инерциальные системы отсчета эквивалентны

(неразличимы) по своим , физическим свойствам ; никаким опытом нельзя в

принципе выделить ни одну из них как предпочтительную.

Второй постулат утверждает, что скорость света в вакууме не зависит от

движения источника света и одинакова во всех направлениях .

Это значит, что, скорость света в вакууме одинакова во всех ИСО . Таким

образом, скорость света занимает особое положение в природе. В отличие от

всех других скоростей, меняющихся при переходе от одной системы отсчета к

другой, скорость света в пустоте является инвариантной величиной. Как мы

увидим, наличие такой скорости существенно изменяет представления о

пространстве и времени.

Из постулатов Эйнштейна следует также, что скорость света в вакууме является

предельной : никакой сигнал, никакое воздействие одного тела на другое не

могут распространяться со скоростью, превышающей скорость света в вакууме.

Именно предельный характер этой скорости и объясняет одинаковость

скорости света во всех системах отсчета. В самом деле, согласно принципу

относительности, законы природы должны быть одинаковы во всех

инерциальных системах отсчета. Тот факт, что скорость любого сигнала не

может превышать предельное значение, есть также закон природы.

Следовательно, значение предельной скорости-скорости света в вакууме-

Должно быть одинаково во всех инерциальных системах отсчета: в противном

случае эти системы можно было бы отличить друг от друга.__

Преобразования Лоренца

Пусть нам даны две системы отсчета k и k`. В момент t = О обе эти системы координат совпадают. Пусть система k` (назовем ее подвижной) движется так, что ось х` скользит по оси х, ось у` параллельна оси у, скорость v - скорость движения этой системы координат (рис. 109).

Точка М имеет координаты в системе k - х, у, z, a в системе k` - х`, у`, z`.

Преобразования Галилея в классической механике имеют вид:

Преобразования координат, удовлетворяющие постулатам специальной теории относительности, называются преобразованиями Лоренца.

Впервые они (в несколько иной форме) были предложены Лоренцем для объяснения отрицательного эксперимента Майкельсона-Морли и для придания уравнениям Максвелла одинакового вида во всех инерциальных системах отсчета.

Эйнштейн вывел их независимо на основе своей теории относительности. Подчеркнем, что изменилась (по сравнению с преобразованием Галилея) не только формула преобразования координаты х, но и формула преобразований времени t. Из последней формулы непосредственно видно, как переплетены пространственная и временная координаты.

Следствия из преобразований Лоренца

    Длина движущегося стержня.

Предположим, что стержень расположен вдоль оси х` в системе k` и движется вместе с системой k` со скоростью v .

Разность между координатами конца и начала отрезка в системе отсчета, в которой он неподвижен, называется собственной длиной отрезка . В нашем случае l 0 = х 2 ` - х 1 `, где х 2 ` - координата конца отрезка в системе k` и х/ - координата начала. Относительно системы k стержень движется. Длиной движущегося стержня принимают разность между координатами конца и начала стержня в один и тот же момент времени по часам системы k.

где l - длина движущегося стержня, l 0 - собственная длина стержня. Длина движущегося стержня меньше собственной длины.

    Темп хода движущихся часов.

Пусть в точке х 0 ` движущейся системы координат k` происходит последовательно два события в моменты t/ и t 2 . В неподвижной системе координат k эти события происходят в разных точках в моменты t 1 и t 2 . Интервал времени между этими событиями в движущейся системе координат равен дельта t` = t 2 ` - t 1 `, а в покоящейся дельта t = t 2 - t 1 .

На основании преобразования Лоренца получим:

Интервал времени дельта t` между событиями, измеренный движущимися часами, меньше, чем интервал времени дельта t между теми же событиями, измеренный покоящимися часами. Это означает, что темп хода движущихся часов замедлен относительно неподвижных.

Время, которое измеряется по часам, связанным с движущейся точкой, называется собственным временем этой точки.

    Относительность одновременности.

Из преобразований Лоренца следует, что если в системе k в точке с координатами x 1 и х 2 происходили два события одновременно (t 1 = t 2 = t 0), то в системе k` интервал

понятие одновременности - понятие относительное. События, одновременные в одной системе координат, оказались неодновременными в другой.

    Относительность одновременности и причинность.

Из относительности одновременности следует, что последовательность одних и тех же событий в различных системах координат различна.

Не может ли случиться так, что в одной системе координат причина предшествует следствию, а в другой, наоборот, следствие предшествует причине?

Чтобы причинно-следственная связь между событиями имела объективный характер и не зависела от системы координат, в которой она рассматривается, необходимо, чтобы никакие материальные воздействия, осуществляющие физическую связь событий, происходящих в различных точках, не могли передаваться со скоростью, большей скорости света.

Таким образом, передача физического влияния из одной точки в другую не может происходить со скоростью, большей скорости света. При этом условии причинная связь событий носит абсолютный характер: не существует системы координат, в которой причина и следствие меняются местами.

Интервал между двумя событиями

Все физические законы механики должны быть инвариантными относительно преобразований Лоренца. Условия инвариантности в случае четырехмерного пространства Минковского представляют непосредственный аналог условий инвариантности при повороте системы координат в реальном трехмерном пространстве. Например, интервал в СТО является инвариантом относительно преобразований Лоренца. Рассмотрим это подробнее.

Любые события характеризуются точкой, где оно произошло, имеющей координаты х, у, z и временем t, т.е. каждое событие происходит в четырехмерном пространстве-времени с координатами х, у, z, t.

Если первое событие имеет координаты х 1 , у 1 , z 1 , t 1 , другое с координатами х 2 , у 2 , z 2 , t 2 , то величину

Найдем величину интервала между двумя событиями в любой ИСО.

где t=t 2 - t 1 , x=x 2 - x 1 , у=у 2 - у 1 , z=z 2 - z 1 .

Интервал между событиями в движущейся ИСО К *

(S *) 2 =c 2 (t *) 2 - (x *) 2 - (у *) 2 - (z *) 2 .

Согласно преобразованиям Лоренца , имеем для ИСО К *

; у * =у; z * =z; .

С учетом этого

(S *) 2 =c 2 t 2 - x 2 - у 2 - z 2 =S 2 .

Следовательно, интервал между двумя событиями является инвариантом к переходу от одной ИСО к другой.

РЕЛЯТИВИСТСКИЙ ИМПУЛЬС

Уравнения классической механики инвариантны по отношению к преобразованиям Галилея, по отношению же к преобразованиям Лоренца они оказываются неинвариантными. Из теории относительности следует, что уравнение динамики, инвариантное по отношению к преобразованиям Лоренца, имеет вид:

где - инвариантная, т.е. одинаковая во всех системах отсчета величина называемая массой покоя частицы, v- скорость частицы,- сила действующая на частицу. Сопоставим с классическим уравнением

Мы приходим к выводу, что релятивистский импульс частицы равен

Энергия в релятивистской динамике.

Для энергии частицы в теории относительности получается выражение:

Эта величина носит название энергии покоя частицы. Kинетическая энергия, очевидно, равна

Из последнего выражения вытекает, что энергия и масса тела всегда пропорциональны друг другу. Всякое изменение энергии тела сопровождается изменением массы тела

и, наоборот, всякое изменение массы сопровождается изменениемэнергии. Это утверждение носит название закона взаимосвязи или закона пропорциональности массы и энергии.

Масса и Энергия

Если на тело с массой покоя m 0 действует постоянная результирующая сила, то скорость тела возрастает. Но скорость тела не может возрастать неограниченно, так как существует предельная скорость с. С другой стороны, с увеличением скорости происходит увеличение массы тела. Следовательно, производимая над телом работа приводит не только к увеличению скорости, но и массы тела.

Из закона сохранения импульса Эйнштейн вывел следующую формулу зависимости массы от скорости:

где m 0 - масса тела в той системе отсчета, в которой тело неподвижно (масса покоя), m - масса тела в той системе отсчета, относительно которой тело движется со скоростью v .

Импульс тела в специальной теории относительности будет иметь следующий вид:

Второй закон Ньютона будет справедлив в релятивистской области, если его записать в виде:

где р - р елятивистский импульс.

Обычно работа, производимая над телом, увеличивает его энергию. Этот аспект теории относительности привел к идее о том, что масса есть форма энергии, - решающему моменту специальной теории относительности Эйнштейна.

По закону сохранения энергии работа, совершаемая над частицей, равна ее кинетической энергии (КЭ) в конечном состоянии, так как в начальном состоянии частица покоилась:

Величину mс 2 называют полной энергией (предполагаем, что частица не обладает потенциальной энергией).

Исходя из представления о массе как форме энергии Эйнштейн назвал m 0 с 2 энергией покоя (или собственной энергией) тела. Так мы получим знаменитую формулу Эйнштейна

Е = mс 2 .

Если частица покоится, то ее полная энергия равна Е = m 0 с 2 (энергия покоя). Если же частица находится в движении и ее скорость соизмерима со скоростью света, то ее кинетическая энергия будет равна: Е к = mс 2 - m 0 с 2 .

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.



Поделиться