Внутритрубная диагностика проводится с целью. И.М

Внутритрубная диагностика (ВТД) линейной части магистрального газопровода (ЛЧ МГ) на сегодня является самым эффективным способом получения информации о состоянии магистральных газопроводов и их целостности. Общество с ограниченной ответственностью «Научно-производственный центр «Внутритрубная диагностика» (ООО «НПЦ «ВТД») является лидером по достоверности предоставляемых результатов по ВТД (на уровне 90–95%) среди российских и зарубежных компаний.

Текст: Н. Н. Иванова, С.В. Налимов, В. Е. Лоскутов, Б. В. Патраманский.

ООО «НПЦ «ВТД» разрабатывает и производит собственные диагностические внутритрубные комплексы диаметрами от 219 мм до 1420 мм и оказывает услуги по ВТД отечественным и зарубежным операторам трубопроводов.

Среди отечественных - такие крупнейшие компании, как ПАО «Газпром» и дочерние общества ПАО «Роснефть».

Ежегодный объем работ по ВТД, выполняемых ООО «НПЦ «ВТД» на объектах ПАО «Газпром», составляет более 20 тысяч километров, или около 90% всего годового объема работ по внутритрубной диагностике линейной части магистральных газопроводов.

Внутритрубные диагностические комплексы, применяемые ООО «НПЦ «ВТД», обнаруживают практически все встречающиеся в газопроводах дефекты, образующиеся при производстве трубы, при строительстве трубопровода и его эксплуатации.

При производстве трубы - это расслоения, дефекты проката, аномалии продольных сварных швов (непроваренные стыки); при строительстве трубопровода - вмятины, гофры, задиры, дефекты сварки кольцевого шва, плохая изоляция, которая в процессе эксплуатации трубопровода становится причиной развития коррозийных повреждений, а также в сочетании с другими факторами (высокое давление в трубопроводе, доступ грунтовых вод, кислотность почв, загрязненный металл трубы и др.) способствует возникновению самого опасного дефекта - мелких трещин КРН (коррозионного растрескивания под напряжением).

Дефекты КРН представляют собой мелкую сетку трещин на поверхности трубы, которые при определенных условиях объединяются в магистральную трещину, и происходит разрушение трубопровода.

Рисунок 1. Диаграмма дефектов, обнаруженных по результатам выполнения работ по ВТД в первом полугодии 2017 года.

На рисунке 1 представлена диаграмма дефектов, обнаруженных по результатам выполнения работ по ВТД в первом полугодии 2017 года. Как видно из диаграммы, более 80% из общего числа дефектов составляют коррозионные повреждения и около 10% - аномалии кольцевых сварных швов.

Дефекты таких типов надежно обнаруживаются внутритрубными инспекционными приборами (ВИП) продольного намагничивания (по зарубежной классификации - MFL).

Однако для поиска и обнаружения продольных трещин и зон трещин КРН создаются ВИП поперечного намагничивания (TFI), поскольку приборами типа MFL их обнаружить невозможно.

Необходимо отметить, что приборы MFL и TFI работают на магнитном принципе контроля, который основан на регистрации полей рассеяния от дефекта в стенке трубы. Зоны трещин КРН при намагничивании организуют достаточно слабые поля, которые трудно зафиксировать датчиковой системой.


Специалистами ООО «НПЦ «ВТД» создан высокочувствительный прибор поперечного намагничивания, способный обнаруживать зоны продольных трещин глубиной 15–20% от толщины стенки трубы.

Одной из самых серьезных задач при выполнении работ по ВТД является создание специальных алгоритмов и программных продуктов, с помощью которых производится обработка и расшифровка записанной внутритрубными приборами информации.

Благодаря участию специалистов компании в обследовании дефектов в более чем 4,5 тысячах шурфов удалось создать алгоритмы, точно отражающие параметры разных типов дефектов.

Количество аномалий кольцевых стыков в приведенной диаграмме составляет 9,6%, в численном же выражении на участок газопровода в среднем приходится 300–400 штук. Поскольку опасность аномалий не определена, оператору трубопровода по действующим нормативным документам необходимо все аномалии отшурфовать, снять изоляцию и обследовать наружными переносными дефектоскопами каждый стык. При этом оператор вынужден проделать огромную работу и понести затраты, хотя опасных стыков под вырезку может быть несколько.


В ООО «НПЦ «ВТД» в дополнение к существующим ВИП создан прибор - интроскоп. Его назначение – контроль внутреннего рельефа поверхности трубы. С помощью интроскопа удалось ранжировать аномалии кольцевых швов на три категории: «а» - опасные, «b» - под наблюдение, «с» - неопасные.

Теперь оператору трубопровода необходимо в течение указанного в отчете периода отшурфовать дефекты категории «а» и отремонтировать, избегая при этом огромных затрат на шурфовку остальных аномалий.

Среди достижений последнего времени необходимо указать создание специалистами ООО «НПЦ «ВТД» методики определения непроектных изгибов трубопроводов.

Если радиус поворота оси трубопровода будет меньше допустимой величины, в нем возникает напряженно деформированное состояние (НДС), которое может привести к пластической деформации или даже к разрыву. Реализация технологии определения непроектных изгибов стала возможной при установке в ВИП высокоточных навигационных систем.

В целом благодаря созданному внутритрубному оборудованию, разработанным алгоритмам и методикам, комплексу ремонтных работ по удалению опасных дефектов по результатам ВТД, выполняемому газотранспортными обществами ПАО «Газпром», и восстановлению несущей способности газопроводов при их периодическом обследовании удается поддерживать безопасную эксплуатацию газотранспортной системы ПАО «Газпром» на необходимом уровне.

Нами очищены и обследованы внутритрубными дефектоскопами более 3800 километров трубопроводов диаметром от 159 мм до 1420 мм.

Цель услуги:

1. Обследование технического состояния трубопровода.

2. Расчеты на прочность (максимального разрешенного давления) и долговечность (остаточного ресурса) по результатам обследования.

3. Экспертиза промышленной безопасности. Лицензия № ДЭ-00-013475.

Этапы технологии внутритрубной диагностики:

1. Подготовительные работы - определение (по данным опросного листа) и обеспечение контролепригодности обследуемого трубопровода.

2. Очистка внутренней полости трубопровода от инородных предметов, окалины, остатков электродов, асфальтосмолистых, парафиновых и пирофорных отложений.

3. Калибровка трубопровода - определение минимального проходного сечения трубопровода и обеспечение 70% проходимости от наружного диаметра (т.е. устранение всех дефектов геометрии, превышающих 30% от наружного диаметра).

4. Обследование трубопровода профилемером - выявление дефктов геометрии трубопровода (вмятин, гофр, овальности) и изерение радиуса поворотов. Обеспечение проходимости трубопровода в 85% от от наружного диаметра (устранение всех дефектов геометрии, превышающих 15% от наружного диаметра) и минимального радиуса поворота трубопровода, равного 1,5Dн или 3Dн (Rпов. должно быть более или равно 1,5Dн или 3Dн в зависимости от применяемого после пофилеметрии дефектоскопа).

5. Обследование трубопровода внутритрубными магнитными (MFL и TFI) и/или ультразвуковыми дефектоскопами - выявление таких дефектов, как: коррозия (внутренняя, наружная, точечная и сплошная), стресс-коррозия под напряжением, расслоения, включения, разноориентированные трещины и др. дефекты стенки трубопровода.

6. Расчет на прочность и долговечность (остаточного ресурса) и экспертиза промышленной безопасности.

С 2007 г. нами выполнены работы по внутритрубной диагностике и экспертизе промышленной безопасности трубопроводов (в т.ч. подводных переходов) в ОАО АНК «Башнефть», ОАО «Удмуртнефть», ООО «Белкамстрой», ОАО «Белкамнефть», ЗАО «Нафтатранс», ОАО «Сургутнефтегаз», ООО «БПО-Отрадный», АО "Шешмаойл", "СНПС-Актобемунайгаз", ОАО "РН-Краснодарнефтегаз" и др.

Опыт работ по внутритрубной диагностике нефтегазопроводов более 10 лет.

Подготовка участка газопровода к обследованию. При подготовке участка газопровода к обследованию производится:

Первичная очистка полости газопровода и определение минимальных размеров сечения труб (калибровка) скребком-калибром (рисунок 3.1, а );

Удаление строительного мусора, песка, грязи, посторонних предметов с помощью скребка грубой очистки (рисунок 3.1, б );

Рисунок 3.1 - Внутритрубные снаряды:
а - скребок грубой очистки; б - калибр

Тонкая очистка - удаление мелкодисперсных отложений - производится скребком тонкой очистки (рисунок 3.2);

Магнитная очистка и магнитная подготовка металла труб газопровода - удаление ферромагнитного мусора, первичное намагничивание газопровода с помощью магнитных очистных поршней (рисунок 3.3);

Определение проходного сечения (профилеметрия) для пропуска снарядов-дефектоскопов с помощью профилемера (рисунок 3.4).

Рисунок 3.2 - Скребок тонкой очистки

Рисунок 3.3 - Магнитные очистные поршни

Рисунок 3.4 - Снаряд-профилемер

Профилеметрия производится внутритрубными электронно-механическими снарядами-профилемерами типа ПРТ и основывается на измерении внутреннего сечения трубы роликовыми опорами рычажного типа для определения местных искажений формы и регистрации пройденного пути по участку газопровода.

Средства внутритрубной диагностики газопроводов. Для проведения работ по внутритрубной диагностике линейной части действующих магистральных трубопроводов диаметром 1020, 1220, 1420 мм, оснащенных равнопроходной арматурой предназначен комплекс внутритрубных диагностических средств (КВД).

В состав комплексов КВД (ТУ 004276-166629438-003–96) входит следующее:

Снаряд-дефектоскоп типа ДМТ1;

Снаряд-калибр типа СК;

Очистной скребок типа СО;

Магнитный очистной поршень типа МОП;

Система обработки и регистрации данных типа СОРД-1,5;

Контрольно-эксплуатационный прибор типа КЭП СОРД-1,5;

Комплект ЗИП;

Стенд проверки герметичности в полевых условиях;

Устройство зарядно-разрядное для бортовых никель-кадмиевых аккумуляторов;

Программные средства визуализации и оценки результатов внутритрубной инспекции.

Принцип действия снаряда-дефектоскопа ДМТ основан на методе регистрации рассеяния магнитного потока в стенке контролируемой трубы. Данный метод зарекомендовал себя как наиболее надежный и устойчивый к реальным условиям диагностики трубопроводов.

Снаряд состоит из одной секции, имеет центрирующую колесную подвеску, которая обеспечивает постоянство силы трения и вследствие этого равномерную динамику движения в трубопроводе, что выгодно отличает данный снаряд от многосекционных изделий других фирм с ходовой частью в виде опорных манжет (рисунок 3.5).

Рисунок 3.5 - Снаряд-дефектоскоп ДМТ1-1400

Снаряд-дефектоскоп относится к магнитным снарядам высокого разрешения. Количество дефектоскопических датчиков в межполюсном пространстве для снарядов ДМТ1-1200, -1400 равно 192, для ДМТ1-1000 - 128. Количество каналов регистрации - 96 и 64, соответственно.

Дефектоскоп типа ДМТ способен выявлять следующие виды дефектов:

Дефекты потери металла - общая коррозия, питтинговая коррозия, отдельные каверны;

Поперечные и ориентированные под углом к образующей трубы трещины;

Дефекты металлургического характера - прокат, расслоения (с применением наземных дефектоскопических средств);

Металлические предметы, находящиеся вблизи трубопровода, представляющие угрозу целостности изоляционного покрытия.

Дефектоскоп типа ДМТ способен выявлять и идентифицировать элементы обустройства трубопровода - краны, тройники, отводы, устанавливаемые маркеры, также в определенных случаях наружные элементы, такие, как патроны и пригрузы.

Погрешность определения местонахождения выявленных дефектов (при наличии маркерных накладок, располагаемых по длине трубопровода на расстоянии не более 2 км) - ±0,5 м.

Применение комплексов КВД возможно в трубопроводах, имеющих следующие характеристики:

Диаметр трубопровода - 1020, 1220, 1420 мм;

Толщина стенок труб от 8 до 25 мм;

Материал стенки трубы - сталь 17ГС, 17Г2СФ, 14Г2САФ, а также отечественные и импортные стали с близкими к ним магнитными характеристиками.

Наименьший преодолеваемый радиус изгиба - 3Dн;

Трубы - прямошовные и спирально-шовные;

Транспортируемый продукт - природный газ, нефть, ШФЛУ, вода;

Оптимальная скорость движения перекачиваемого продукта - 7–13 км/ч;

Рабочее давление в трубопроводе - до 8,5 МПа;

Время непрерывной работы аппаратуры дефектоскопа - 80 ч.

Дефектоскопы ДМТ1 выполнены во взрывозащищенном исполнении, позволяющем использовать их во взрывоопасных зонах класса В1Т. Дефектоскопы ДМТ1 оснащаются новейшей системой обработки и регистрации данных СОРД-1,5, имеющей возможность записи информации объемом до 14 Гбайт.

Тестирование снаряда-дефектоскопа перед пропуском производится при помощи прибора (минитерминала) КЭП СОРД-1,5, подсоединяемого к специальному разъему. При тестировании производится проверка на функционирование всех узлов дефектоскопа с выдачей результата на дисплей. В случае отказа какого-либо из узлов включается аварийная сирена.

Включение аппаратуры дефектоскопа в камере запуска производится при наличии двух факторов:

Наружное давление не менее 0,3 МПа;

Продвижение снаряда на расстояние не менее 24 м.

Комплексы КВД успешно эксплуатируются на трубопроводах ОАО «Газпром».
Порядок проведения работ и взаимодействие частей комплекса. Перед проведением обследования эксплуатирующие предприятия проводят следующие подготовительные работы:

Проверка работы запорной арматуры;

Проверка работы концевых затворов камер запуска и приема, узлов их обвязки;

Установка маркеров (только для постоянных маркеров).

Выполнение всех видов диагностических работ должно производиться с соблюдением «Правил безопасности при эксплуатации магистральных газопроводов», а также типовых инструкций, действующих в газотранспортном предприятии, эксплуатирующем данный участок магистрального газопровода.

Для обеспечения стабильной и однородной намагниченности стенки трубы снарядом-дефектоскопом трубопровод необходимо заранее подготовить в магнитном отношении. Для этого используются снаряды МОП или УМОП, полярность магнитных полюсов которых согласована с полюсами снарядов ДМТ. Наличие огарков электродов, кусков металла в полости трубопровода является мешающим фактором при магнитном контроле. Для сбора и удаления ферромагнитного мусора используют снаряды СО, УМОП, МОП, оснащенные магнитными системами. Для удаления грязи, песка, жидкостей из внутренней полости трубопровода последовательно применяют снаряды СО и ОП.

Первым, по очередности применения, осуществляется пропуск скребка СО, который благодаря простоте конструкции, имеет высокую проходимость.По результатам пропуска (количеству мусора в приемной камере, состоянию ходовой и корпусной части скребка) принимается решение о проходимости участка другими снарядами комплекса, необходимости применения снаряда-профилемера и дальнейшем порядке очистки. Обследование трубопровода профилемером ПРТ позволяет получить подробную информацию о наличии дефектов геометрии трубопровода с их координатами и на базе полученных данных провести ремонтные работы в случае несоответствия проходимости участка для снарядов ДМТ и ДМТП.

Типы дефектов, выявляемые при внутритрубной диагностике. Дефекты подразделяются на следующие категории:

Коррозийные дефекты, связанные с потерей металла и уменьшением толщины стенки трубы;

Технологические дефекты (дефекты проката, приварки, и т. д.);

Дефекты геометрии (вмятины, гофры);

Аномальные швы;

Трещины, ориентированные вдоль образующей трубы (выявляются только снарядами-дефектоскопами ДМТП-1 и ДМТП-2 (рисунки 3.6, 3.7).

Рисунок 3.6 - Снаряд-дефектоскоп поперечного намагничивания ДМТП-1

Рисунок 3.7 - Снаряд-дефектоскоп поперечного намагничивания ДМТП-2

Оценка степени опасности дефектов коррозионного типа. Дефекты классифицируются по 4 уровням степени опасности.

Закритический - дефект, при котором дальнейшая эксплуатация газопровода не допустима.

Критический - дефект является допустимым только при создании особых условий эксплуатации газопровода: снижение действующих нагрузок в стенке трубы, введение постоянного контроля параметров и состояния дефекта методами наружной и внутритрубной дефектоскопии.

Докритический - допустимый дефект при условии периодического контроля методами наружной и внутритрубной дефектоскопии.

Незначительный - дефект, не оказывающий существенного влияния на надежность и долговечность эксплуатации газопровода, производится фиксация дефекта для последующих сравнений с результатами плановых обследований

Принцип магнитной дефектоскопии. Этим методом наиболее хорошо обнаруживаются дефекты, имеющие поперечный размер к направлению намагничивающего поля, достаточный для того, чтобы появилось поле рассеяния. Поэтому некоторые дефекты, имеющие невыгодную ориентацию к полю намагничивания или имеющие очень малый поперечный размер, либо вообще не выявляются, либо сигналы от них трудно интерпретировать. В комплекс внутритрубных диагностических средств входят дефектоскопы как с продольной, так и с поперечной системой намагничивания, что позволяет выявлять дефекты любой ориентации относительно образующей стенки трубы. Последовательное применение средств, входящих в состав комплекса, позволяет решить следующие задачи:

Очистка полости трубопровода от строительного мусора, жидких фракций, грязи, песка и посторонних предметов;

Удаление ферромагнитного мусора и магнитная подготовка трубопровода;

Получение информации о дефектах геометрии трубопровода;

Получение информации о дефектах сплошности стенки трубопровода.

Основным условием, обеспечивающим добротное качество обследования трубопровода, является ограничение скорости движения дефектоскопа в трубе. Это требование обусловлено физической природой процесса намагничивания ферромагнетика в динамике и не связано с какими-либо недостатками конструкции дефектоскопа. При движении дефектоскопа внутри трубопровода в стенке трубы возникают вихревые токи, которые препятствуют проникновению в нее магнитного потока, вытесняя его наружу. Это влечет за собой неоднородное намагничивание стенки по толщине: внешняя сторона трубы, где в основном и находится большая часть дефектов, намагничивается недостаточно, что, в свою очередь, ведет к ухудшению качества обследования. Величина оптимальной скорости движения зависит в основном от толщины стенки трубы и от диаметра трубы. Расчеты и эксперименты показали, что оптимальная скорость прохода дефектоскопа должна быть не более 2,5 м/с.

Не менее важным условием также является предварительная очистка полости трубопровода от посторонних предметов, мешающих нормальной работе датчиков поля. Дефектоскопическое обследование должно начинаться при полной уверенности в том, что в трубопроводе осталось минимальное количество мешающих предметов (вероятно, что полная очистка полости трубы нереальна).

Особенности диагностирования газопроводов ультразвуковыми внутритрубными дефектоскопами. Ультразвуковые снаряды используют обычно для контроля труб нефтепроводов, поскольку для прохождения ультразвука необходим акустический контакт датчиков с трубой, обеспечиваемый нефтью. Магнитные снаряды применяют для контроля как нефте-, так и газопроводов.

Для диагностики газопроводов с помощью «Ультраскана» участок трубопровода заполняют водой, ограничивая ее растекание с помощью специальных разделительных снарядов, идущих впереди и позади диагностического снаряда. Таким способом - через воду - достигается звуковой контакт между излучателем и стенкой трубы (рисунок 3.8).

Рисунок 3.8 - Схема контроля газопровода ультразвуковым дефектоскопом

В 1999 г. зарубежная компания TransCanada Pipeline Limited успешно использовала ультразвуковой прибор с целью выявления трещин в результате коррозионного растрескивания под напряжением на отрезке 167 км газопровода диаметром 914 мм вблизи г. Эдсон.
Проверка внутритрубным прибором обусловила необходимость строительства камеры запуска с возможностью дозирования загружаемой воды.

Предоставление услуг по диагностике трубопроводов с минимальным временем простоя.

Как наиболее надежный поставщик решений по внутритрубной диагностике и обеспечению бесперебойной транспортировки продукта, компания Т.Д. Вильямсон предоставляет индивидуальные услуги по внутритрубной диагностике трубопроводов, разработанные специально для оптимизации производительности систем трубопроводов с минимальным временем простоя. Технологии внутритрубной диагностики компании Т.Д. Вильямсон рассчитаны на обеспечение целостности трубопровода при самых сложных условиях среды, а также на предоставление наиболее точных данных, как правило, за один проход.

Слишком высокая скорость прохождения снаряда влияет на качество данных. Технология активного управления скоростью диагностического снаряда специально разработана для совместного применения с технологией диагностики MFL в газопроводах с высокой скоростью потока.

Технология разработана с применением датчиков, рассчитанных на проход непосредственно по внутренней стенке трубы, а не перед снарядом, что увеличивает их чувствительность. Данные высокого разрешения, полученные с помощью этих инструментов, могут быть проанализированы на признаки наличия вмятин и помогают точно измерить участки расширения труб.

Обеспечивает точное обнаружение и определение размеров внутренней и внешней потери металла и других аномалий. Рассчитана на преодоление сужений и снижение сопротивлений трению для обеспечения более стабильной скорости прохождения снаряда.

Обеспечивает точное обнаружение и определение размеров внутренней и внешней потери металла и других отклонений.

Экономичный и удобный с точки зрения эксплуатации метод диагностирования коротких, неудобных для внутритрубной диагностики участков трубопровода.

Обеспечивает наиболее точную на сегодняшний день диагностику продольных сварных швов без значительного увеличения длины снаряда.

Внутритрубное обследование проводится в четыре уровня :

1. Обследование трубопровода с помощью снарядов – профилемеров. Они определяют дефекты геометрии стенки труб (гофры, овальность, вмятины).

2. С помощью ультразвуковых снарядов – дефектоскопов ведут поиск, измеряют коррозионные дефекты, расслоение металла труб

3. С помощью магнитных снарядов – дефектоскопов выявляют дефекты кольцевых сварных швов.

4. С помощью более современных ультразвуковых дефектоскопов СД ведут обнаружение и измеряют трещиноподобные дефекты в продольных швах и в теле трубы.

Классиф-ция деф-ов труб, опр-ых с помощью ВТД .

4 класса дефектов:

1. дефекты геометрии(гофры, вмятины, овальности).Приводят к снижению несущ-ей спос-ти трубы,к сниж-ю произв-ти.

2. Деф-ты стенки трубы (расслоение Ме трубы,включения,трещины, царапины,корроз-е поврежд-ия, потери Ме местного происх-ия). Приводят к сниж-ию несущ. спос-ти трубы.

3. Деф-ты попер-х сварных швов (непровары,поры и смещ-ие кромок шва).

4.Деф-ты прод-го заводс-го шва (те же).

ВТД . Перед провед-ем ВТД нужно произв-ти очистку внутр-ей полости трубы от отложений.В кач-ве мат-ов очистных дисков для очистных снар-ов прим-ся полиуретан.

ВТД пров-ся в 4 этапа: 1.Выявл-ся деф-ты геометрии трубы с пом-ю снарядов профилемеров.

2.выявл-ся деф-ты стенки трубы с пом-ю ультразвук-х снарядов «Ультраскан».

3.Деф-ты попер-ых сварных швов с пом-ю магн-ых снарядов «Магнискан»

«-« намагн-ся труба

4. Выявл-ся деф-ты прод-ых свар-х швов,деф-ты,ориент-ые в прод-ом напр-ии-ультразв-ми снарядами большого разрешения «Ультраскан».

По рез-ам диагн-го обслед-ия все деф-ты классиф-ют на 3 гр-пы:

Дефекты типа ПОР;-деф-ты ДПР (деф-ы, подл-ие рем-ту);-деф-ты,не треб-ие провед-ие рем-та.Они заносятся в банк данных для послед-го мониторинга.

По рез-ам диагн-ки пров-ся выборочный рем-т или сплошной (при скопленни деф-ов)

С помощью программ определяют степень опасности выявленных дефектов.

Диагностика линейной части газопровода .

При эксплуатации мг происходит загрязнение его внутренней поверхности частицами породы, окалиной, отслоившейся от труб, конденсатом, водой, метанолом и.т.д. Это приводит к увеличению коэффициента гидравлического сопротивления и соответственно к снижению пропускной способности газопровода. Внутреннюю поверхность газопровода от загрязнений очищают следующими способами: периодически очистными устройствами без прекращения перекачки газа; разовым использованием очистных устройств с прекращением подачи газа;; установкой конденсатосборников и дренажей в пониженных точках газопровода; повышением скоростей потоков газа в отдельных нитках системы газопроводов и последующим улавливанием жидкости в пылеуловителях КС. В качестве очистных устройств применяют очистные поршни, скребки, поршни-разделители. В зависимости от вида загрязнений применяют и определенные очистные устройства. Основное требование к ним: быть износостойкими, обладать хорошей проходимостью через запорные устройства, простыми по конструкции и дешевыми. Наиболее часто применяют очистные устройства типа ДЗК-РЭМ, ОПР-М, позволяющие одновременно очищать полость газопровода от твердых и жидких веществ. Для очистки газопроводов больших диаметров применяют поршни-разделители ДЗК-РЭМ-1200, ДЗК-РЭМ-1400, ОР-М-1200, ОПР-М-1400. Поршень монтируют с двумя, тремя, и более очистными элементами. Для движения поршня по газ-ду на нем создается определенный перепад давления, который зависит в основном от его конструкции. Создаваемый перепад р на поршне в среднем равен 0,03-0,05 Мпа. На всех проектируемых и вновь вводимых мг предусматривают устройства по очистке внутренней полости газопровода от загрязнения при помощи пропуска очистных поршней. В состав устройства входят узлы пуска и приема очистных поршней, система контроля и автоматического управления процессов очистки. Узлы пуска и приема очистных поршней изготавливают на рабочее р 7,5 Мпа и температуру рабочей Среды от -60 до 60 оС. Для контроля за прохождением очистных устройств по газопроводу в отдельных его точках стоят анализаторы прохождения поршня. Разработан комплекс Волна-1, предназначенный как для сигнализации прохождения очистных устройств по газопроводу, так и для отыскания их в случае застревания в нем.


11. Переходы трубопроводов через водные преграды и классификация их по способу строительства.

Переходы через водные преграды делятся по способу строительства на:

1. подводные;

2. воздушные: балочные на опорах, вантовые переходы, арочные.

В границу воздушного перехода трубопровода через водную преграду входят надземная часть и участки подземного трубопровода длиной по 50 м от места выхода трубы на поверхность.

К подводным трубопроводам относятся линейная часть, проходящая через водные преграды шириной более 10 м по зеркалу воды в межень (наименьший уровень воды) и глубиной более 1,5 м.

Границами подводного перехода являются:

1. для многониточных переходов – это участок, ограниченный запорной арматурой, расположенной на берегах.

2. для однониточных – это участок, ограниченный горизонтом высоких вод не ниже отметок 10% обеспеченности.

Трубопроводы основной и резервной ниток на участке подводного перехода и от подводного перехода до КППСОД должен проектироваться в соответствии с высшей категорией сложности.

ПП через водные преграды, шириной более 75 м по зеркалу воды в межень, в обязательном порядке оборудуются резервными нитками.

ПП по способу строительства делятся на:

1. Построенные траншейным способом. Традиционный способ строительства. Недостатки: необходимость ежегодного обследования, неэкологичность способа, необходимость капительного ремонта через 10-15 лет.

2. Построенные методом наклонно-направленного бурения. Достоинства: обеспечивает надежность эксплуатации подводного участка трубопровода (до 30 лет); экологичность способа.

3. Построенные методом микротоннелирования. Применяется значительно недавно. Преимущества: надежность и долговечность. Подводные переходы построенные методом микротонелирования разделяются на: переходы с тоннелем межтрубное пространство, которого заполнено инертным газом под избыточным давлением; переходы с тоннелем межтрубное пространство которое заполнено жидкостью с антикоррозийными свойствами покрытием с избыточным давлением.

4. Построенные методом «труба в трубе».

В состав сооружений перехода через водные преграды входят следующие объекты:

1. участок магистрального трубопровода в границах перехода;

2. узлы береговой запорной арматуры и КППСОД;

3. берего- и дноукрепительные сооружения, предназначенные для предотвращения размыва береговой м русловой части перехода;

4. информационные знаки ограждения охранной зоны перехода на судоходных и сплавных реках; указательные знаки оси трубопровода на береговых участках; знаки закрепления геодезической сети перехода;

5. пункт наблюдения (блокпост) обходчика;

6. вдольтрассовая ЛЭП;

7. система ЭХЗ в границах перехода;

8. трансформаторная подстанция для обеспечения электроэнергией запорной арматуры и средств ЭХЗ;

9. средства и оборудования телемеханики;

10. стационарные маркерные пункты для выполнения работ по внутритрубной диагностике;

11. датчики отбора давления, манометрические узлы, сигнализаторы прохождения очистных устройств, системы обнаружения уточек, системы контроля межтрубного пространства;

12. опорные сооружения воздушных переходов.

Требования к оборудованию ПП.

1. ПП должны быть оборудованы системами обнаружения утечек, а переходы, построенные методом «труба в трубе» должны быть оборудованы системами контроля давления в межтрубном пространстве. Информация о давлении должна подаваться на диспетчерский пункт ближайшей станции.

2. Резервные нитки оборудуются КППСОД.

3. ПП через судоходные и сплавные реки шириной более 500 м по зеркалу воды в межень должны иметь блокпост обходчика, оборудованный телефонной и радиосвязью.

4. ПП оборудуются постоянными геодезическими знаками (реперами), которые закладываются ниже глубины промерзания грунта, чтобы предотвратить морозный подъем репера.

5. Задвижки или краны, установленные на переходе, должны быть электрифицированы, телемеханизированы и находится в системе телеуправления. Электроснабжение задвижек и кранов должно осуществляться от двух независимых источников.

6. Задвижки имеют технологический номер, указатели положения затвора, ограждения, предупреждающие аншлаги. Береговые задвижки и краны должны обеспечивать герметичность отключенного участка перехода.

7. Для освобождения ПП от нефти в аварийных ситуациях путем замещения водой с пропуском разделителей, узлы береговых задвижек основной и резервной нитки перехода оборудуются с вантузами с Ду не менее 150 мм.

8. Задвижки и краны переходов должны иметь обвалование. Основные требования к обвалованию: высота обвалования 0,7 м; внутренние откосы обвалования должны быть укреплены протифильтрационным экраном; расстояние от основных задвижек или кранов до подошвы обвалования составляет 1,5 м.

9. Для проведения работ по внутритрубной диагностике в границах перехода должны устанавливаться маркерные пункты.

Требования к оборудованию воздушных переходов.

1. На трубопроводе и опорах ВП устанавливаются реперы для выполнения геодезического контроля положений элементов конструкции перехода.

2. Склоны оврагов и берега водного перехода в местах установки береговых опор должны быть оборудованы гасителями скорости потока (растительный покров, ступенчаты перепады, водопойные колодцы).

3. Русловые опоры балочных переходов должны иметь ледорезы в соответствие с проектом.



Поделиться