Современные виды обработки материалов. Основные виды обработки металлов

Металлы и их сплавы издавна используются человеком для изготовления инструментов и оружия, украшений и ритуальных предметов, домашней утвари и деталей механизмов.

Чтобы превратить металлические слитки в деталь или изделие, их требуется обработать, или изменить их форму, размеры и физико-химические свойства. За несколько тысячелетий было разработано и отлажено множество способов обработки металлов.

Особенности обработки металла

Многочисленные виды металлообработки можно отнести к одной из больших групп:

  • механическая (обработка резанием);
  • литье;
  • термическая;
  • давлением;
  • сварка;
  • электрическая;
  • химическая.

— один из самых древних способов. Он заключается в расплавлении металла и розливе его в подготовленную форму, повторяющую конфигурацию будущего изделия. Этим способом получают прочные отливки самых разных размеров и форм.

Про другие виды обработки будет рассказано ниже.

Сварка

Сварка также известна человеку издревле, но большинство методов были разработаны в последнее столетие. Сущность сварки заключается в соединении нагретых до температуры пластичности или до температуры плавления кромок двух деталей в единое неразъемное целое.

В зависимости от способа нагрева металла различают несколько групп сварочных технологий:

  • Химическая. Металл нагревают выделяемым в ходе химической реакции теплом. Термитную сварку широко применяют в труднодоступных местах, где невозможно подвести электричество или подтащить газовые баллоны, в том числе под водой.
  • Газовая. Металл в зоне сварки нагревается пламенем газовой горелки. Меняя форму факела, можно осуществлять не только сварку, но и резку металлов.
  • Электросварка. Самый распространенный способ:
    • Дуговая сварка использует для нагрева и расплавления рабочей зоны тепло электрической дуги. Для розжига и поддержание дуги применяют специальные сварочные аппараты. Сварка ведется обсыпными электродами или специальной сварочной проволокой в атмосфере инертных газов.
    • При контактной сварке нагрев осуществляется проходящим через точку соприкосновения соединяемых заготовок сильным электротоком. Различают точечную сварку, при которой детали соединяются в отдельных точках, и роликовую, при которой проводящий ролик катится по поверхности деталей и соединяет их непрерывным швом.

С помощью сварки соединяют детали механизмов, строительные конструкции, трубопроводы, корпуса судов и автомобилей и многое другое. Сварка хорошо сочетается с другими видами обработки металлов.

Электрическая обработка

Метод основан на частичном разрушении металлических деталей под воздействием электрических разрядов высокой интенсивности.

Его применяют для прожигания отверстий в тонколистовом металле, при заточке инструмента и обработке заготовок из твердых сплавов. Он также помогает достать из отверстия обломившийся и застрявший кончик сверла или резьбового метчика.

Графитовый или латунный электрод, на который подано высокое напряжение, подводят к месту обработки. Проскакивает искра, металл частично оплавляется и разбрызгивается. Для улавливания частиц металла промежуток между электродом и деталью заполняют специальным маслом.

К электрическим способам обработки металлов относят и ультразвуковой. В детали возбуждаются колебания высокой интенсивности с частотой свыше 20 кгц. Они вызывают локальный резонанс и точечные разрушения поверхностного слоя, метод применяют для обработки прочных сплавов, нержавейки и драгоценностей.

Особенности художественной обработки металлов

К художественным видам обработки металлов относят литье, ковку и чеканку. В средине XX века к ним добавилась сварка. Каждый способ требует своих инструментов и приспособлений. С их помощью мастер либо создает отдельное художественное произведение, либо дополнительно украшает утилитарное изделие, придавая ему эстетическое наполнение.

Чеканка — это создание рельефного изображения на поверхности металлического листа или самого готового изделия, например, кувшина. Чеканку выполняют и по нагретому металлу.

Способы механической обработки металлов

Большую группу способов механической обработки металлов объединяет одно: в каждом из них применяется острый и твердый по отношению к заготовке инструмент, к которому прикладывают механическое усилие. В результате взаимодействия от детали отделяется слой металла, и форма ее изменяется. Заготовка превышает размерами конечное изделие на величину, называемую «припуск»

Разделяют такие виды механической обработки металлов, как:

  • Точение. Заготовка закрепляется во вращающейся оснастке, и к ней подводится резец, снимающий слой металла до тех пор, пока не будут достигнуты заданные конструктором размеры. Применяется для производства деталей, имеющих форму тела вращения.
  • Сверление. В неподвижную деталь погружают сверло, которое быстро вращается вокруг своей оси и медленно подается к заготовке в продольном направлении. Применяется для проделывания отверстий круглой формы.
  • Фрезерование. В отличие от сверления, где обработка проводится только передним концом сверла, у фрезы рабочей является и боковая поверхность, и кроме вертикального направления, вращающаяся фреза перемещается и вправо-влево и вперед-назад. Это позволяет создавать детали практически любой требуемой формы.
  • Строгание. Резец движется относительно неподвижно закрепленной детали взад- вперед, каждый раз снимая продольную полоску металла. В некоторых моделях станков закреплен резец, а двигается деталью. Применяется для создания продольных пазов.
  • Шлифование. Обработка производится вращающимся или совершающим продольные возвратно- поступательные движения абразивным материалом, который снимает тонкие слои с поверхности металла. Применяется для обработки поверхностей и подготовки их к нанесению покрытий.

Каждая операция требует своего специального оборудования. В детали эти операции группируются, чередуются и комбинируются для достижения оптимальной производительности и сокращения внутрицеховых расходов.

Обработка давлением

Обработка металла давлением применяется для изменения формы детали без нарушения ее целостности. Существуют следующие виды:

  • Штамповка.

Перед ковкой заготовку нагревают, опирают на твердую поверхность и наносят серию ударов тяжелым молотом так, чтобы заготовка приняла нужную форму.

Исторически ковка была ручной, кузнец разогревал деталь в пламени горна, выхватывал ее клещами и клал на наковальню, а потом стучал по ней кузнечным молотом, пока не получался меч или подкова. Современный кузнец воздействует на заготовку молотом кузнечного пресса с усилием до нескольких тысяч тонн. Заготовки длиной до десятков метров разогреваются в газовых или индукционных печах и подаются на ковочную плиту транспортными системами. Вместо ручного молота применяются кузнечные штампы из высокопрочной стали.

Для штамповки требуется две зеркальные по отношению друг к другу формы — матрица и пуансон. Тонкий лист металла помещают между ними, а потом с большим усилием сдвигают. Металл, изгибаясь, принимает форму матрицы. При больших толщинах листа металл нагревают до точки пластичности. Такой процесс называют горячая штамповка.

Во время штамповки могут выполняться такие операции, как:

  • гибка;
  • вытягивание;
  • осаживание;
  • и другие.

С помощью штамповки выпускают широчайший ассортимент изделий — от корпусов бытовой техники до колесных дисков и бензобаков.

Обработка с помощью резки

Металл поступает на предприятие в виде проката — листов или профилей стандартных размеров и толщин. Чтобы разъединить лист или профиль на изделия или заготовки нужных размеров, применяют обработку резкой.

Для профиля чаще всего используют резку абразивным кругом или дисковой пилой.

Для применяют несколько видов резки:

  • Ручная. Газосварщик с газовой горелкой вырезает куски металла нужного размера и формы. Применяется в небольших мастерских и на опытных производствах.
  • Газовая. Установка газовой резки режет пламенем автоматизированной газовой горелки и позволяет не только быстро произвести раскрой листа, но и разложить вырезанные заготовки по контейнерам для доставки их на сборочные участки
  • . Режет металл лазерным лучом. Отличается высокой точностью и малым коэффициентом отходов. Кроме резки, может выполнять операции сварки и гравировки — нанесения на металл не удаляемых надписей.
  • Плазменная. Режет металл факелом высокоионизированного газа — плазмы. Применяется для раскроя листов из твердых и специальных сплавов.

В условиях промышленного производства и средних или крупных серий на первый план выходит такое понятие, как коэффициент использования металла. Он повышается как за счет более плотной раскладки деталей по площади, так и за счет прогрессивных технологий резки, дающих меньше отходов

Химическая обработка металлов для повышения защитных свойств материала

Химическая обработка металла — это воздействие на него специальными веществами с целью вызвать управляемую химическую реакцию.

Выполняются как подготовительные операции для очистки поверхности перед сваркой или покраской, так и как финишные отделочные операции для улучшения внешнего вида изделия и защиты его от коррозии.

С помощью электрохимической обработки гальваническим методом наносят защитные покрытия.

Термические виды обработки металлов

Термическая обработка металлов применяется для улучшения их физико-механических свойств. К ней относя такие операции, как:

  • отжиг;
  • закалка;
  • отпуск;
  • старение;
  • нормализация.

Термическая обработка заключается в нагревании детали до определенной температуры и ее последующем охлаждении по специальной программе.

Отжиг

Заготовку нагревают до температуры пластичности и медленно охлаждают прямо в печи.

Снижает твердость стали, но существенно повышает пластичность и ковкость.

Применяется перед штамповкой или раскаткой. Во время отжига снимаются внутренние напряжения, возникшие при отливке или механической обработке.

Закалка

При заготовку прогревают до температуры пластичности и держат в таком состоянии в течение определенного времени, за которое стабилизируются внутренние структуры металла. Далее изделие быстро охлаждают в большом количестве воды или масла. Закалка существенно повышает твердость материала и снижает его ударную вязкость, повышая, таким образом, и хрупкость. Применяют для элементов конструкций, подверженных большим статическим и малым динамическим нагрузкам.

Отпуск

Проводится после закалки. Образец нагревают до температуры, несколько меньшей температуры закалки, и охлаждают медленно. Это позволяет компенсировать излишнюю хрупкость, появившуюся после закалки. Применяется в инструментальном производстве

Старение

Искусственное старение заключается в стимуляции фазовых превращений в массе металла. Его проводят при умеренном нагреве для придания материалу свойств, возникающих при естественном старении за долгое время.

Нормализация

Проводится для повышения ковкости без заметного снижения твердости за счет приобретения сталью мелкозернистой структуры.

Ее применяют перед закалкой и для повышения обрабатываемости резанием. Проводят так же, как и отжиг, но остывает заготовка на открытом воздухе.

Металлообрабатывающее оборудование на сегодняшний день нашло широкое применение в различных промышленных отраслях: железнодорожной отрасли, энергетике, авиа и судостроении, строительстве, машиностроении и так далее.

Выбор станков напрямую зависит от объемов производства (механические, ручные, с ЧПУ, автоматические и так далее), необходимого качества детали и вида обработки.

Токарно-фрезерная обработка

Механическая обработка используется для того, чтобы производить новые поверхности. Работа состоит в разрушении слоя определенной области: при этом режущий инструмент осуществляет контроль степени деформации. Основным оборудованием для механической обработки металлов являются токарные и фрезерные станки, а также универсальные токарно-фрезерные обрабатывающие центры.

Токарная обработка - это процесс резания металла, осуществляемый при линейной подаче режущего инструментом при одновременном вращении заготовки.

Точение осуществляется срезанием с поверхности заготовки определенного слоя металла с помощью резцов, сверл или других режущих инструментов.

Главным движением при точении является вращение заготовки.

Движением подачи при точении является поступательное перемещение резца, которое может совершаться вдоль или поперек изделия, а также под постоянным или изменяющимся углом к оси вращения изделия.

Фрезерная обработка - это процесс резания металла, осуществляемый вращающимся режущим инструментом при одновременной линейной подаче заготовки.

Материал с заготовки снимают на определенную глубину фрезой, работающей либо торцовой стороной, либо периферией.

Главным движением при фрезеровании является вращение фрезы.

Движением подачи при фрезеровании является поступательное перемещение обрабатываемой детали.

Токарно-фрезерная обработка металлов выполняется с помощью универсальных обрабатывающих центров с числовым программным управлением (ЧПУ), позволяющих выполнять сложнейшую высокоточную обработку без учета человеческого фактора. ЧПУ предполагает, что каждым этапом выполняемых работ управляет компьютер, которому задается определенная программа. Обработка детали на станке с ЧПУ обеспечивает максимально точные размеры готового изделия, т.к. все операции выполняются с одной установки обрабатываемой заготовки.

Электроэрозионная обработка

Суть метода электроэрозионной обработки (резки) заключается в полезном использовании электрического пробоя при обработке поверхности.

При сближении электродов, находящихся под током, происходит разряд, разрушительное воздействие которого проявляется на аноде, которым служит обрабатываемый материал.

Межэлектродное пространство заполняется диэлектриком (керосином, дистиллированной водой или специальной рабочей жидкостью), в котором разрушающее воздействие на анод значительно более действенно, чем в воздухе. Диэлектрик также играет роль катализатора процесса распада материала, т. к. он - при разряде в зоне эрозии - превращается в пар. При этом происходит «микровзрыв» пара, который также разрушает материал.

Важнейшим преимуществом проволочно-вырезных станков является малый радиус эффективного сечения инструмента (проволоки), а также возможность точного пространственного ориентирования режущего инструмента. В силу этого возникают уникальные возможности для изготовления точных деталей в широком диапазоне размеров с достаточно сложной геометрией.

Для некоторых изготавливаемых деталей применение электроэрозионной обработки является предпочтительным, в сравнении с другими видами обработки.

Электроэрозионные проволочно-вырезные станки позволяет рационально осуществить операции по:

    изготовлению деталей со сложной пространственной формой и повышенными требованиями к точности и чистоте обработки, в том числе деталей из металла с повышенной твердостью и хрупкостью;

    изготовлению фасонных резцов, матриц, пуансонов, вырубных штампов, лекал, копиров и сложных пресс-форм в инструментальном производстве.

Гидроабразивная обработка

Гидроабразивная обработка металла – это один из наиболее высокотехнологических процессов, обладающий высокими показателями точности и экологичности производства. Процесс гидроабразивной резки заключается в обработке заготовки тонкой струей воды под большим давлением с добавлением абразивного материала (например, мельчайший кварцевый песок). Технологический процесс гидроабразивной резки является очень точным и качественным способом обработки металла.

В процессе гидроабразивной обработки вода смешивается в специальной камере с абразивом и проходит через очень узкое сопло режущей головки под высоким давлением (до 4000 бар). Гидроабразивная смесь выходит из режущей головки со скоростью, превышающей скорость звука (часто более чем в 3 раза).

Наиболее производительное и универсальное оборудование – это системы консольного и портального типа. Такое оборудование идеально подходит, например, для аэрокосмической и автомобильной промышленности; оно может широко использоваться в любых других отраслях.

Гидроабразивный раскрой является безопасным способом обработки. Резка водой не производит вредных выделений и (за счет возможности получения узкого реза) экономично расходует обрабатываемый материал. Hет зон термического воздействия, закаливания. Небольшая механическая нагрузка на материал облегчает обработку сложных деталей, особенно с тонкими стенками.

Одним из важнейших преимуществ водоструйной технологии является возможность обработки практически любых материалов. Данное свойство делает технологию гидроабразивной резки незаменимой в ряде технологических производств и делает ее применимой практически в каждом производстве.

Лазерная обработка

Лазерная обработка материалов включает в себя резку и раскрой листа, сварку, закалку, наплавку, гравировку, маркировку и другие технологические операции.

Использование лазерной технологии обработки материалов обеспечивает высокую производительность и точность, экономит энергию и материалы, позволяет реализовать принципиально новые технологические решения и использовать труднообрабатываемые материалы, повышает экологическую безопасность предприятия.

Лазерная резка осуществляется путём сквозного прожига листовых металлов лучом лазера. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния.

Такая технология имеет ряд очевидных преимуществ перед многими другими способами раскроя:

    отсутствие механического контакта позволяет обрабатывать хрупкие и деформирующиеся материалы;

    обработке поддаются материалы из твердых сплавов;

    возможна высокоскоростная резка тонколистовой стали;

Для резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO 2 -лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств.

Благодаря высокой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.

Кроме указанных выше методов обработки металлов и изготовления заготовок и деталей машин применяют и другие– сравнительно новые и весьма прогрессивные методы.

Сварка металла. До изобретения сварки металла производство, например, котлов, металлических корпусов судов или других работ, требующих соединения друг с другом металлических листов, было основано на применении метода клёпки.

В настоящее время клёпку почти не применяют, ее заменили сваркой металла. Сварное соединение надежнее, легче, производится быстрее и позволяет экономить металл. Сварные работы требуют меньшей затраты рабочей силы. Сваркой можно также соединять части поломанных деталей и путем наварки металла восстанавливать изношенные детали машин.

Существуют два способа сварки: газовая (автогенная) – при помощи горючего газа (смесь ацетилена и кислорода), дающего очень горячее пламя (свыше 3000° С), и электросварка, при которой металл плавится электрической дугой (температура до 6000°С). Наибольшее применение в настоящее время имеет электросварка, при помощи которой прочно соединяют мелкие и крупные металлические части (сваривают друг с другом части корпусов крупнейших морских судов, фермы мостов и другие строительные конструкции, части огромных котлов самого высокого давления, детали машин и т.п.). Вес свариваемых частей во многих машинах в настоящее время составляет 50-80% их общего веса.

Традиционная обработка металлов резанием достигается снятием стружки с поверхности заготовки. В стружку идет до 30-40% металла, что весьма неэкономично. Поэтому все большее внимание уделяется новым способам обработки металлов, основанным на безотходной или малоотходной технологии. Появление новых методов обусловлено также распространением в машиностроении высокопрочных, коррозийно-стойких и жаропрочных металлов и сплавов, обработка которых обычными методами затруднена.

К новым методам обработки металлов относятся химические, электрические, плазменно-лазерные, ультразвуковые, гидропластические.

При химической обработке используется химическая энергия. Снятие определенного слоя металла осуществляется в химически активной среде (химическое фрезерование). Она заключается в регулируемом по времени и месту растворении металла с поверхности заготовок путем травления их в кислотных и щелочных ваннах. В то же время поверхности, не подлежащие обработке, защищают химически стойкими покрытиями (лаки, краски и др.). Постоянство скорости травления поддерживается за счет неизменной концентрации раствора.

Химическими методами обработки получают местные утонения на нежестких заготовках, ребра жесткости; извилистые канавки и щели; «вафельные» поверхности; обрабатывают поверхности, труднодоступные для режущего инструмента.

При электрическом методе электрическая энергия преобразуется в тепловую, химическую и другие виды энергии непосредственно в процессе удаления заданного слоя. В соответствии с этим электрические методы обработки разделяют на электрохимические, электроэрозийные, электро-термические и электромеханические.

Электрохимическая обработка основана на законах анодного растворения металла при электролизе. При прохождении постоянного тока через электролит на поверхности заготовки, включенной в электрическую цепь и являющуюся анодом, происходит химическая реакция, и образуются соединения, которые переходят в раствор или легко удаляются механическим способом. Электрохимическую обработку применяют при полировании, размерной обработке, хонинговании, шлифовании, очистке металлов от оксидов, ржавчины.

Анодно-механическая обработка сочетает электротермические и электромеханические процессы и занимает промежуточное место между электрохимическим и электроэрозионным методами. Обрабатываемую заготовку подключают к аноду, а инструмент – к катоду. В качестве инструмента используют металлические диски, цилиндры, ленты, проволоки. Обработку ведут в среде электролита. Заготовке и инструменту
задают такие же движения, как при обычных методах механической обработки.

При пропускании через электролит постоянного тока происходит процесс анодного растворения металла как при электрохимической обработке. При соприкосновении инструмента (катода) с микронеровностями обрабатываемой поверхности заготовки (анода) происходит процесс электроэрозии, присущий электроискровой обработке. Продукты электроэрозии и анодного растворения удаляются из зоны обработки при движении инструмента и заготовки.

Электроэрозионная обработка основана на законах эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока. Она применяется для прошивания полостей и отверстий любой формы, разрезания, шлифования, гравирования, затачивания и упрочнения инструмента. В зависимости от параметров импульсов и вида, применяемых для их получения генераторов электроэрозионная обработка разделяется на электроискровую, электроимпульсную и электроконтактную.

Электроискровую обработку применяют для изготовления штампов, пресс-форм, режущего инструмента и для упрочнения поверхностного слоя деталей.

Электроимпульсная обработка используется как предварительная при изготовлении штампов, турбинных лопаток, поверхностей фасонных отверстий в деталях из жаропрочных сталей. В этом процессе скорость съема металла примерно в десять раз больше, чем при электроискровой обработке.

Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом (инструментом) и удалении из зоны обработки расплавленного металла механическим способом. Метод не обеспечивает высокой точности и качества поверхности деталей, но дает высокую скорость съема металла, поэтому используется при зачистке отлива или проката из специальных сплавов, шлифовании (черновом) корпусных деталей машин из труднообрабатываемых сплавов.

Электромеханическая обработка связана с механическим действием электрического тока. На этом основана, например, электрогидравлическая обработка, использующая действие ударных волн, возникающих в результате импульсного пробоя жидкой среды.

Ультразвуковая обработка металлов – разновидность механической обработки – основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат электрозвуковые генераторы тока с частотой 16-30 кГц. Рабочий инструмент пуансон закрепляют на волноводе генератора тока. Под пуансоном устанавливают заготовку, и в зону обработки поступает суспензия, состоящая из воды и абразивного материала. Процесс обработки заключается в том, что инструмент, колеблющийся с ультразвуковой частотой, ударяет по зернам абразива, которые скалывают частицы материала заготовки. Ультразвуковая обработка используется для получения твердосплавных вкладышей, матриц и пуансонов, вырезания фигурных полостей и отверстий в деталях, прошивки отверстий с криволинейными осями, гравирования, нарезания резьбы, разрезания заготовок на части и др.

Плазменно-лазерные методы обработки основаны на использовании сфокусированного луча (электронного, когерентного, ионного) с весьма высокой плотностью энергии. Луч лазера используется как в качестве средства нагрева и размягчения металла впереди резца, так и для выполнения непосредственного процесса резания при прошивке отверстий, фрезеровании и резке листового металла, пластмасс и других материалов.

Процесс резания идет без образования стружки, а испаряющийся за счет высоких температур металл уносится сжатым воздухом. Лазеры применяют для сварки, наплавки и разрезания в тех случаях, когда к качеству этих операций предъявляются повышенные требования. Например, лазерным лучом режут сверхтвердые сплавы, титановые панели в ракетостроении, изделия из нейлона и др.

Гидропластическая обработка металлов применяется при изготовлении пустотелых деталей с гладкой поверхностью и малыми допусками (гидроцилиндры, плунжеры, вагонные оси, корпуса электродвигателей и др.). Пустотелую цилиндрическую заготовку, нагретую до температуры пластической деформации, помещают в массивную разъемную матрицу, сделанную по форме изготавливаемой детали, и закачивают под давлением воду. Заготовка раздается и принимает форму матрицы. Детали, изготовленные этим способом, имеют более высокую долговечность работы.

Новые способы обработки металлов выводят технологию изготовления деталей на качественно более высокий уровень по сравнению с традиционной технологией.

Для удобства изучения множества новых технологий обработки металлов , которые используются в современности, их принято разделять на виды и методы.

Самым часто применяемым методом является механический, но его главным недостатком становится большое количество отходов при обработке. Так, например, штамповка – наиболее экономичный метод. Но в современном и развивающемся мире появляются новые методы, более экономичные, безопасные и эффективные. Таковыми являются методы, связанные с физическими свойствами металлов и химическими реакциями.

Новые технологические методы обработки металлов

Технологии электроэрозионного метода обработки

Данная новая технология обработки металла основана на действии уменьшенного электрического разряда. Благодаря данной обработке создаются сложнейшие детали и заготовки, используемые в аппаратах и машинах. Для работы необходимо обеспечить безопасность сотрудников, так как температура в местах плавления металла может достигать до 10000 градусов по Цельсию. Такая температура просто испаряет металл и позволяет при помощи технологии выполнять самые сложные и причудливые детали.

Сейчас эта технология используется почти во всех производствах, но особенно распространена в машиностроении и авиастроении. Мелкие детали, используемые в двигателях и турбинах, производятся именно с помощью этого оборудования.

Подобные станки производятся отечественными заводами, при этом спектр выпускаемого оборудования очень широк: от оборудования для производства малых деталей до обработки крупных несколькотонных запчастей. Ознакомиться с ним можно на нашей выставке.

Технологии с использованием Ультразвука

При помощи оборудования имеется возможность создания ультразвуковых волн и инфразвуковых колебаний. И те и другие колебания полностью безвредны для восприятия человеком, но в промышленности они находят широкое применение и подходят для работы с различными металлами – и с хрупкими и с твердыми. Сердцем станка является специальный преобразователь, который превращает электрический ток в высокочастотные колебания. Происходит это за счет движения тока по обмотке и создания переменного магнитного поля, которое колеблет преобразователь. Из колеблющегося преобразователя и исходит ультразвук. Также используются специальные преобразователи, которые способны изменять амплитуды большого колебания в амплитуды малые и наоборот. К торцу волновода крепится приспособление необходимой формы, обычно форма приспособления совпадает с формой необходимого отверстия.

Подобные станки чаще всего используют для изготовления матриц и их повторной обработки, а также для выполненных из феррита ячеек памяти для различных микросхем и полупроводниковых приборов. Это далеко не весь спектр работ, производимых с помощью ультразвука. Еще возможны работы по сварке, мойке, очистке и контролю измерений. Причем вся работа, производимая оборудованием на ультразвуке, эффективна и качественна. С ультразвуковым оборудованием можно познакомиться на выставочных экспозициях.

Новые технологии электрохимической обработки

В производстве обычно используют электролиз. Это реакция, при которой ионы, полученные от растворенного вещества, движутся к катоду и аноду в зависимости от того, положительно или отрицательно они заряжены. Продукты произошедшей в результате этого реакции либо оседают на электродах, либо превращаются в раствор.

При помощи электролиза изготавливают рельефные слепки различных моделей из металла, а также декоративные покрытия для изделий, получают металлы из воды и руд. Эта же новая технология обработки металла используется на производствах хлора.

Благодаря технологии с использованием электролиза можно без особых временных затрат организовывать производство запчастей любой формы и сложности. Проделывать пазы в деталях и разрезать уже имеющиеся заготовки. Существуют различные станки, которые применяют данный метод обработки. Главным преимуществом использования этого оборудования является возможность обработки любого металла, а также неизнашиваемость катода в процессе работы с металлом.

Кроме указанных выше методов обработки металлов и изготовления заготовок и деталей машин применяют и другие– сравнительно новые и весьма прогрессивные методы.

Сварка металла. До изобретения сварки металла производство, например, котлов, металлических корпусов судов или других работ, требующих соединения друг с другом металлических листов, было основано на применении метода клёпки.

В настоящее время клёпку почти не применяют, ее заменили сваркой металла. Сварное соединение надежнее, легче, производится быстрее и позволяет экономить металл. Сварные работы требуют меньшей затраты рабочей силы. Сваркой можно также соединять части поломанных деталей и путем наварки металла восстанавливать изношенные детали машин.

Существуют два способа сварки: газовая (автогенная) – при помощи горючего газа (смесь ацетилена и кислорода), дающего очень горячее пламя (свыше 3000° С), и электросварка, при которой металл плавится электрической дугой (температура до 6000°С). Наибольшее применение в настоящее время имеет электросварка, при помощи которой прочно соединяют мелкие и крупные металлические части (сваривают друг с другом части корпусов крупнейших морских судов, фермы мостов и другие строительные конструкции, части огромных котлов самого высокого давления, детали машин и т.п.). Вес свариваемых частей во многих машинах в настоящее время составляет 50-80% их общего веса.

Традиционная обработка металлов резанием достигается снятием стружки с поверхности заготовки. В стружку идет до 30-40% металла, что весьма неэкономично. Поэтому все большее внимание уделяется новым способам обработки металлов, основанным на безотходной или малоотходной технологии. Появление новых методов обусловлено также распространением в машиностроении высокопрочных, коррозийно-стойких и жаропрочных металлов и сплавов, обработка которых обычными методами затруднена.

К новым методам обработки металлов относятся химические, электрические, плазменно-лазерные, ультразвуковые, гидропластические.

При химической обработке используется химическая энергия. Снятие определенного слоя металла осуществляется в химически активной среде (химическое фрезерование). Она заключается в регулируемом по времени и месту растворении металла с поверхности заготовок путем травления их в кислотных и щелочных ваннах. В то же время поверхности, не подлежащие обработке, защищают химически стойкими покрытиями (лаки, краски и др.). Постоянство скорости травления поддерживается за счет неизменной концентрации раствора.

Химическими методами обработки получают местные утонения на нежестких заготовках, ребра жесткости; извилистые канавки и щели; «вафельные» поверхности; обрабатывают поверхности, труднодоступные для режущего инструмента.

При электрическом методе электрическая энергия преобразуется в тепловую, химическую и другие виды энергии непосредственно в процессе удаления заданного слоя. В соответствии с этим электрические методы обработки разделяют на электрохимические, электроэрозийные, электро-термические и электромеханические.

Электрохимическая обработка основана на законах анодного растворения металла при электролизе. При прохождении постоянного тока через электролит на поверхности заготовки, включенной в электрическую цепь и являющуюся анодом, происходит химическая реакция, и образуются соединения, которые переходят в раствор или легко удаляются механическим способом. Электрохимическую обработку применяют при полировании, размерной обработке, хонинговании, шлифовании, очистке металлов от оксидов, ржавчины.

Анодно-механическая обработка сочетает электротермические и электромеханические процессы и занимает промежуточное место между электрохимическим и электроэрозионным методами. Обрабатываемую заготовку подключают к аноду, а инструмент – к катоду. В качестве инструмента используют металлические диски, цилиндры, ленты, проволоки. Обработку ведут в среде электролита. Заготовке и инструменту задают такие же движения, как при обычных методах механической обработки.

При пропускании через электролит постоянного тока происходит процесс анодного растворения металла как при электрохимической обработке. При соприкосновении инструмента (катода) с микронеровностями обрабатываемой поверхности заготовки (анода) происходит процесс электроэрозии, присущий электроискровой обработке. Продукты электроэрозии и анодного растворения удаляются из зоны обработки при движении инструмента и заготовки.

Электроэрозионная обработка основана на законах эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока. Она применяется для прошивания полостей и отверстий любой формы, разрезания, шлифования, гравирования, затачивания и упрочнения инструмента. В зависимости от параметров импульсов и вида, применяемых для их получения генераторов электроэрозионная обработка разделяется на электроискровую, электроимпульсную и электроконтактную.

Электроискровую обработку применяют для изготовления штампов, пресс-форм, режущего инструмента и для упрочнения поверхностного слоя деталей.

Электроимпульсная обработка используется как предварительная при изготовлении штампов, турбинных лопаток, поверхностей фасонных отверстий в деталях из жаропрочных сталей. В этом процессе скорость съема металла примерно в десять раз больше, чем при электроискровой обработке.

Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом (инструментом) и удалении из зоны обработки расплавленного металла механическим способом. Метод не обеспечивает высокой точности и качества поверхности деталей, но дает высокую скорость съема металла, поэтому используется при зачистке отлива или проката из специальных сплавов, шлифовании (черновом) корпусных деталей машин из труднообрабатываемых сплавов.

Электромеханическая обработка связана с механическим действием электрического тока. На этом основана, например, электрогидравлическая обработка, использующая действие ударных волн, возникающих в результате импульсного пробоя жидкой среды.

Ультразвуковая обработка металлов – разновидность механической обработки – основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат электрозвуковые генераторы тока с частотой 16-30 кГц. Рабочий инструмент пуансон закрепляют на волноводе генератора тока. Под пуансоном устанавливают заготовку, и в зону обработки поступает суспензия, состоящая из воды и абразивного материала. Процесс обработки заключается в том, что инструмент, колеблющийся с ультразвуковой частотой, ударяет по зернам абразива, которые скалывают частицы материала заготовки. Ультразвуковая обработка используется для получения твердосплавных вкладышей, матриц и пуансонов, вырезания фигурных полостей и отверстий в деталях, прошивки отверстий с криволинейными осями, гравирования, нарезания резьбы, разрезания заготовок на части и др.

Плазменно-лазерные методы обработки основаны на использовании сфокусированного луча (электронного, когерентного, ионного) с весьма высокой плотностью энергии. Луч лазера используется как в качестве средства нагрева и размягчения металла впереди резца, так и для выполнения непосредственного процесса резания при прошивке отверстий, фрезеровании и резке листового металла, пластмасс и других материалов.

Процесс резания идет без образования стружки, а испаряющийся за счет высоких температур металл уносится сжатым воздухом. Лазеры применяют для сварки, наплавки и разрезания в тех случаях, когда к качеству этих операций предъявляются повышенные требования. Например, лазерным лучом режут сверхтвердые сплавы, титановые панели в ракетостроении, изделия из нейлона и др.

Гидропластическая обработка металлов применяется при изготовлении пустотелых деталей с гладкой поверхностью и малыми допусками (гидроцилиндры, плунжеры, вагонные оси, корпуса электродвигателей и др.). Пустотелую цилиндрическую заготовку, нагретую до температуры пластической деформации, помещают в массивную разъемную матрицу, сделанную по форме изготавливаемой детали, и закачивают под давлением воду. Заготовка раздается и принимает форму матрицы. Детали, изготовленные этим способом, имеют более высокую долговечность работы.

Новые способы обработки металлов выводят технологию изготовления деталей на качественно более высокий уровень по сравнению с традиционной технологией.



Поделиться