Жидкостные двигатели. Как действует реактивная сила? Принцип действия РД

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

Эта схема не показывает фактические сложности обычного двигателя. К примеру, норальное топливо - это холодный жидкий газ вроде жидкого водорода или жидкого кислорода. Одной из крупных проблем такого двигателя является охлаждение камеры сгорания и сопла, поэтому холодная жидкость сначала циркулирует вокруг перегретых частей, чтобы охладить их. Насосы должны генерировать чрезвычайно высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо. Вся эта подкачка и охлаждение делает ракетный двигатель больше похожим на неудачную попытку сантехнической самореализации. Давайте посмотрим на все виды комбинаций топлива, используемого в жидкотопливных ракетных двигателях:

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе - это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо - газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать и ждать, что там еще выкинет Элон Маск со своим SpaceX.

1) Изучение схемы и принципа работы жидкостного ракетного двигателя (ЖРД).

2) Определение изменение параметров рабочего тела вдоль тракта камеры ЖРД.

  1. ОБЩИЕ СВЕДЕНИЯ О ЖРД

2.1. Состав ЖРД

Реактивным двигателем называется техническое устройство, создающее тягу в результате истечения из него рабочего тела. Реактивные двигатели обеспечивают ускорение перемещающихся аппаратов различных типов.

Ракетный двигатель – это реактивный двигатель, использующий для работы только вещества и источники энергии, имеющиеся в запасе на борту перемещающегося аппарата.

Жидкостной ракетный двигатель (ЖРД) – это ракетный двигатель, использующий для работы топливо (первичный источник энергии и рабочее тело), находящееся в жидком агрегатном состоянии.

ЖРД в общем случае состоит из:

2- турбонасосных агрегатов (ТНА);

3- газогенераторов;

4- трубопроводов;

5- агрегатов автоматики;

6- вспомогательных устройств

Один или несколько ЖРД, в совокупности с пневмогидравлической системой (ПГС) подачи топлива в камеры двигателя и вспомогательными агрегатами ступени ракеты, составляют жидкостную ракетную двигательную установку (ЖРДУ).

В качестве жидкого ракетного топлива (ЖРТ) используется вещество или несколько веществ (окислитель, горючее), которые способны в результате экзотермических химических реакций образовывать высокотемпературные продукты сгорания (разложения). Эти продукты являются рабочим телом двигателя.

Каждая камера ЖРД состоит из камеры сгорания и сопла. В камере ЖРД первичная химическая энергия жидкого топлива преобразуется в конечную кинетическую энергию газообразного рабочего тела, в результате истечения которого создается реактивная сила камеры.

Отдельный турбонасосный агрегат ЖРД состоит из насосов и приводящей их в действия турбины. ТНА обеспечивает подачу компонентов жидкого топлива в камеры и газогенераторы ЖРД.

Газогенератор ЖРД является агрегатом, в котором основное или вспомогательное топливо преобразуется в продукты газогенерации, используемые в качестве рабочего тела турбины и рабочих тел системы наддува баков с компонентами ЖРТ.

Система автоматики ЖРД представляет собой совокупность устройств (клапанов, регуляторов, датчиков и т.п.) различных типов: электрического, механического, гидравлического, пневматического, пиротехнического и др. Агрегаты автоматики обеспечивают запуск, управление, регулирование и останов ЖРД.

Параметры ЖРД

Основными тяговыми параметрами ЖРД являются:


Реактивная сила ЖРД - R - результирующая газо- и гидродинамических сил, действующих на внутренние поверхности ракетного двигателя при истечении из него вещества;

Тяга ЖРД - Р - равнодействующая реактивной силы ЖРД (R) и всех сил давления окружающей среды, которые действуют на внешние поверхности двигателя за исключением сил внешнего аэродинамического сопротивления;

Импульс тяги ЖРД - I - интеграл от тяги ЖРД по времени его работы;

Удельный импульс тяги ЖРД - I у - отношение тяги (Р) к массовому расходу топлива () ЖРД.

Основными параметрами, которые характеризуют процессы, протекающие в камере ЖРД, служат давление (р), температура (Т) и скорость потока (W) продуктов сгорания (разложения) жидкого ракетного топлива. При этом особо выделяются значения параметров на входе в сопло (индекс сечения «с»), а также в критическом («*») и выходном («а») сечениях сопла.

Расчет значений параметров в различных сечениях тракта сопла ЖРД и определение тяговых параметров двигателя проводится по соответствующим уравнениям термогазодинамики. Приближенная методика подобного расчета рассмотрена в 4 разделе данного пособия.

  1. СХЕМА И ПРИНЦИП РАБОТЫ ЖРД «РД-214»

3.1. Общая характеристика ЖРД «РД-214»

Жидкостной ракетный двигатель «РД-214» применяется в отечественной практике с 1957 года. С 1962 года он устанавливается на 1-ой ступени многоступенчатых ракетах-носителях «Космос», с помощью которых на околоземные орбиты выведены многие спутники серий «Космос» и «Интеркомос».

ЖРД «РД-214» имеет насосную систему подачи топлива. Двигатель работает на высококипящем азотно-кислотном окислителе (растворе окислов азота в азотной кислоте) и углеводородном горючем (продуктах переработки керосина). Для газогенератора применяется специальный компонент – жидкая перекись водорода.

Основные параметры двигателя имеют следующие значения:

Тяга в пустоте Р п = 726 кН;

Удельный импульс тяги в пустоте I уп = 2590 Н×с/кг;

Давление газа в камере сгорания р к = 4,4 МПа;

Степень расширения газа в сопле e = 64

ЖРД «РД-214», (рис. 1) состоит из:

Четырех камер (поз. 6);

Одного турбонасосного агрегата (ТНА) (поз. 1, 2, 3, 4);

Газогенератора (поз. 5);

Трубопровода;

Агрегатов автоматики (поз. 7, 8)

ТНА двигателя состоит из насоса окислителя (поз. 2), насоса горючего (поз. 3), насоса перекиси водорода (поз. 4) и турбины (поз. 1). Ротора (вращающиеся части) насосов и турбины связаны одним валом.

Агрегаты и узлы, обеспечивающие подачу компонентов в камеру двигателя, газогенератор и турбину, объединяются в три отдельные системы – магистрали:

Систему подачи окислителя

Систему подачи горючего

Систему парогазогенерации перекиси водорода.


Рис.1. Схема жидкостного ракетного двигателя

1 – турбина; 2 – насос окислителя; 3 – насос горючего;

4 – насос перекиси водорода; 5 – газогенератор (реактор);

6 – камера двигателя; 7, 8 – элементы автоматики.

3.2. Характеристика агрегатов ЖРД «РД-214»

3.2.1. Камера ЖРД

Четыре камеры ЖРД связаны в единый блок по двум сечениям с помощью болтов.

Каждая камера ЖРД (поз. 6) состоит из смесительной головки и корпуса. Смесительная головка включает верхнее, среднее и нижнее (огневое) днища. Между верхним и средним днищами образована полость для окислителя, между средним и огневым – полость для горючего. Каждая из полостей с помощью соответствующих форсунок связана с внутренним объемом корпуса двигателя.

В процессе работы ЖРД через смесительную головку и ее форсунки осуществляется подача, распыл и смешение жидких компонентов топлива.

Корпус камеры ЖРД включает часть камеры сгорания и сопло. Сопло ЖРД сверхзвуковое, имеет сходящуюся и расходящуюся части.

Корпус камеры ЖРД двухстенный. Внутренняя (огневая) и наружная (силовая) стенки корпуса связаны между собой проставками. При этом, с помощью проставок, между стенками образованы каналы тракта жидкостного охлаждения корпуса. В качестве охладителя используется горючее.

Во время работы двигателя горючее подается в тракт охлаждения через специальные патрубки коллектора, расположенного на конечной части сопла. Пройдя тракт охлаждения, горючее поступает в соответствующую полость смесительной головки и через форсунки вводится в камеру сгорания. Одновременно через другую полость смесительной головки и соответствующие форсунки, в камеру сгорания поступает окислитель.

В объеме камеры сгорания происходит распыл, смешение и сгорание жидких компонентов топлива. В результате образуется высокотемпературное газообразное рабочее тело двигателя.

Затем в сверхзвуковом сопле осуществляется преобразование тепловой энергии рабочего тела в кинетическую энергию его струи, при истечении которой создается тяга ЖРД.

3.2.2. Газогенератор и турбонасосный агрегат

Газогенератор (рис. 1, поз. 5) является агрегатом, в котором жидкая перекись водорода в результате экзотермического разложения преобразуется в высокотемпературное парообразное рабочее тело турбины.

Турбонасосный агрегат обеспечивает напорную подачу жидких компонентов топлива в камеру и газогенератор двигателя.

ТНА состоит из (рис. 1):

Шнекоцентробежного насоса окислителя (поз. 2);

Шнекоцентробежного насоса горючего (поз. 3);

Центробежного насоса перекиси водорода (поз. 4);

Газовой турбины (поз. 1).

Каждый насос и турбина имеет неподвижный статор и вращающийся ротор. Роторы насосов и турбины имеют общий вал, состоящий из двух частей, которые связаны рессорой.

Турбина (поз. 1) служит приводом насосов. Основными элементами статора турбины являются корпус и сопловой аппарат, а ротора – вал и рабочее колесо с лопатками. В процессе работы, на турбину из газогенератора поступает перекисный парогаз. При прохождении парогаза через сопловой аппарат и лопатки рабочего колеса турбины, его тепловая энергия преобразуется в механическую энергию вращения колеса и вала ротора турбины. Отработанный парогаз собирается в выходном коллекторе корпуса турбины и сбрасывается в атмосферу через специальные отбросные сопла. При этом создается некоторая дополнительная тяга ЖРД.

Насосы окислителя (поз. 2) и горючего (поз. 3) шнекоцентробежного типа. Основными элементами каждого из насосов является корпус и ротор. Ротор имеет вал, шнек и центробежное колесо с лопатками. В процессе работы от турбины к насосу через общий вал подводится механическая энергия, обеспечивающая вращения ротора насоса. В результате воздействия лопаток шнека и центробежного колеса на прокачиваемую насосами жидкость (компонент топлива), механическая энергия вращения ротора насоса преобразуется в потенциальную энергию давления жидкости, что обеспечивает подачу компонента в камеру двигателя. Шнек перед центробежным колесом насоса устанавливается для предварительного повышения давления жидкости на входе в межлопаточные каналы рабочего колеса с целью предотвращения холодного вскипания жидкости (кавитации) и нарушения ее сплошности. Нарушения сплошности потока компонента может вызвать неустойчивость процесса сгорания топлива в камере двигателя, а, следовательно, и неустойчивость работы ЖРД в целом.

Для подачи в газогенератор перекиси водорода применяется центробежный насос (поз. 4). Сравнительно малый расход компонента создает условия бескавитационной работы центробежного насоса без установки перед ним шнекового преднасоса.

3.3. Принцип работы двигателя

Пуск, управление и остановка двигателя выполняется автоматически по электрическим командам с борта ракеты на соответствующие элементы автоматики.

Для начального воспламенения компонентов топлива используется специальное пусковое горючее, самовоспламеняющиеся с окислителем. Пусковое горючее первоначально заполняет небольшой участок трубопровода перед насосом горючего. В момент запуска ЖРД в камеру поступает пусковое горючее и окислитель, происходит их самовоспламенение и лишь затем в камеру начинают подаваться основные компоненты топлива.

В процессе работы двигателя окислитель последовательно проходит элементы и агрегаты магистрали (системы), включающей:

Разделительный клапан;

Насос окислителя;

Клапан окислителя;

Смесительную головку камеры двигателя.

Поток горючего протекает по магистрали, включающей:

Разделительные клапана;

Насос горючего;

Коллектор и тракт охлаждения камеры двигателя;

Смесительную головку камеры.

Перекись водорода и образующийся парогаз последовательно проходят элементы и агрегаты системы парогазогенерации, включающей:

Разделительный клапан;

Насос перекиси водорода;

Гидроредуктор;

Газогенератор;

Сопловой аппарат турбины;

Лопатки рабочего колеса турбины;

Коллектор турбины;

Отбросные сопла.

В результате непрерывной подачи турбонасосным агрегатом компонентов топлива в камеру двигателя, их сгорание с образованием высокотемпературного рабочего тела и истечения рабочего тела из камеры, создается тяга ЖРД.

Варьирование значения тяги двигателя в процессе его работы обеспечивается с помощью изменения расхода перекиси водорода, подаваемой в газогенератор. При этом изменяется мощность турбины и насосов, а, следовательно, и подача компонентов топлива в камеру двигателя.

Останов ЖРД производится в две ступени с помощью элементов автоматики. С основного режима двигатель сначала переводится на конечный режим работы с меньшей тягой и лишь затем выключается полностью.

  1. МЕТОДИКА ПРОВЕДЕНИЯ РАБОТЫ

4.1. Объем и порядок выполнения работы

В процессе выполнения работы последовательно выполняются следующие действия.

1) Изучается схема ЖРД «РД-214». Рассматривается назначение и состав ЖРД, конструкция агрегатов, принцип работы двигателя.

2) Производится измерение геометрических параметров сопла ЖРД. Находится диаметр входного («с»), критического («*») и выходного («а») сечений сопла (D с, D * , D а).

3) Рассчитывается значение параметров рабочего тела ЖРД во входном, критическом и выходном сечениях сопла ЖРД.

По результатам расчетов строится обобщенный график изменения температуры (Т), давления (р) и скорости (W) рабочего тела вдоль тракта сопла (L) ЖРД.

4) Определяются тяговые параметры ЖРД при расчетном режиме работы сопла ().

4.2. Исходные данные для расчета параметров ЖРД «РД-214»

Давление газа в камере (см. вариант)

Температура газов в камере

Газовая постоянная

Показатель изоэнтропы

Функция

Принимается, что процессы в камере протекают без потерь энергии. При этом коэффициенты потерь энергии в камере сгорания и сопле соответственно равны

Режим работы сопла расчетный (индекс «r »).

Посредством измерения определяются:

Диаметр критического сечения сопла ;

Диаметр выходного сечения сопла .

4.3. Последовательность расчета параметров ЖРД

А) Параметры в выходном сечении сопла («а») определяются в следующей последовательности.

1) Площадь выходного сечения сопла

2) Площадь критического сечения сопла

3) Геометрическая степень расширения газа

На прошлой неделе я описывал устройство и принцип работы всех применяемых в космонавтике химических ракетных двигателей, в том числе и жидкостный ракетный двигатель (ЖРД). Для понимания принципа работы я привел простейшую схему:

На ней все до банальности просто: трубы с компонентами топлива входят в камеру сгорания, где топливо горит, а продукты сгорания выбрасываются через сопло назад, толкая двигатель вперед.

Так как же такая простая схема на деле превращается в такое сложное переплетение всяких трубок, проводов и устройств?

Начнем с того, что компоненты топлива в камеру сгорания надо как-то подавать. Самый простой способ - подать в баки с горючим и окислителем сжатый газ, чтобы его давление вытесняло из баков жидкость в камеру сгорания.

При всей своей простоте у вытеснительной подачи есть серьезный недостаток: давление газа наддува должно быть выше рабочего давления в камере сгорания, а там ведь десятки, а то и сотни атмосфер. Для реализации такой схемы придется делать баки очень прочными, чтобы они выдержали такое чудовищное давление, а это значит, что их стенки будут очень толстыми и тяжелыми. Масса - враг номер один в ракетно-космической технике, поэтому такое решение не годится. На практике вытеснительная система подачи применяется в двигателях с рабочим давлением в камере сгорания меньше 10 атмосфер. Это могут быть двигатели малой тяги для ориентации космического аппарата и маневрирования.

Для маршевых двигателей ракетных ступеней применяют такую схему подачи топлива, где компоненты топлива под действием небольшого давления газа наддува поступают в насосы, которые в свою очередь за счет вращения крыльчаток (как обычная водяная помпа, только прочнее, мощнее и тяжелее) подают жидкости в камеру сгорания под большим давлением.

Крыльчатки насосов должны вращаться с огромной скоростью, чтобы поддерживать давление в сотни атмосфер, поэтому для их привода нужно что-то посильнее обычного электромотора. Таким приводом служит турбина - такая же крыльчатка, которая вращается под действием проходящего через нее рабочего газа. Эта крыльчатка находится на одном валу с крыльчатками насосов для горючего и окислителя, и вся конструкция называется турбонасосный агрегат (ТНА).

Но откуда берется рабочий газ? Его производит специальное устройство - газогенератор . По сути это маленький однокомпонентный ЖРД, только вместо сопла из его рабочей камеры выходит труба, подающая так называемый парогаз (смесь кислорода и раскаленного водяного пара) в турбину ТНА. После турбины отработанный парогаз выбрасывается наружу через специальный патрубок. Таким образом у нас в схеме появился бак с перекисью водорода, газогенератор, ТНА и трубопроводы, соединяющие все это добро:

Также не следует забывать про вентили, которыми автоматика управляет потоками жидкостей и газов в трубах. К каждому такому вентилю идут провода, что вносит свой вклад в этот клубок.

В более мощных двигателях в газогенератор подаются те же компоненты топлива, которые используются в основной камере сгорания. В этом случае бак с перекисью не нужен, но из основных баков выходят дополнительные трубы, а на валу ТНА появляются насосы для подачи жидкостей в газогенератор. Для запуска этой системы приходится применять пиротехнические шашки для первоначальной раскрутки ТНА.

На этом видео стендовых испытаний двигателя на 15-й секунде хорошо видно, как из патрубка рядом с соплом выбрасывается отработанный парогаз:

Двигатели, где газ после ТНА выбрасывается наружу, называются ЖРД открытого цикла. В таких двигателях можно добиваться большего давления в камере сгорания, а его ТНА меньше подвержен износу, чем в ЖРД закрытого цикла, в которых газ подается в сопло, где дожигается, принимая участие в создании тяги. ЖРД закрытого цикла обладают большим коэффициентом полезного действия (надеюсь, помните, что это такое из школьной физики? ;)).

В большинстве космических ракет используются топливные пары, в которых один или оба компонента имеют очень низкую температуру кипения (жидкий кислород и жидкий водород). Пока ракета стоит на старте, эти криогенные жидкости в баках кипят и повышают давление. Чтобы баки не разорвало, их нужно дренировать. Дренаж - это сброс в атмосферу газов, образующихся при кипении криогенных жидкостей. Для этого баки с этими жидкостями оснащаются специальной трубой с вентилем, выходящей из корпуса ракеты наружу.

На этом видео на 19.25 виден туман, идущий от ракеты сверху справа. Это дренаж кислорода. Водород при дренировании надо отводить подальше, чтобы он не образовывал с кислородом взрывоопасную смесь, поэтому его сброс виден а мачте за ракетой.

Вот, вроде бы, получили мы рабочую схему ЖРД, но только вот проблема: проработает такая схема не больше нескольких секунд, а потом камера сгорания и сопло расплавятся. Уж слишком там горячо. Значит стенки камеры сгорания и сопла надо охлаждать. Для этого применяют два способа: жидкостное охлаждение и паровую завесу.

Для осуществления первого способа стенки камеры сгорания и сопла пронизаны множеством каналов, по которым течет горючее перед тем, как попасть внутрь камеры сгорания. Система работает по принципу холодильника самогонного аппарата.

Паровая завеса - это слой паров горючего, отделяющий горящую топливную смесь от стенок камеры сгорания. Образуется он при впрыске некоторого количества горючего через специальные форсунки в стенках камеры сгорания и корпуса двигателя:

В этом видео, посвященном двигателю F-1 ракеты Сатурн-5, с 49-й секунды видно между срезом сопла и ярким пламенем некую темную область. Это и есть завеса, защищающая сопло от адского жара потока газов.

Таким образом схема ЖРД из первоначальной простоты превратилась в это:

Также стоит сказать пару слов о строении головки камеры сгорания. На этой фотографии представлена головка камеры в разрезе. Видно, что у нее довольно сложное строение.

Дело в том, что для достижения надежного зажигания и стабильного горения нужно хорошо перемешать компоненты топлива, причем, в нужной пропорции. Для этого применяются специальные схемы расположения форсунок:

Кружочками отмечены форсунки подачи окислителя, точками - горючего.
а) Шахматная схема подачи. Применяется для топливных пар, в которых горючее и окислитель смешиваются примерно один к одному.
б) Сотовая схема подачи. Самая эффективная: каждая форсунка подачи горючего окружена форсунками подачи окислителя.
в) Концентрическая схема подачи.
Обратите внимание, что во всех трех схемах внешнее кольцо форсунок подает только горючее. Это нужно для предотвращения коррозии стенок камеры сгорания под действием окислителя.

Сами форсунки тоже имеют сложную конструкцию. Например, вот такая центробежная форсунка:

В некоторые форсунки вставлен шнек - устройство наподобие винта в мясорубке. Все эти хитрости нужны для одной цели: максимально приблизить зону смешивания компонентов топлива к головке камеры сгорания, чтобы сделать камеру меньше и легче.

Теперь нам осталось поговорить о системах зажигания. Тут все достаточно просто: внутри камеры сгорания помещается некое устройство, дающее огонь. Таким устройством может быть пороховая шашка, электродуговой разрядник, газовая горелка наподобие сварочной. В последнее время проводятся эксперименты по разработке лазерных систем. В ракетах Союз пошли по совсем простому пути: пиротехнические шашки поместили в камеры сгорания на обычных деревянных палках:

А для топливной пары НДМГ+АТ (несимметричный диметилгидразин + азотный тетраоксид), используемой на ракетах Протон, системы зажигания и вовсе не нужны, так как компоненты топлива самовоспламеняются при смешивании.

И последнее, о чем мы сегодня поговорим, - запуск ЖРД в невесомости.

Это серьезная проблема, так как в невесомости жидкость в баках перемешивается с газом, слипается в пузыри и не поступает в трубопроводы. Советские конструкторы первых ракет, оснащенных третьей ступенью, пошли в обход этой проблемы: двигатель третьей ступени запускался до того, как останавливался двигатель второй ступени. Для выхода газовой струи двигателя предназначалась решетчатая конструкция между второй и третьей ступенями. Наглядно этот процесс показан на времени 11.25 здесь:

Но все время так не поделаешь: для баллистической схемы выведения и для орбитальных маневров все-таки придется запускать ЖРД в невесомости.

Самый простой вариант: заключить жидкость в баке в полимерный мешок, который предотвратит перемешивание жидкости с газом:

Но такой способ не годится для баков большого объема: слишком непрочен мешок. Поэтому система с мешком применяется для запуска двигателей малой тяги, которые работают несколько секунд, создавая ускорение, достаточное для осаживания жидкостей в больших баках.

На этом видео с самого начала виден этот процесс: три газовые струи исходят как раз от двигателей малой тяги, а через несколько секунд происходит зажигание основного двигателя.

Вот такие инженерные хитрости приходится применять для решения всех проблем, связанных с работой ЖРД. Расплатой за это становится сложность конструкции двигателя, превращающегося в такой клубок, что без бутылки и не разберешься.

История

На возможность использования жидкостей, в том числе жидких водорода и кислорода, в качестве топлива для ракет указывал К. Э. Циолковский в статье «Исследование мировых пространств реактивными приборами», опубликованной в 1903 году. Первый работающий экспериментальный ЖРД построил американский изобретатель Роберт Годдард в 1926 г. Аналогичные разработки в 1931-1933 гг. проводились в СССР группой энтузиастов под руководством Ф. А. Цандера. Эти работы были продолжены в организованном в 1933 г. РНИИ, но в 1938 г. тематика ЖРД в нём была закрыта, а ведущие конструкторы С. П. Королёв и В. П. Глушко были репрессированы, как «вредители».

Наибольших успехов в разработке ЖРД в первой половине XX в. добились немецкие конструкторы Вальтер Тиль, Гельмут Вальтер, Вернер фон Браун и др. В ходе Второй мировой войны они создали целый ряд ЖРД для ракет военного назначения: баллистической Фау-2, зенитных Вассерфаль, Шметтерлинг, Райнтохтер R3. В Третьем рейхе к 1944 г. фактически была создана новая отрасль индустрии - ракетостроение, под общим руководством В. Дорнбергера, в то время, как в других странах разработки ЖРД находились в экспериментальной стадии.

По окончании войны разработки немецких конструкторов подтолкнули исследования в области ракетостроения в СССР и в США, куда эмигрировали многие немецкие учёные и инженеры, в том числе В. фон Браун. Начавшаяся гонка вооружений и соперничество СССР и США за лидерство в освоении космоса явились мощными стимуляторами разработок ЖРД.

В 1957 г. в СССР под руководством С. П. Королёва была создана МБР Р-7, оснащённая ЖРД РД-107 и РД-108, на тот момент самими мощными и совершенными в мире, разработанными под руководством В. П. Глушко. Эта ракета была использована, как носитель первых в мире Искусственных спутников земли, первых пилотируемых космических аппаратов и межпланетных зондов.

В 1969 г. в США был запущен первый космический корабль серии Аполлон, выведенный на траекторию полёта к Луне ракетой-носителем Сатурн-5, первая ступень которой была оснащена 5-ю двигателями F-1. F-1 по настоящее время является самым мощным среди однокамерных ЖРД, уступая по тяге четырёхкамерному двигателю РД-170, разработанному КБ «Энергомаш» в Советском Союзе в 1976 г.

В настоящее время космические программы всех стран базируются на использовании ЖРД.

Устройство и принцип действия двукомпонентного ЖРД

Рис. 1 Схема двукомпонентного ЖРД 1 - магистраль окислителя 2 - магистраль горючего 3 - насос окислителя 4 - насос горючего 5 - турбина 6 - газогенератор 7 - клапан газогенератора (окислитель) 8 - клапан газогенератора (горючее) 9 - главный клапан окислителя 10 - главный клапан горючего 11 - выхлоп турбины 12 - смесительная головка 13 - камера сгорания 14 - сопло

Существует довольно большое разнообразие схем устройства ЖРД, при единстве главного принципа их действия. Рассмотрим устройство и принцип действия ЖРД на примере двукомпонентного двигателя с насосной подачей топлива, как наиболее распространённого, схема которого стала классической. Другие типы ЖРД (за исключением трёхкомпонентного) являются упрощенными вариантами рассматриваемого, и при их описании достаточно будет указать упрощения.

На рис. 1 схематически представлено устройство ЖРД.

Компоненты топлива - горючее (1) и окислитель (2) поступают из баков на центробежные насосы (3, 4), приводимые в движение газовой турбиной (5). Под высоким давлением компоненты топлива поступают на форсуночную головку (12) - узел, в котором размещены форсунки, через которые компоненты нагнетаются в камеру сгорания (13), перемешиваются и сгорают, образуя нагретое до высокой температуры газообразное рабочее тело, которое, расширяясь в сопле, совершает работу и преобразует внутреннюю энергию газа в кинетическую энергию его направленного движения. Через сопло (14) газ истекает с большой скоростью, сообщая двигателю реактивную тягу.

Компоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты, которые при недостаточно высоком значении удельного импульса могут оказаться нереальными.

Управление ракетой

В жидкостных ракетах двигатели часто помимо основной функции - создания тяги, выполняют также роль органов управления полётом. Уже первая управляемая баллистическая ракета Фау-2 управлялась с помощью 4 графитных газодинамических рулей, помещённых в реактивную струю двигателя по периферии сопла. Отклоняясь, эти рули отклоняли часть реактивной струи, что изменяло направление вектора тяги двигателя, и создавало момент силы относительно центра масс ракеты, что и являлось управляющим воздействием. Этот способ заметно снижает тягу двигателя, к тому же графитные рули в реактивной струе подвержены сильной эрозии и имеют очень малый временной ресурс.

В современных системах управления ракетами используются поворотные камеры ЖРД, которые крепятся к несущим элементам корпуса ракеты с помощью шарниров, позволяющих поворачивать камеру в одной или в двух плоскостях. Компоненты топлива подводятся к камере с помощью гибких трубопроводов - сильфонов. При отклонении камеры от оси, параллельной оси ракеты, тяга камеры создаёт требуемый управляющий момент силы. Поворачиваются камеры гидравлическими или пневматическими рулевыми машинками, которые исполняют команды, вырабатываемые системой управления ракетой.

В отечественном космическом носителе Союз помимо 20 основных, неподвижных камер двигательной установки имеются 12 поворотных (каждая - в своей плоскости), управляющих камер меньшего размера. Рулевые камеры имеют общую топливную систему с основными двигателями.

Из 11 маршевых двигателей (всех ступеней) ракеты-носителя Сатурн-5 девять (кроме центральных 1-й и 2-й ступеней) являются поворотными, каждый - в двух плоскостях. При использовании основных двигателей в качестве управляющих рабочий диапазон поворота камеры составляет не более ±5°: ввиду большой тяги основной камеры и расположения её в кормовом отсеке, то есть на значительном расстоянии от центра масс ракеты, даже небольшое отклонение камеры создаёт значительный управляющий момент.

Помимо поворотных камер, иногда используются двигатели, служащие только для целей управления и стабилизации летательного аппарата. Две камеры с противоположно направленными соплами жёстко закрепляются на корпусе аппарата таким образом, чтобы тяга этих камер создавала момент силы вокруг одной из главных осей аппарата. Соответственно, для управления по двум другим осям также устанавливаются свои пары управляющих двигателей. Эти двигатели (как правило, однокомпонентные) включаются и выключаются по команде системы управления аппаратом, разворачивая его в требуемом направлении. Такие системы управления обычно используются для ориентации летательных аппаратов в космическом пространстве.

Жидкостный ракетный двигатель – это двигатель, топливом для которого служат сжиженные газы и химические жидкости. В зависимости от количества компонентов ЖРД делятся на одно-, двух- и трехкомпонентные.

Краткая история развития

Впервые использование сжиженного водорода и кислорода как топлива для ракет предложил К.Э. Циолковский в 1903 году. Первый прототип ЖРД создал американец Роберт Говард в 1926 году. Впоследствии подобные разработки проводились в СССР, США, Германии. Самых больших успехов добились немецкие ученые: Тиль, Вальтер, фон Браун. Во время Второй мировой войны они создали целую линейку ЖРД для военных целей. Есть мнение, что создай Рейх «Фау-2» раньше, они бы выиграли войну. Впоследствии холодная война и гонка вооружений стали катализатором для ускорения разработок ЖРД с целью применения их в космической программе. При помощи РД-108 были выведены на орбиту первые искусственные спутники Земли.

Сегодня ЖРД используется в космических программах и тяжелом ракетном вооружении.

Сфера применения

Как уже было сказано выше, ЖРД используется в основном как двигатель космических аппаратов и ракет-носителей. Основными преимуществами ЖРД есть:

  • наивысший удельный импульс в классе;
  • возможность выполнения полной остановки и повторного запуска в паре с управляемостью по тяге дает повышенную маневренность;
  • значительно меньший вес топливного отсека в сравнении со твердотопливными двигателями.

Среди недостатков ЖРД:

  • более сложное устройство и дороговизна;
  • повышенные требования к безопасной транспортировке;
  • в состоянии невесомости необходимо задействовать дополнительные двигатели для осаждения топлива.

Однако основным недостатком ЖРД является предел энергетических возможностей топлива, что ограничивает космическое освоение с их помощью до расстояния Венеры и Марса.

Устройство и принцип действия

Принцип действия ЖРД один, но он достигается при помощи разных схем устройств. Горючее и окислитель при помощи насосов поступают из разных баков на форсуночную головку, нагнетаются в камеру сгорания и смешиваются. После возгорания под давлением внутренняя энергия топлива превращается в кинетическую и через сопло вытекает, создавая реактивную тягу.

Топливная система состоит из топливных баков, трубопроводов и насосов с турбиной для нагнетания топлива из бака в трубопровод и клапана-регулятора.

Насосная подача топлива создает высокое давление в камере и, как следствие, большее расширение рабочего тела, за счет которого достигается максимальное значение удельного импульса.

Форсуночная головка – блок форсунок для осуществления впрыска топливных компонентов в камеру сгорания. Основное требование к форсунке – качественное смешивание и скорость подачи топлива в камеру сгорания.

Система охлаждения

Хотя доля теплоотдачи конструкции в процессе сгорания незначительна, проблема охлаждения актуальна ввиду высокой температуры горения (>3000 К) и грозит термическим разрушением двигателя. Выделяют несколько типов охлаждения стенок камеры:

    Регенеративное охлаждение базируется на создании полости в стенках камеры, через которую проходит горючее без окислителя, охлаждая стенку камеры, а тепло вместе с охладителем (горючим) возвращается обратно в камеру.

    Пристенный слой – это созданный из паров горючего слой газа у стенок камеры. Достигается этот эффект путем установки по периферии головки форсунок подающих только горючее. Таким образом горючая смесь испытывает недостаток окислителя, и горение у стенки происходит не так интенсивно, как в центре камеры. Температура пристенного слоя изолирует высокие температуры в центре камеры от стенок камеры сгорания.

    Абляционный метод охлаждения жидкостного ракетного двигателя осуществляется нанесением на стенки камеры и сопел специального теплозащитного покрытия. Покрытие при высоких температурах переходит из твердого состояния в газообразное, поглощая большую долю тепла. Данный метод охлаждения жидкостного ракетного двигателя использовался в лунной программе «Аполлон».

Запуск ЖРД очень ответственная операция в плане взрывоопасности при сбоях в ее осуществлении. Есть самовоспламеняющиеся компоненты, с которыми не возникает трудностей, однако при использовании для воспламенения внешнего инициатора необходима идеальная согласованность подачи его с компонентами топлива. Скопление несгоревшего топлива в камере имеет разрушительную взрывную силу и сулит тяжелые последствия.

Запуск больших жидкостных ракетных двигателей проходит в несколько ступеней с последующим выходом на максимальную мощность, в то время как малые двигатели запускаются с моментальным выходом на стопроцентную мощность.

Система автоматического управления жидкостных ракетных двигателей характеризируется выполнением безопасного запуска двигателя и выхода на основной режим, контролем стабильной работы, регулировкой тяги согласно плану полета, регулировкой расходников, отключением при выходе на заданную траекторию. Вследствие не поддающихся расчетам моментов ЖРД оснащается гарантийным запасом топлива, чтобы ракета могла выйти на заданную орбиту при отклонениях в программе.

Компоненты топлива и их выбор в процессе проектирования являются решающими в схеме построения жидкостного ракетного двигателя. Исходя из этого, определяются условия хранения, транспортировки и технологии производства. Важнейшим показателем сочетания компонентов является удельный импульс, от которого зависит распределение процента массы топлива и груза. Размеры и масса ракеты рассчитываются при помощи формулы Циолковского. Кроме удельного импульса, плотность влияет на размер баков с компонентами горючего, температура кипения может ограничивать условия эксплуатации ракет, химическая агрессивность свойственна всем окислителям и при несоблюдении правил эксплуатации баков может стать причиной возгорания бака, токсичность некоторых соединений топлива может нанести серьезный вред атмосфере и окружающей среде. Поэтому фтор хотя и является лучшим окислителем, чем кислород, не используется ввиду своей токсичности.

Однокомпонентные жидкостные ракетные двигатели как топливо используют жидкость, которая, взаимодействуя с катализатором, распадается с выходом горячего газа. Основное преимущество однокомпонентных ЖРД в простоте их конструкции, и хотя удельный импульс таких двигателей небольшой, они идеально подходят как двигатели с малой тягой для ориентации и стабилизации космических аппаратов. Данные двигатели используют вытеснительную систему подачи горючего и ввиду небольшой температуры процесса не нуждаются в системе охлаждения. К однокомпонентным двигателям относятся также газореактивные двигатели, которые используются в условиях недопустимости тепловых и химических выхлопов.

В начале 70-х годов США и СССР разрабатывали трехкомпонентные жидкостные ракетные двигатели, которые использовали бы в качестве горючего водород и углеводородное горючее. Таким образом двигатель работал бы на керосине и кислороде при запуске и переключался на жидкий водород и кислород на большой высоте. Примером трехкомпонентного ЖРД в России есть РД-701.

Управление ракетой впервые было применено в ракетах «Фау-2» при использовании графитных газодинамических рулей, однако это снижало тягу двигателя, и в современных ракетах используются поворотные камеры, прикрепленные к корпусу шарнирами, создающими маневренность в одной или двух плоскостях. Кроме поворотных камер, используются также двигатели управления, которые закреплены соплами в противоположном направлении и включаются при необходимости управления аппаратом в пространстве.

ЖРД закрытого цикла – это двигатель, один из компонентов которого газифицируется при сжигании при небольшой температуре с малой частью другого компонента, полученный газ выступает как рабочее тело турбины, а после подается в камеру сгорания, где сгорает с остатками топливных компонентов и создает реактивную тягу. Основным недостатком данной схемы есть сложность конструкции, но при этом удельный импульс увеличивается.

Перспектива увеличения мощности жидкостных ракетных двигателей

В российской школе создателей ЖРД, руководителем которой долгое время был академик Глушко, стремятся к максимальному использованию энергии топлива и, как следствие, предельно возможному удельному импульсу. Так как максимальный удельный импульс можно получить лишь при повышении расширения продуктов сгорания в сопле, все разработки ведутся на поиски идеальной топливной смеси.



Поделиться