Как работает турбина на тэц. Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо

March 23rd, 2013

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос, так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост z_alexey о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.
Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленной портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.
Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов, оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. Итак по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем то именно таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Оказывается все очень просто. Что бы охладить, оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника техническая вода нагревается и уходит на градирни. Там она стекает тонкой пленкой вниз или падает вниз в виде капель и охлаждается за счет встречного потока воздуха, создаваемого вентиляторами. А в эжекционных градирнях вода распыляется с помощью специальных форсунок. В любом случае основное охлаждение происходит за счет испарения небольшой части воды. С градирен остывшая вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование.
Одним словом, градирни нужны, что бы охлаждать воду, которая охлаждает пар, работающий в системе котел - турбина.

Вся работа ТЭЦ, контролируется из Главного Щита Управления.

Здесь постоянно находится дежурный.

Все события заносятся в журнал.

Меня хлебом не корми, дай сфотографировать кнопочки и датчики...

На этом, почти все. В завершение осталось немного фотографий станции.

Это старая, уже не рабочая труба. Скорее всего скоро ее снесут.

На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.

И их достижениями.

Похоже, что не напрасно...

Осталось добавить, что как в анекдоте - "Я не знаю, кто эти блогеры, но экскурсовод у них директор филиала в Марий Эл и Чувашии ОАО "ТГК-5", КЭС холдинга - Добров С.В."

Вместе с директором станции С.Д. Столяровым.

Без преувеличения - настоящие профессионалы своего дела.

Ну и конечно, огромное спасибо Ирине Романовой, представляющей пресс-службу компании, за прекрасно организованный тур.

Теплоэлектроцентраль

Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара
а - турбина с противодавлением и отбором пара, отпуск тепла - по открытой схеме;
б - конденсационная турбина с отбором пара, отпуск тепла - по открытой и закрытой схемам;
ПК - паровой котёл ;
ПП - пароперегреватель ;
ПТ - паровая турбина ;
Г - электрический генератор ;
К - конденсатор ;
П - регулируемый производственный отбор пара на технологические нужды промышленности;
Т - регулируемый теплофикационный отбор на отопление;
ТП - тепловой потребитель;
ОТ - отопительная нагрузка;
КН и ПН - конденсатный и питательный насосы;
ПВД и ПНД - подогреватели высокого и низкого давления;
Д - деаэратор ;
ПБ - бак питательной воды;
СП - сетевой подогреватель;
СН - сетевой насос.

Теплоэлектроцентраль (ТЭЦ) - тепловая электростанция , вырабатывающая не только электрическую энергию , но и тепло , отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы , является отличительной особенностью ТЭЦ и носит название теплофикация . Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях (в СССР - ГРЭС) и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.

Описание

Исходный источник энергии на ТЭЦ - органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на атомных ТЭЦ). Преимущественное распространение имеют паротурбинные ТЭЦ на органическом топливе, являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа - для снабжения теплом промышленных предприятий, и отопительного типа - для отопления жилых и общественных зданий, а также для снабжения их горячей водой . Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных - на расстояние до 20-30 км (в виде тепла горячей воды).

  • Угольная ТЭЦ в Англии

Теплофикационные турбины

Основное оборудование паротурбинных ТЭЦ - турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию , и котлоагрегаты, вырабатывающие пар для турбин . В состав турбоагрегата входят паровая турбина и синхронный генератор . Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7-1,5 Мн/м 2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7- 1,5 Мн/м 2 (для промышленных потребителей) и 0,05-0,25 Мн/м 2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05-0,25 Мн/м2.

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность , развиваемая такими турбинами , зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности . Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по «тепловому» графику, то есть с минимальным «вентиляционным» пропуском пара в конденсатор . ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по «электрическому» графику, с необходимой, полной или почти полной электрической мощностью .

Мощность теплофикационных турбоагрегатов

Электрическую мощность теплофикационных турбоагрегатов (в отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара . Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ч), но различную электрическую мощность (соответственно 100, 135 и 175 Мвт). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицировались также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мвт, так и самых крупных в мире ТТ на 250 Мвт.

Давление свежего пара на ТЭЦ принято в СССР равным ~ 13-14 Мн/м 2 (преимущественно) и ~ 24-25 Мн/м 2 (на наиболее крупных теплофикационных энергоблоках - мощностью 250 Мвт). На ТЭЦ с давлением пара 13-14 Мн/м 2 , в отличие от ГРЭС, отсутствует промежуточный перегрев пара, так как на таких ТЭЦ он не даёт столь существенных технических и экономических преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мвт на ТЭЦ с отопительной нагрузкой выполняют с промежуточным перегревом пара.

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40-50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов . Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5-0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10-20% от максимальной) пиковыми паровыми

У этой паровой турбины хорошо видны лопатки рабочих колес.

Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива - угля, нефти и природного газа - для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.

Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.

Паротурбинная установка с электрогенератором

Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.

Вид в разрезе

Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.

Выработка энергии при помощи пара

На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.

Мазутный, угольный или газовый котел

Внутри котла

Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.

Тепловые электростанции могут быть с паровыми и газовыми турбинами, с двигателями внутреннего сгорания. Наиболее распространены тепловые станции с паровыми турбинами, которые в свою очередь подразделяются на: конденсационные (КЭС) — весь пар в которых, за исключением небольших отборов для подогрева питательной воды, используется для вращения турбины, выработки электрической энергии;теплофикационные электростанции - теплоэлектроцентрали (ТЭЦ), являющиеся источником питания потребителей электрической и тепловой энергии и располагающиеся в районе их потребления.

Конденсационные электростанции

Конденсационные электростанции часто называют государственными районными электрическими станциями (ГРЭС). КЭС в основном располагаются вблизи районов добычи топлива или водоемов, используемых для охлаждения и конденсации пара, отработавшего в турбинах.

Характерные особенности конденсационных электрических станции

  1. в большинстве своем значительная удаленность от потребителей электрической энергии, что обуславливает необходимость передавать электроэнергию в основном на напряжениях 110-750 кВ;
  2. блочный принцип построения станции, обеспечивающий значительные технико-экономические преимущества, заключающиеся в увеличении надежности работы и облегчении эксплуатации, в снижении объема строительных и монтажных работ.
  3. Механизмы и установки, обеспечивающие нормальное функционирование станции, составляют систему ее .

КЭС могут работать на твердом (уголь, торф), жидком (мазут, нефть) топливе или газе.

Топливоподача и приготовление твердого топлива заключается в транспортировке его из складов в систему топливоприготовления. В этой системе топливо доводится до пылевидного состояния с целью дальнейшего вдувания его к горелкам топки котла. Для поддержания процесса горения специальным вентилятором в топку нагнетается воздух, подогретый отходящими газами, которые отсасываются из топки дымососом.

Жидкое топливо подается к горелкам непосредственно со склада в подогретом виде специальными насосами.


Подготовка газового топлива состоит в основном в регулировании давления газа перед сжиганием. Газ от месторождения или хранилища транспортируется по газопроводу к газораспределительному пункту (ГРП) станции. На ГРП осуществляется распределение газа и регулирование его параметров.

Процессы в пароводяном контуре

Основной пароводяного контур осуществляет следующие процессы:

  1. Горение топлива в топке сопровождается выделением тепла, которое нагревает воду, протекающую в трубах котла.
  2. Вода превращается в пар с давлением 13…25 МПа при температуре 540..560 °С.
  3. Пар, полученный в котле, подается в турбину, где совершает механическую работу - вращает вал турбины. Вследствие этого вращается и ротор генератора, находящийся на общем с турбиной валу.
  4. Отработанный в турбине пар с давлением 0,003…0,005 МПа при температуре 120…140°С поступаетв конденсатор, где превращается в воду, которая откачивается в деаэратор.
  5. В деаэраторе происходит удаление растворенных газов, и прежде всего кислорода, опасного ввиду своей коррозийной активности.Система циркуляционного водоснабжения обеспечивает охлаждение пара в конденсаторе водой из внешнего источника (водоема, реки, артезианской скважины). Охлажденная вода, имеющая на выходе из конденсатора температуру, не превышающую 25…36 °С, сбрасывается в систему водоснабжения.

Интересное видео о работе ТЭЦ можно посмотреть ниже:

Для компенсации потерь пара в основную пароводяную систему насосом подается подпиточная вода, предварительно прошедшая химическую очистку.

Следует отметить, что для нормальной работы пароводяных установок, особенно со сверх критическими параметрами пара, важное значение имеет качество воды, подаваемой в котел, поэтому турбинный конденсат пропускается через систему фильтров обессоливания. Система водоподготовки предназначена для очистки подпиточной и конденсатной воды, удаления из нее растворенных газов.

На станциях, использующих твердое топливо, продукты сгорания в виде шлака и золы удаляются из топки котлов специальной системой шлака- и золоудаления, оборудованной специальными насосами.

При сжигании газа и мазута такой системы не требуется.

На КЭС имеют место значительные потери энергии. Особенно велики потери тепла в конденсаторе (до 40..50 % общего количества тепла, выделяемого в топке), а также с отходящими газами (до 10 %). Коэффициент полезного действия современных КЭС с высокими параметрами давления и температуры пара достигает 42 %.

Электрическая часть КЭС представляет совокупность основного электрооборудования (генераторов, ) и электрооборудования собственных нужд, в том числе сборных шин, коммутационной и другой аппаратуры со всеми выполненными между ними соединениями.

Генераторы станции соединяются в блоки с повышающими трансформаторами без каких-либо аппаратов между ними.

В связи с этим на КЭС не сооружается распределительное устройство генераторного напряжения.

Распределительные устройства на 110-750 кВ в зависимости от количества присоединений, напряжения, передаваемой мощности и требуемого уровня надежности выполняются по типовым схемам электрических соединений. Поперечные связи между блоками имеют место только в распределительных устройствах высшего или в энергосистеме, а также по топливу, воде и пару.

В связи с этим каждый энергоблок можно рассматривать как отдельную автономную станцию.

Для обеспечения электроэнергией собственных нужд станции выполняются отпайки от генераторов каждого блока. Для питания мощных электродвигателей (200 кВт и более) используется генераторное напряжение, для питания двигателей меньшей мощности и осветительных установок - система 380/220 В. Электрические схемы собственных нужд станции могут быть различными.

Ещё одно интересное видео о работе ТЭЦ изнутри:

Теплоэлектроцентрали

Теплоэлектроцентрали, являясь источниками комбинированной выработки электрической и тепловой энергии, имеют значительно больший, чем КЭС, (до 75 %). Это объясняется тем. что часть отработавшего в турбинах пара используется для нужд промышленного производства (технологии), отопления, горячего водоснабжения.

Этот пар или непосредственно поступает для производственных и бытовых нужд или частично используется для предварительного подогрева воды в специальных бойлерах (подогревателях), из которых вода через теплофикационную сеть направляется потребителям тепловой энергии.

Основное отличие технологии производства энергии на в сравнении с КЭС состоит в специфике пароводяного контура. Обеспечивающего промежуточные отборы пара турбины, а также в способе выдачи энергии, в соответствии с которым основная часть ее распределяется на генераторном напряжении через генераторное распределительное устройство (ГРУ).

Связь с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.

Для увеличения надежности работы ТЭЦ предусматривается секционирование сборных шин.

Так, при аварии на шинах и последующем ремонте одной из секций вторая секция остается в работе и обеспечивает питание потребителей по оставшимся под напряжениям линиям.

По таким схемам сооружаются промышленные с генераторами до 60 мВт, предназначенные для питания местной нагрузки в радиусе 10 км.

На крупных современных применяются генераторы мощностью до 250 мВт при общей мощности станции 500-2500 мВт.

Такие сооружаются вне черты города и электроэнергия передается на напряжении 35-220 кВ, ГРУ не предусматривается, все генераторы соединяются в блоки с повышающими трансформаторами. При необходимости обеспечить питание небольшой местной нагрузки вблизи блочной предусматриваются отпайки от блоков между генератором и трансформатором. Возможны и комбинированные схемы станции, при которых на имеется ГРУ и несколько генераторов соединены по блочным схемам.

Снабжение населения теплом и электроэнергией является одной из основных задач государства. Кроме того, без выработки электричества невозможно представить себе развитую производящую и перерабатывающую промышленность, без которой экономика страны не может существовать в принципе.

Одним из способов решения проблемы нехватки энергии является строительство ТЭЦ. Расшифровка этого термина довольно проста: это так называемая теплоэлектроцентраль, являющаяся одной из наиболее распространенных разновидностей тепловых электростанций. В нашей стране они весьма распространены, так как работают на органическом ископаемом топливе (уголь), к характеристикам которого предъявляют весьма скромные требования.

Особенности

Вот что такое ТЭЦ. Расшифровка понятия вам уже знакома. Но какие же особенности имеет данная разновидность электростанций? Ведь неслучайно же их выделяют в отдельную категорию!?

Дело в том, что они вырабатывают не только электроэнергию, но и тепло, которое подается потребителям в виде горячей воды и пара. Нужно заметить, что электричество является побочным продуктом, так как пар, который подается в системы отопления, сперва вращает турбины генераторов. Комбинирование двух предприятий (котельной и электростанции) хорошо тем, что удается значительно сократить потребление топлива.

Впрочем, это же приводит к довольно незначительному «ареалу распространения» ТЭЦ. Расшифровка проста: так как от станции подается не только электричество, которое с минимальными потерями можно транспортировать на тысячи километров, но и нагретый теплоноситель, их нельзя располагать на значительном удалении от населенного пункта. Неудивительно, что практически все ТЭЦ построены в непосредственной близости от городов, жителей которых они отапливают и освещают.

Экологическое значение

Благодаря тому, что при постройке такой электростанции удается избавиться от многих старых городских котельных, которые играют чрезвычайно негативную роль в экологическом состоянии района (огромное количество копоти), чистоту воздуха в городе порой удается повысить на порядок. Кроме того, новые ТЭЦ позволяют ликвидировать завалы мусора на городских свалках.

Новейшее очистительное оборудование позволяет эффективно очищать выброс, а энергетическая эффективность такого решения оказывается чрезвычайно велика. Так, выделение энергии от сжигания тонны нефти идентично тому ее объему, которое выделяется при утилизации двух тонн пластика. А уж этого «добра» хватит на десятки лет вперед!

Чаще всего строительство ТЭЦ предполагает использование ископаемого топлива, о чем мы уже говорили выше. Впрочем, в последние годы планируется создание которые будут монтироваться в условиях труднодоступных регионов Крайнего Севера. Так как подвоз топлива туда исключительно затруднен, атомная энергетика является единственным надежным и постоянным источником энергии.

Какими они бывают?

Бывают ТЭЦ (фото которых есть в статье) промышленные и «бытовые», отопительные. Как несложно догадаться из названия, промышленные электростанции обеспечивают электричеством и теплом крупные производственные предприятия.

Зачастую строятся еще на этапе возведения завода, составляя вместе с ним единую инфраструктуру. Соответственно, «бытовые» разновидности возводятся неподалеку от спальных микрорайонов города. В промышленных передается в виде горячего пара (не больше 4-5 км), в случае отопительных - при помощи горячей воды (20-30 км).

Сведения об оборудовании станций

Основным оборудованием этих предприятий являются турбинные агрегаты, которые переводят механическую энергию в электричество, и котлы, ответственные за выработку пара, который вращает маховики генераторов. В состав турбинного агрегата входит как сама турбина, так и синхронный генератор. Трубины с противодавлением 0,7—1,5 Мн/м2 ставят на те ТЭЦ, которые снабжают теплом и энергией промышленные объекты. Модели же с давлением 0,05—0,25 Мн/м2 служат для обеспечения бытовых потребителей.

Вопросы КПД

В принципе, все выработанное тепло можно использовать полностью. Вот только количество электроэнергии, которое вырабатывается на ТЭЦ (расшифровка этого термина вам уже известна), напрямую зависит от тепловой нагрузки. Проще говоря, в весенне-летний период ее выработка снижается едва ли не до нуля. Таким образом, установки с противодавлением используются только для снабжения промышленных мощностей, у которых величина потребления более-менее равномерна на протяжении всего периода.

Установки конденсирующего типа

В этом случае для снабжения потребителей теплом используется лишь так называемый «пар отбора», а все остальное тепло зачастую попросту теряется, рассеиваясь в окружающей среде. Чтобы снизить потери энергии, такие ТЭЦ должны работать с минимальным выпуском тепла в конденсирующую установку.

Впрочем, еще со времен СССР строятся такие станции, в которых конструктивно предусмотрен гибридный режим: они могут работать как обычные конденсационные ТЭЦ, но их турбинный генератор вполне допускает функционирование в режиме противодавления.

Универсальные разновидности

Неудивительно, что именно установки с конденсацией пара получили максимальное распространение в силу своей универсальности. Так, только они дают возможность практически независимо регулировать электрическую и тепловую нагрузку. Даже если тепловой нагрузки вовсе не предвидится (в случае особенно жаркого лета) население будет снабжаться электроэнергией по прежнему графику (Западная ТЭЦ в Петербурге).

«Тепловые» разновидности ТЭЦ

Как вы уже могли понять, выработка тепла на такого рода электростанциях отличается крайней неравномерностью на протяжении года. В идеальном случае около 50% горячей воды или пара идет на обогрев потребителей, а весь остальной теплоноситель используется для выработки электричества. Именно так работает Юго-Западная ТЭЦ в Северной столице.

Отпуск тепла в большинстве случаев выполняется по двум схемам. Если используется открытый вариант, то горячий пар от турбин идет непосредственно к потребителям. В случае если была выбрана закрытая схема работы, теплоноситель подается после прохождения теплообменников. Выбор схемы определяется исходя из многих факторов. В первую очередь учитывается расстояние от обеспечиваемого теплом и электричеством объекта, количество населения и сезон. Так, Юго-Западная ТЭЦ в Петербурге работает по закрытой схеме, так как она обеспечивает большую эффективность.

Характеристики используемого топлива

Может использоваться твердое, жидкое и Так как ТЭЦ зачастую строятся в непосредственной близости от крупных населенных пунктов и городов, зачастую приходится использовать достаточно ценные его виды, газ и мазут. Применение же в качестве такового угля и мусора в нашей стране достаточно ограниченно, так как далеко не на всех станциях установлено современное эффективное воздухоочистительное оборудование.

Чтобы очистить выхлоп установок, используются специальные уловители твердых частиц. Чтобы рассеивать твердые частицы в достаточно высоких слоях атмосферы, строят трубы высотой в 200—250 метров. Как правило, все теплоэлектроцентрали (ТЭЦ) стоят на достаточно большом расстоянии от источников водоснабжения (реки и водохранилища). А потому используется искусственные системы, включающие в свой состав градирни. Прямоточное снабжение водой встречается крайне редко, в весьма специфичных условиях.

Особенности газовых станций

Особняком стоят газовые ТЭЦ. Теплоснабжение потребителей осуществляется не только за счет энергии, которая вырабатывается при сжигании но и при утилизации тепла газов, которые при этом образуются. КПД таких установок чрезвычайно высоко. В некоторых случаях в качестве ТЭЦ могут использоваться и атомные станции. Это особенно распространено в некоторых арабских странах.

Там эти станции играют сразу две роли: обеспечивают снабжение населения электроэнергией и технической водой, так как попутно исполняют функции А сейчас рассмотрим основные ТЭЦ нашей страны и ближнего зарубежья.

Юго-Западная, Санкт-Петербург

В нашей стране известностью пользуется Западная ТЭЦ, которая расположена в Санкт-Петербурге. Зарегистрирована как ОАО «Юго-Западная ТЭЦ». Строительство этого современного объекта преследовало сразу несколько функций:

  • Компенсация сильного дефицита тепловой энергии, который мешал интенсификации программы жилищного строительства.
  • Повышение надежности и энергетической эффективности городской системы в целом, так как именно с этим аспектом имел проблемы Санкт-Петербург. ТЭЦ позволила частично решить эту проблему.

Но эта станция известна еще и тем, что одной из первых в России стала соответствовать строжайшим экологическим требованиям. Для нового предприятия городское правительство выделило площадь более 20 Га. Дело в том, что под строительство была отведена резервная площадь, оставшаяся от Кировского района. В тех краях был старый сборник золы от ТЭЦ-14, а потому район был не пригоден для строительства жилья, но чрезвычайно удачно расположен.

Запуск состоялся в конце 2010 года, причем на церемонии присутствовало практически все руководство города. В строй были введены две новейшие автоматические котельные установки.

Мурманская

Город Мурманск известен как база нашего флота на Балтийском море. Но еще он характеризуется крайней суровостью климатических условий, что накладывает определенные требования на его энергетическую систему. Неудивительно, что Мурманская ТЭЦ во многом является совершенно уникальным техническим объектом даже в масштабах всей страны.

Она была введена в эксплуатацию еще в 1934 году, и с тех пор продолжает исправно снабжать жителей города теплом и электроэнергией. Впрочем, в первые пять лет Мурманская ТЭЦ являлась обычной электростанцией. Первые 1150 метров теплотрассы были проложены только в 1939 году. Дело в запущенной Нижне-Туломской ГЭС, которая практически полностью перекрывала потребности города в электричестве, а потому появилась возможность высвободить часть тепловой выработки для отопления городских домов.

Станция характерна тем, что весь год работает в сбалансированном режиме, так как ее тепловая и «энергетическая» выработки приблизительно равны. Впрочем, в условиях полярной ночи ТЭЦ в некоторые пиковые моменты начинает использовать большую часть топлива именно для выработки электроэнергии.

Новополоцкая станция, Белоруссия

Проектирование и строительство этого объекта началось в августе 1957 года. Новая Новополоцкая ТЭЦ должна была решить вопрос не только теплоснабжения города, но и обеспечения электричеством строившегося в том же районе нефтеперерабатывающего завода. В марте 1958 года проект был окончательно подписан, одобрен и утвержден.

Первую очередь ввели в эксплуатацию в 1966 году. Вторая была запущена в 1977 году. Тогда же Новополоцкая ТЭЦ была в первый раз модернизирована, ее пиковую мощность увеличили до 505 МВт, а чуть позже заложили третью очередь строительства, завершенную в 1982 году. В 1994 г. станция была переведена на сжиженный природный газ.

К настоящему моменту в модернизацию предприятия уже вложено порядка 50 миллионов американских долларов. Благодаря столь внушительным денежным вливаниям предприятие не только было полностью переведено на газ, но и получило огромное количество совершенно нового оборудования, которое позволит станции прослужить еще десятки лет.

Выводы

Как ни странно, но на сегодняшний день именно устаревшие ТЭЦ являются действительно универсальными и перспективными станциями. Используя современные нейтрализаторы и фильтры, нагревать воду можно, сжигая практически весь мусор, который производит населенный пункт. При этом достигается тройная выгода:

  • Разгружаются и расчищаются свалки.
  • Город получает дешевую электроэнергию.
  • Решается проблема с отоплением.

Кроме того, в прибрежных районах вполне реально строительство ТЭЦ, которые одновременно будут являться опреснителями морской воды. Такая жидкость вполне пригодна для полива, для животноводческих комплексов и промышленных предприятий. Словом, настоящая технология будущего!



Поделиться