Что такое цветовая модель байера. Матрицы для цифровых фотоаппаратов

Используемые в цифровой фотографии . Фильтр Байера назван в честь его создателя, доктора Брайса Байера (англ. Bryce Bayer ), Сотрудника компании Kodak . Фильтр используется в фотосенсор цифровых фотоаппаратов , видеокамер и сканеров для получения цветного изображения.

Массив фильтра состоит из 25% красных элементов, 25% синих и 50% зеленых элементов. Поэтому его часто называют GRGB или RGBG.


Принцип работы

В результате использования фильтров каждый фотоприемник воспринимает только яркость только одного цветового компонента, другие два отсекаются фильтром. Для получения цветовых компонент используются значения из соседних ячеек, которые содержат информацию об отсутствующих цветовые составляющие, с помощью интерполяции (по алгоритму demosaicing) Итак, при считывании цветного изображения каждой предметной точки участвуют минимум три ячейки фотосенсора с потерями 2/3 цветовых компонент в каждом.

Из-за потери части информации в результате работы фильтра Байера, изображения более размытым, чем исходное. Для исправления процессор фотоаппарата повышает четкость изображения. Процесс искусственного повышения четкости называется Sharpening. Дополнительно, процессор может применить и другие операции: изменить контрастность, яркость, подавлять цифровой шум и т.д.. в зависимости от модели аппарата. Получение четких изображений прежде всего достигается увеличением количества пикселей сенсора . Поскольку вычислительная мощность процессора фотоаппарата ограничена, многие фотографы предпочитают делать эти операции вручную на персональном компьютере.

Последние модели профессиональных и полупрофессиональных цифровых фотоаппаратов позволяют записывать изображение в т. н. "Сыром" RAW -формате, где изображение записывается как набор яркости в каждом диоде, т.е. в черно-белом виде, не неся никакой цветовой формы, и в файл записываются данные, полученные прямо с матрицы, в процессе интерполяции формируют изображение на компьютере, с возможностями ручного управления параметрами преобразований.

? в ? Фотография
Жанры
Фото
Сроки

Того самого, который, работая в компании Kodak инженером, в 1976 году изобрел «тот самый» шаблон размещения цветных фильтров на сенсоре захвата цветного изображения. «Байеровская матрица» или «байеровский шаблон» с тех пор успели стать стандартными, сегодня матрицы такого типа установлены в подавляющем большинстве фото- и видеокамер, сотовых телефонов разного уровня развития, планшетов, систем видеонаблюдения (учетных, естественно), вебкамер и еще в массе девайсов непонятного подчас назначения. Патентом на это решение до последнего времени владела обанкротившейся недавно компания Kodak, которая в этом году проводила закрытый аукцион по продаже патентов, и владелец решения должен был смениться. Однако, все эти перипетии сути дела не меняют…

Причиной такого решения в 70-е годы было желание производителя сделать производство устройств захвата изображения дешевле, за счет удешевления основного элемента. Матрицы в то время были в сотни или даже тысячи раз дороже сегодняшних, а по своим характеристикам еще и на пару порядков хуже тех, что сегодня устанавливаются в мобильных телефонах. Чуть ранее для получения цветного изображения приходилось ставить три матрицы после блока разделения светового потока на три части. Каждая матрица имела свой цветовой фильтр - естественно, красный, зеленый или синий. Так работало телевидение, и эту модель цветоделения изобрели давным давно, а первый фотограф, который ей воспользовался, был вообще не цифровым - так снимал Россию для спецпроекта, на который ему выделили массу денег прямо из казны русской короны. Собственно, и показывал цветные кадры им он сам, превращая свой фотоаппарат в проектор.

Впрочем, взнос Байера в современную экономику не умаляется от того, что не он изобрел модель цветоделения. Он всего лишь подогнал ее под современные технологии, сильно удешевив производство сначала видеокамер, а затем и фотоаппаратов. Если вкратце, Байер просто предложил устанавливать светофильтры не перед матрицей, а перед каждым пикселом, копируя модель телевизионных трубок, которые тогда существовали). В итоге, разные пикселы воспринимали информацию о разных цветовых компонентах света. Сделав еще и повторяющийся рисунок (его все знают, вот, наверху) расположения светофильтров, он довел решение до совершенства и отдал патент исследовательскому центру, в котором работал, получив возможность поставить на нем свое имя изобретателя. Перспективы данного решения были не просто радужными - они были безоблачными, отчего это решение используется в электронике уже более 35 лет.

Впрочем, Panasonic одно время производил линейку трех-матричных камер, долго окучивая аудиторию разницей в качестве и точности передачи цвета, ничего этим и не добившись - экономика сама вывела байеровские модели на первое место, потому что решение позволило кремний экономить. Недостатки у этого решения, естественно, тоже есть.

Прежде всего, это известный всем муар, который, в общем-то, связан не столько с самой моделью, сколько с последующими алгоритмами интерполяции - ведь матрица разрешением 12 Мп на деле имеет только 3 Мп честного разрешения во всех трех каналах, остальное «досчитывается» из соседних. Так, в ней будет по 3 млн красных и синих пикселов, и целых 6 зеленых. Несправедливость такая связана с тем, что человеческий глаз восприимчив больше как раз к контрасту в зеленых тонах, да и данных по контрасту изображения в нем хранится куда больше (кто редактирует с использованием разных каналов по отдельности, это знают) - а так как единицей измерения, в данном случае, является блок из 4 близлежащих пикселов, на которые приходится только 3 цветных фильтра, было решено два из них красить в зеленый. Однако, на этом все не заканчивается - дальше начинаются электронные размышления. Ведь, с одной стороны, производители решили сэкономить, но не были готовы признавать, что 12-мегапиксельная матрица в результате стала 3-мегапиксельной (на момент изобретения 12-мегапиксельных матриц и не было, они даже до 1 Мп не дотягивали), поэтому добавили в формирование изображения еще два алгоритма: интерполяции (недостающие пикселы в каждом канале просто додумываются по данным близлежащих пикселов из этого и двух других каналов, то есть, по сути, просто размываются) и шарпинга (из-за размытия 3-мегапиксельной картинки на 12 Мп приходится хотя бы четкость повысить, чтобы не было совсем уж сплошного мыла). В итоге, картинка стала больше, при сохранении количества деталей, резче, но при этом вылезли наружу и все артефакты - при пересечении геометрического расположения пикселей с линиями в кадре при сопоставимых размерах (например, волокна рубашек, полоски на одежде) возникает волнообразный рисунок на поверхности, который и принято называть муаром. В лучшем случае, будет он монохромным, а то ведь в бюджетных моделях еще и цветным быть может.

Второе - это пикселизация. Из-за того, что первые матрицы имели очень малое разрешение, был актуален так называемый эффект алиасинга. Строго вертикальные изображения очень легко уместить в стопку пикселов, равно как и строго горизонтальные, вот только снять так практически невозможно, и если прямая линия переходит в изображении с одной строки на вторую, третью, она будет пикселами разных рядов или линий «ломаться», что решили исправить сглаживающим фильтром. Итогом стало дополнительное размытие картинки. А что, собственно, ужасного, если изначально там четкости всего на четверть площади мегапикселов, а остальное и без того додумываются (размывается, то есть)? В результате, естественно, резкость все равно теряется. Со временем пиксельность камер только росла, и сегодня, когда выпускаются, к примеру, 36-мегапиксельные монстры, вроде Nikon D800, им ставят более тонкий сглаживающий фильтр - в результате и резкость (не программная, а фактическая) вырастает.

Сегодня модель байера постепенно устаревает - строгое геометрическое расположение рядов пикселей, необходимость установки сглаживающего фильтра, съедающего детализацию уже не устраивают пользователей, им чего-то новенького хочется. Естественно, не всем, поэтому на рынке начали появляться направления, которые, по всей видимости, со временем найдут применение во все увеличивающемся количестве камер, так как имеют уникальный подход.

Возьмем упомянутую выше Nikon D800E - его старший брат-мутант, который был сделан стараниями маркетологов, которым необходимо продать куда большую плотность пикселов (ведь технологические процессы идут именно к уменьшению размера точки изображения), чем фотографов, стал уже детищем последних. Вдумайтесь сами, если фотоаппарат выходит на разрешение, на котором муар уже не столь заметен, равно как и пикселизация кривых линий - можно избавиться и от сглаживающего фильтра, чтобы повысить резкость, верно? Тут решили пока пойти на компромисс, сделав его просто тоньше.

Pentax K-5 IIs - тоже разновидность своей старшей сестры, камера, сделанная простым исключением сглаживающего фильтра из уравнения тоже в результате должна дать большую резкость, что, при прочих замечательных характеристиках (высокая влагозащита, портативность, функциональность, цена), сулит обладателю кучу бонусов.

Fujifilm X-Pro1, X-E1 - камеры, сделанные на небайеровской матрице, отчего вообще не имеют сглаживающего фильтра. Даже при относительно небольшом разрешении им это попросту не требуется, так как проблема муара и пикселизации перед ними не стоит. Итогом становится замечательная резкость, которую видно невооруженным глазом. Собственно, она здесь не взялась ниоткуда - просто инженеры решили дать людям не самые дешевые, но очень хорошие решения, естественно, дороже конкурентных аналогов, если они, конечно, есть.

Sigma DP - камеры небайеровского типа изначально. Трехслойная матрица Foveon, которая является развитием идеологии трех матриц, изначально качественно выше по реальному разрешению (а не интерполированному), отчего проблем с передачей данных о цвете и муаром и пикселизацией у нее не существует. Проблемой является только несовершенство самого технологического процесса при производстве матриц, на который и приходится львиная доля критики.

Понятно, что после появления такого нового подхода к резкости на это поведутся практически все производители фотоаппаратов, в особенности, наиболее ориентирванные на запросы рынка (Sony, Samsung). Последние уже будут думать не столько о том, что это действительно нужно (а нужно это, на деле, не более чем 10% фотографов с зеркалками), сколько о том, что «у них есть, у нас нет» и будут копировать подход, просто для того, чтобы занять измерительные приборы их аудитории. В общем, детище Брайса Байера хот и сыграло существенную роль в экономике в историческом плане, сегодня начинает сдавать свои позиции, и со временем, возможно, вообще уйдет в прошлое.

В настоящее время для получения цветной фотографии свет от объекта запоминается как сумма минимум трех цветов - красного, зелёного и синего, цветовая модель RGB. Так как по своей природе фотодетекторы матрицы чувствительны во всем видимом диапазоне спектра, то над каждым матрицы размещается цветной одного из трёх основных цветов - красного (R), зелёного (G) и синего (B). Таким образом, каждая ячейка матрицы воспринимает только 1/3 часть приходящего , а другие 2/3 рассчитываются процессором камеры на основе данных соседних ячеек. Этот процесс называется . В классическом фильтре Байера применяются светофильтры трёх основных цветов в следующем порядке:

При этом получаются три цветовые составляющие:

Таким образом, мы получили изображение, каждый пиксель которого содержит только одну цветовую составляющую. Далее, процессор камеры должен, используя специальные математические методы интерполяции, рассчитать для каждой точки недостающие цветовые составляющие. В результате получается следующее изображение:

Как видно на картинке, это изображение получилось более размытым, чем исходное. Такой эффект связан с потерей части информации в результате работы фильтра Байера. Для исправления процессор фотоаппарата должен повысить чёткость изображения. Процесс искусственного повышения чёткости называется Sharpening . Дополнительно, в этот момент процессор может применить и другие операции: изменить контрастность, яркость, подавлять и т. д. в зависимости от модели аппарата. Так как вычислительная мощность процессора фотоаппарата ограничена, многие фотографы предпочитают делать эти операции вручную на персональном компьютере. Чем дешевле фотоаппарат, тем меньше возможностей повлиять на эти функции. В профессиональных фотокамерах они отсутствуют совсем, либо их можно выключить.

Последние модели профессиональных и полупрофессиональных цифровых фотоаппаратов позволяют записывать изображения в т. н. «сыром» RAW-формате, когда изображение не подвергается внутри камеры вообще никакой обработке, а в записываются данные, полученные напрямую с матрицы, т. е. процесс интерполяции, повышение чёткости, подавление шума и другие операции с изображением выполняются на компьютере, обладающем намного большей вычислительной мощностью и возможностями ручного управления параметрами преобразований.

Альтернативы, достоинства, недостатки

Альтернативой фильтру Байера являются три матрицы с системой дихроичных зеркал или дихроичных призм. Зеркала раскладывают свет на составляющие (красный, зелёный, синий), после чего каждая из составляющих идёт на свою матрицу. Такая конструкция применяется в некоторых , но не встречается в фотоаппаратах.

Достоинства фильтра Байера:

  • простота и компактность;
  • к трёхматричной системе невозможно присоединить ;
  • для обеспечения сходного качества изображения нужно меньше пикселей. В частности, трёхмегапиксельная камера с фильтром Байера даёт заметно лучшее изображение, чем камера с тремя матрицами по 1 Mpx;
  • в трёхматричной схеме есть проблема сведения цветов.

Достоинства трёх матриц:

  • лучше передача цветовых переходов, полное отсутствие цветного ;
  • выше светочувствительность.

Также иногда применяются CYGM-фильтры:

C Y
G M

Такой фильтр даёт бо́льшую светочувствительность, но худшую цветопередачу.

Проблемы, присущие фильтрам Байера, призвано решить новое поколение цифровых светочувствительных матриц - компании , в которых каждый пиксель состоит из трёх слоев, каждый из которых воспринимает свой цвет. Однако, в настоящее время (начало 2005 года) эти матрицы, в силу присущих им других технических недостатков (например, высокого уровня ), занимают незначительную часть рынка цифровой фототехники.

В цифровых камерах для получения изображения используется сенсорная матрица из миллионов миниатюрных ячеек-пикселей. Когда вы нажимаете кнопку спуска на своей камере, и начинается экспозиция, каждый из этих пикселей представляет собой «фототермос», который открывается, чтобы собрать и сохранить фотоны в своей ёмкости. По завершении экспозиции камера закрывает все фототермосы и пытается определить, сколько фотонов попало в каждый. Относительное количество фотонов в каждой ёмкости далее преобразуется в различные уровни интенсивности, точность которых определяется разрядностью (от 0 до 255 для 8-битного изображения).


В ёмкости не содержится информации о том, сколько каждого цвета попало в неё, так что вышеописанным способом можно было бы получить только чёрно-белые изображения. Чтобы получить цветные изображения, поверх каждой ёмкости помещают фильтр, который пропускает только определённый цвет. Практически все современные цифровые камеры могут захватить в каждую из ёмкостей только один из трёх первичных цветов и таким образом теряют примерно 2/3 входящего света. В результате камере приходится складывать остальные цвета, чтобы иметь информацию обо всех цветах в каждом пикселе. Наиболее известный матричный цветофильтр, который называется «фильтр Байера», показан ниже.

Матрица Байера состоит из чередующихся рядов красно-зелёных и зелено-синих фильтров. Обратите внимание, что в матрице Байера содержится вдвое больше зелёных сенсоров, чем синих или красных. Дисбаланс первичных цветов вызван тем, что человеческий глаз более чувствителен к зелёному цвету,чем к красному и синему вместе взятым. Избыточность по зелёным пикселям даёт изображение, которое кажется менее шумным и более чётким, чем казалось бы при равном количестве цветов. Это объясняет также, почему шум в зелёном канале намного меньше, чем в остальных (пример см. в статье «Что такое визуальный шум »).

Примечание: не все цифровые камеры используют матрицу Байера, но это наиболее распространённый вариант. Сенсор Foveon, используемый в камерах Sigma SD9 и SD10, регистрирует все три цвета в каждом пикселе. Камеры Sony снимают четыре цвета в похожем массиве: красный, зелёный, синий и изумрудно-зелёный.

Дебайеризация

Дебайеризация - это процесс трансляции матрицы первичных цветов Байера в итоговое изображение, в котором содержится полная информация о цвете в каждом пикселе. Как это возможно, если камера не в состоянии непосредственно измерить полный цвет? Один из способов понять этот процесс - это рассматривать каждый массив 2x2 из красной, двух зелёных и синей ячейки как одну полноцветную ячейку.

В целом этого достаточно, но большинство камер предпринимают дополнительные шаги, чтобы получить из этой матрицы ещё больше информации об изображении. Если бы камера рассматривала каждый из массивов 2x2 как одну точку, её разрешение упало бы вдвое и по горизонтали, и по вертикали (то есть, вчетверо). С другой стороны, если бы камера считала цвета, используя несколько перекрывающихся массивов 2x2, она могла бы получить более высокое разрешение, чем это возможно для единичных массивов 2x2. Для увеличения количества информации об изображении можно использовать следующую комбинацию из перекрывающихся массивов 2x2.

Обратите внимание, что мы не рассчитывали информацию об изображении на границах матрицы, поскольку предположили, что изображение имеет продолжение в каждую из сторон. Если бы это действительно были границы матрицы, расчёты оказались бы менее точны, поскольку здесь нет больше пикселей. Это не является проблемой, поскольку для камер с миллионами пикселей граничная информация может быть смело отброшена.

Существуют и другие алгоритмы разбора матриц, которые могут извлечь несколько большее разрешение, собирают менее шумные изображения или адаптивно реагируют на разные участки изображения.

Дефекты дематризации

Изображения с мелкими деталями на пределе разрешающей способности цифрового сенсора могут порой сбивать с толку алгоритм разбора матрицы, приводя к неестественно выглядящим результатам. Наиболее известный дефект - это муар, который может проявляться как повторяющиеся текстуры, дефекты цветопередачи или образованные из пикселей сюрреалистические лабиринты:



Выше показаны два снимка с различным увеличением. Обратите внимание на появление муара во всех четырёх нижних квадратах, а также на третий квадрат первого снимка (плохо различимый). В уменьшенной версии в третьем квадрате можно наблюдать как лабиринты, так и дефекты цвета. Такие дефекты зависят как от типа текстуры, так и от программного обеспечения, которое производит исходный (RAW) файл цифровой камеры .

Матрица микролинз

Вас может заинтересовать, почему на первой диаграмме в этой главе ёмкости не были расположены непосредственно друг рядом с другом. У сенсоров в камерах в действительности нет полного перекрытия поверхности. На самом деле зачастую под пиксели отведено не более половины общей площади сенсора, поскольку нужно где-то разместить остальную электронику. Для каждой ёмкости существуют направляющие, которые отправляют фотоны в ту или иную ячейку. В цифровых камерах применяются «микролинзы» поверх каждой группы пикселей, чтобы повысить их способность собирать свет. Эти линзы подобно воронкам собирают фотоны, которые могли иначе остаться неиспользованными.

Хорошо сконструированные микролинзы могут улучшить сбор фотонов каждой ячейкой и, следовательно, создать изображения, в которых содержится меньше шумов при одинаковом времени экспозиции (выдержке). Производители камер оказались способны использовать усовершенствования в производстве микролинз, чтобы снизить или сохранить уровень шума в новейших камерах с высоким разрешением, несмотря на сокращение размеров ячейки в связи с упаковкой большего числа мегапикселей в тот же размер сенсора.

За дополнительной информацией о сенсорах цифровых камер обратитесь к главе.

Кажись, Фуджа-то наигралась с экзотическим байером:)

А давайте-ка сегодня поговорим немного о системах цветоразделения и вариантах байера - история интересная.

Вообще самый качественный вариант цветоразделения - 3 матрицы с дихроической призмой - 3CCD . Здесь и далее картинки натырены из Википедии.

Активно применялся и применяется в видеокамерах. Для фотокамер этот способ малоприменим - дело в том, что практически невозможно чисто механически совместить три изображения на трех отдельных сенсорах настолько точно, чтобы получить разрешение хотя бы в несколько мегапикселей. Кроме того, конструкция получается довольно громоздкой. Поэтому решение используется только в видеокамерах.

Второй вариант - многослойные сенсоры, которые по структуре в чем-то имитируют цветную фотопленку. Самый известный пример - сигмовский X3 Foveon . Принцип действия такого сенсора основан на том, что свет с разными длинами волн проникает в кремний на разную глубину.


Поскольку нет мозаики байеровского фильтра, то не нужна интерполяция, и разрешение картинки получается по-настоящему честным.
Но у фовеона свои проблемы, в частности искажение цвета из-за метода цветоразделения, особенно в красном канале, который на сенсоре лежит в самом низу, и до него доходят лучи, искаженные предыдущими двумя слоями. Все эти искажения приходится исправлять с помощью матричных профилей, из-за чего сильно растут шумы, деградирует картинка.
Камеры Sigma достаточно дороги и в целом коммерческим успехом не пользуются. Хотя у Фовеона множество приверженцев-энтузиастов.

Третий и самый популярный вариант - классический байеровский фильтр и его вариации.
Принцип действия фильтра прост - поверх ячеек лежит мозаика из цветных фильтров, пропускающих лучи разного цвета. Получается три ЧБ канала, каждый из которых отражает яркость лучей, прошедших через свой цветной фильтр. При обработке вся эта информация из трёх черно-белых каналов интерполируется в конечное цветное изображение.

На самом деле, можно считать, что у байера четыре канала, потому что зеленых ячеек вдвое больше, чем красных или синих. Это связано с тем, что зеленый канал наиболее важен для человеческого зрительного аппарата и несет для нас наиболее полезную яркостную информацию. Тогда как синий и красный каналы по сути являются цветоразностными.
У байера есть свои недостатки. В первую очередь это недостаточное цветовое разрешение итоговой картинки - поскольку она всегда является плодом интерполяции. Сейчас RAW-конвертеры научились более-менее сносно интерполировать недостающую информацию, однако все равно тот же 4-мегапиксельный Фовеон по разрешающей способности приравнивают к 10-мегапиксельному байеру - и не зря. Простейшую геометрию не обманешь никакими алгоритмами. Поэтому пришлось наращивать мегапиксели и упираться в дифракцию.

В разное время в истории развития цифровых камер появлялись разного рода "экзотические" вариации байеровского фильтра.

Например, в начале 2000-х Sony сделала вариант RGBE (E for Emerald), где половина зеленых ячеек заменена изумрудными:

Вроде бы как это позволило значительно улучшить цветопередачу и приблизить ее к тому, как цвет воспринимается человеческим глазом.
Рассматривая семплы со знаменитой в свое время камеры Sony F-828, в принципе я могу сказать, что цвет у нее неплохой, но принципиальных отличий от современных камеры с обычным байером я не вижу, если честно.

Технология RGBE использовалась Сони недолго, и они вернулись к улучшению традиционного байера.

В конце 90-х также появились сенсоры с байером, основанном на инвертированном наборе первичных цветов - CYGM (cyan, yello, green, magenta). Вот оказывается даже такое было.

Использовались такие сенсоры в некоторых компактах Кэнона и Никона, а также у Кодака, на рубеже 90-х и 2000-х годов.
Основной плюс такого фильтра в том, что он очевидно более "прозрачен", чем классический байеровский. То есть его светопропускание значительно выше, значит можно увеличить чувствительность сенсора и расширить динамический диапазон.
Но все это происходит в ущерб качеству цветоразделения, поскольку каждый фильтр пропускает сравнительно широкую полосу спектра, и разделить соседние оттенки при этом довольно трудно.
Поэтому фотографии с таких камер получались довольно "тухлые" по цвету, и даже агрессивная обработка тут не помогала - что матрица не захватила, то можно только нафантазировать.

Эта технология по вполне понятным причинам тоже долго не прожила.

За несколько лет до своего банкротства в 2007-м году Кодак успел запатентовать еще один вид байера, где половина зеленых ячеек были сделаны совершенно прозрачными. В нескольких вариациях.

Ячейки без фильтров должны по идее улучшить общую чувствительность сенсора.
Пошли такие сенсоры в какие-то реальные модели камер или не пошли - мне лично не известно. Скорее всего на их основе делаются высокочувствительные сенсоры специального назначения.

В течение почти десяти лет Фуджи делала камеры на основе собственной технологии байера "EXR" в нескольких вариациях.

Ячейки в таком сенсоре расположены по диагонали, что позволяет объединять соседние ячейки одного цвета для получения большей чувствительности. Кроме того, при таком расположении ячеек возможны более сложные структуры, позволяющие часть ячеек экспонировать сильнее, а другую часть - слабее, получая больший динамический диапазон.
На основе технологии Фуджи сделали два вида сенсоров CCD (SuperCCD), в которых за счет такой структуры не только повышается разрешение, но и за счет дополнительных маленьких ячеек с низкой чувствительностью можно получить расширенный динамический диапазон.


SuperCCD продержался аж до 2010 года в разных моделях камер Фуджи, но позже все равно уступил место BSI (back side illuminated) CMOS, но с диагональным байером.

Проблема любого байеровского фильтра в том, что он склонен после интерполяции давать цветной муар на периодических структурах. По сути это биение частот, а цветной рисунок возникает как раз именно из-за чередования цветных ячеек на байере. Чтобы уменьшить этот эффект, в 90% камер перед сенсором ставят специальный фильтр "АА" (anti alias), который по сути размывает изображение. Естественно при этом сильно теряется и без того невысокое разрешение изображений, получаемых путем интерполяции, но зато в какой-то степени уходит муар.

Поэтому Фуджи придумали особый вид байера X-Trans CMOS, который якобы должен уменьшить возможность появления муара и позволить безбоязненно делать сенсоры без АА-фильтра. Новый байер выглядит вот так:

Такая мозаика байеровского фильтра, по мнению Фуджи, должна давать большее яркостное и цветовое разрешение, препятствовать появлению муара и давать более "пленочное" зерно за счет того, что в каждом ряду ячеек теперь есть все три цвета, а их расположение как бы более хаотичное, подобно зерну на пленке.
Муара на таком сенсоре действительно не будет, но что касается разрешения, то вопрос крайне спорный.
Ведь, если задуматься, на классическом байере зеленые ячейки, дающие основную яркостную информацию, расположены более "равномерно", не сгруппированы в крупные квадраты 2х2, и, соответственно, яркостное разрешение должно быть несколько выше.

На самом деле, чисто на практике никаких особых преимуществ перед обычным байером X-Trans не показал. В целом разрешающая способность такого сенсора примерно на уровне традиционных аналогов, никакого особого "теплого лампового зерна" я не заметил.
А вот при обработке RAW-файлы с экзотического байера доставляют головную боль. Дело в том, что поначалу вообще ни один конвертер, кроме родного фуджевского, адекватно не интерпретировал такую мозаику. Да и позднее, когда тот же Adobe сделали апдейт и улучшили интерполяцию, результат ничем не лучше обычного байера, а может быть в каких-то ситуациях даже и хуже.
Лично я обращал внимание на отчетливую "пунктирность" всяких вертикальных элементов изображения - очевидно, из-за крупных 2х2 зеленых ячеек.

Кстати, та же самая ситуация наблюдается с их старым SuperCCD, который до сих пор никто толком не умеет правильно интерполировать.

Так получается, что традиционный байер пока что дает самый надежный и удобный для интерпретации результат, проверенный временем.
Возможно именно поэтому Фуджи сейчас на беззеркальной камере нижнего сегмента решила обкатать свежий сенсор с обычным байером, безо всяких выкрутас. Наигрались?



Поделиться