Космодромы — «ключ на старт. Где на земле самое удобное место для запуска космических ракет

5 мая 2014 в 13:03

Безракетный космический запуск

  • Космонавтика

Введение

Доброго времени суток уважаемые хабражители! Производство и эксплуатация ракет-носителей довольно дорогое и опасное занятие. В связи с этим высока и стоимость запуска полезного груза на орбиту. В этой статье мы рассмотрим альтернативные (безракетные) способы выведения космических аппаратов в космос. Если я вас заинтересовал, добро пожаловать под кат.

Космический лифт



Это уже можно назвать классикой жанра - подобная концепция описывалась не в одном научно-фантастическом фильме. Впервые подобную идею высказал К.Э.Циолковский в 1895 году. Космический лифт состоит из трех основных частей: основание, трос и противовес.

Основание представляет собой место на поверхности планеты, где прикреплен трос и начинается подъем груза. Оно может быть как подвижным (например быть размещенным на океанском судне), так и не подвижным. Преимущество подвижного основания вполне очевидно - есть возможность уходить от ураганов и бурь, которые могут повредить трос.

Трос представляет собой очень тонкую нить (относительно своей длины конечно же) из сверхпрочного материала, проведенную за геостационарную орбиту и удерживаемый в таком положении за счет центробежной силы. В настоящее время не представляется возможным создание подобного материала, однако согласно теории, подобным материалом могут стать углеродные нанотрубки. Увы, до их производства в промышленных масштабах еще очень далеко. Прочность космического троса должна быть порядка 65-120 гигапаскалей, в зависимости от высоты (для сравнения, прочность стали не превышает 1 ГПа).

Противовес служит для того, чтобы трос всегда находился в состоянии натяжения. Им может служить любой массивный объект, будь то астероид или космическая база (что более привлекательно). Противовес находится значительно выше геостационарной орбиты, следовательно при разрыве троса он вполне может улететь на околосолнечную орбиту. Поэтому если им будет служить космическая станция, то ее необходимо снабжать собственной двигательной установкой.

Грузы на орбиту поднимаются специальным подъемником (а может быть даже не одним), и согласно расчетам ученых, путь из конца в конец должен занять около 7 суток. Не быстро конечно, но зато очень дешево. В конце концов это гораздо быстрее, чем запуск с помощью ракет, подготовка которых занимает долгие месяцы. Само собой проект такого масштаба должен быть международным, ведь ни одно государство не осилит его в одиночку. А это в свою очередь вызывает целый ряд проблем и вопросов. Во-первых, на какой территории размещать подобное сооружение? Ведь из-за его исполинских размеров, не избежать нарушения воздушного пространства нескольких государств. Во-вторых, космический лифт необходимо защитить от террористических актов и военных конфликтов.

Плюсы:
  • Относительная дешевизна доставки грузов на геостационарную орбиту
  • Значительная экономия средств при запуске межпланетных космических аппаратов
  • Возможность реализации недорогих космических экскурсий
  • В отличии от ракет, в атмосферу не выбрасывается никаких токсичных веществ
Минусы:
  • Сложность реализации
  • Высокие затраты на строительство
  • Необходимость решения многих юридических и правовых вопросов

Орбитальный самолет

Менее фантастическая и уже достаточно осуществимая идея безракетного космического запуска. Под орбитальным самолетом я подразумеваю именно космолет, выводимый на орбиту исключительно с помощью собственных двигателей. Особенность подобных аппаратов заключается в том, что они могут взлетать и совершать посадку как обычные самолеты.

Вообще, идея космических самолетов не нова и уходит корнями в середину XX века. Первым детальным проектом автоматического космолета был нереализованный проект Зенгера, по созданию суборбитального боевого самолета-бомбардировщика «Зильберфогель» в Нацисткой Германии. Теоретическая высота полета должна была составлять 260 километров, что непременно выше Линии Кармана (100 км), официальной границы космоса.


Модель Silbervogel

Из-за высокой сложности двигательной и конструкционной технологий, ни один из проектов орбитальных самолетов так и не был реализован. В настоящее время компанией Reaction Engines ведется разработка многоразового одноступенчатого автоматического космолета Skylon. Отмечу, что он на начальном этапе будет взлетать как обычный самолет, и достигнув скорости в 5,5 Маха и высоты 26 км, переходить на питание кислородом из собственных баков. По оценкам экспертов, Skylon должен снизить затраты на доставку грузов в 15-20 раз.


Космолет Skylon. Находится на начальном этапе разработки.

Плюсы:
  • Отсутствие необходимости в специальных стартовых сооружениях, подойдут обычные аэродромы
  • В отличии от космического лифта, имеется возможность выбора высоты орбиты
  • Практическая осуществимость в ближайшие десятилетия
Минусы:
  • Необходимость создания более совершенных многоразовых двигателей
  • Большой расход топлива

Покорение космоса, начавшееся в пятидесятые годы прошлого века, теперь уже во многом утратило романтический флер и стало одной из технологий в решении ряда практических и научных задач. Но для отработки технологии нужны хорошие площадки, ведь мужество космонавтов, творчество разработчиков космических аппаратов и труд производителей ракетно-космической техники не могли бы реализоваться, если бы не космодромы.

Космодромов в мире насчитывается более двух десятков. Все они похожи друг на друга, имеют примерно одинаковый набор элементов и различаются лишь размерами. Причина такой схожести проста: для запуска космических аппаратов используются носители с жидкостными ракетными двигателями. Это обстоятельство диктует особую процедуру сборки и подготовки к запуску ракет, предполагает определенную конструкцию и габариты пусковых сооружений и соответствующие меры безопасности. Структура космодрома оказалась бы иной, будь космические ракеты твердотопливными (кстати, таковые уже разработаны), или, скажем, гравитационными (а эти— в далеких планах). Однако сейчас только реактивные двигатели на жидком топливе способны по своим энергетическим характеристикам обеспечить вывод на орбиту тяжелых космических аппаратов, и именно они определяют вид современного космодрома.

История первого в мире космодрома Байконур началась, как это часто бывало в советские времена, с совместного Постановления ЦК КПСС и Совета Министров СССР от 12 февраля 1955 года. Этим постановлением был утвержден план создания Научно-исследовательского испытательного полигона, который с самого начала предназначался как для испытания боевых ракет, так и для исследований в области космической техники. Первоначально рассматривалось более десятка вариантов размещения космодрома, среди них — мордовский, астраханский, северокавказский, дальневосточный и казахстанский. Чтобы понять сделанный в итоге выбор, надо сказать несколько слов о факторах, влияющих на размещение космодромов в конкретных точках земной поверхности. Одним из самых важных является баллистика полета. Дело в том, что с минимальными энергетическими затратами спутник выводится на орбиту, наклонение которой соответствует географической широте космодрома. Наиболее критична широта космодрома при выведении на геостационарные орбиты, лежащие в плоскости экватора. На них размещают спутники связи и ретрансляторы телепередач, то есть прежде всего коммерческие космические аппараты. Космодром для запуска геостационарных спутников должен располагаться в более низких широтах. Каждый градус отклонения от экватора обходится примерно в 100 м/с дополнительного набора скорости космическим аппаратом. В этом отношении лучшие места занимают новый европейский космодром Куру, расположенный на широте около 5°, бразильский космодром Алькантара с широтой всего 2,2° и плавучий космодром Sea Launch, который может вести запуски прямо с экватора.

Дополнительное преимущество при старте с экватора состоит в том, что ракета сразу получает скорость 465 м/с в направлении на восток, обусловленную вращением Земли. Поэтому, кстати, траектории запуска ракет обычно прокладываются в восточном направлении. Исключение составляет Израиль — с востока с ним соседствуют недружественные страны, и он вынужден производить запуски в обратном направлении, преодолевая вращение Земли.

Другое соображение, тоже вытекающее из баллистики полета, связано с размещением так называемых «полей падения», куда падают отработанные нижние ступени ракет. Меньше всего проблем возникает в том случае, когда эти опасные зоны приходятся на акваторию океана. Именно поэтому подавляющее большинство космодромов мира расположено на побережье. В частности, на восточном побережье страны построен американский космодром на мысе Канаверал. Он был заложен в 1949 году по распоряжению президента США Гарри Трумэна и первоначально представлял собой ракетный полигон. Размещение его на полуострове, вынесенном довольно далеко в море, развязывало ракетчикам руки относительно трасс и районов падения ступеней ракет. Американцам достаточно было в принятом международным правом порядке объявлять о закрытии определенных зон Атлантического океана для движения морских и воздушных судов. Кроме того, мыс Канаверал имеет широту 28,5° — это почти самая южная точка континентальной части Соединенных Штатов, что давало американским ракетчикам определенное преимущество перед советскими.

Возникает вопрос: а почему же тогда для строительства первого советского космодрома не был выбран дальневосточный вариант? Увы, реалии «холодной войны» делали это невозможным. При запуске космических ракет они летели бы в сторону США, а это неизбежно приводило бы к постоянным обострениям отношений, ибо отличить запуск космической ракеты от боевой было просто невозможно. Другим немаловажным фактором был климат. Пуски ракет требовали визуального наблюдения за стартом. С этой точки зрения Байконур был хорош: солнце светит здесь в среднем 300 дней в году. Сыграло роль также наличие путей сообщения и то, что район космодрома отличается невысокой сейсмической активностью.

Наконец, еще одним фактором была скрытность. Космодром стремились разместить подальше от населенных районов, границ и основных транспортных путей. Это, впрочем, не мешало американцам на высотных самолетах-разведчиках U-2 достаточно часто пролетать над этим районом. Однако размещение космодрома на Дальнем Востоке и на Северном Кавказе с этой точки зрения оказалось бы еще хуже — там были слишком близки американские базы в Японии и Турции, соответственно. Кстати, название космодром получил вовсе не по имени населенного пункта, рядом с которым расположен. В начале своей карьеры он именовался Тюратам. А название казахского селения Байконур, находящегося совсем в другом месте, было выбрано, чтобы заморочить голову «супостатам».

В такой большой стране, как СССР, внутриконтинентальное расположение космодрома также облегчало создание сети станций слежения (вдоль траектории запуска) и сбор падающих на землю частей ракетных систем. Но вместе с тем такое расположение накладывало жесткие ограничения на траектории возможных запусков. В частности, при создании космодрома в Казахстане его нельзя было разместить южнее — поля падения пришлись бы на населенные районы Средней Азии, а также на территорию Китая. Более того, с Байконура даже нельзя запускать аппараты на орбиту с наклонением около 46° (такова его широта). При таком старте трасса полета пройдет по территории Китая. Поэтому минимальное наклонение орбиты так называемого «прямого» выведения (наиболее экономичного) при старте с Байконура составляет 51° — именно это наклонение было у советских орбитальных станций.

У расположенного на Дальнем Востоке космодрома Свободный нет таких ограничений по полям падения — ракеты проходят над океаном. Однако он расположен на широте 52° и потому по наклонениям орбит не имеет преимуществ перед Байконуром. Еще один российский космодром, Плесецк, находится на широте 63°, и для него минимальное наклонение орбит прямого выведения еще больше. Зато он лучше других подходит для запуска космических аппаратов на полярные орбиты, полезные в тех случаях, когда надо обеспечить охват спутниковыми наблюдениями всей поверхности Земли.


Космонавты на Байконуре перед стартом

Горизонты Байконура

Однако вернемся к истории. Строительство Байконура велось быстро, и уже весной 1957 года все основные элементы инфраструктуры космодрома (ныне эта его часть называется «Центр») были готовы к эксплуатации. Всего за полтора года был возведен стартовый комплекс на «Площадке № 2», который впоследствии получил название «Гагаринский старт». Постепенно расширяясь, Байконур занял площадь в 6 717 км 2 . Она включает центр, левый и правый фланги, а также поля падения. Этот космодром был и остается единственной базой, которая позволяет России запускать пилотируемые корабли и выводить на орбиту крупные космические аппараты, такие, например, как орбитальная станция «Мир» . Примерно 40% всех космических аппаратов бывшего СССР и России запускались с этого космодрома, ныне принадлежащего суверенному Казахстану. И все же, несмотря на свое «первородство», Байконур не является самым активным космодромом на нашей планете. Абсолютное мировое лидерство по числу космических запусков принадлежит космодрому Плесецк.

Космодром на мысе Канаверал тоже развивался быстро. В 1958 году американцы учредили Национальное агентство по аэронавтике и космическим исследованиям (NASA), которое получило в свое подчинение ракетный испытательный центр во Флориде и начало готовить его в качестве места старта космических ракет-носителей. Тем не менее испытания боевых ракет на мысе Канаверал продолжались. После объявления о начале американской лунной программы территория центра была расширена и заняла прилегающий к мысу остров Меррит. NASA выкупило у штата Флорида 223 км 2 вдобавок к прежней территории, составлявшей 335 км 2 . Летом 1962 года космодром переименовали в Центр подготовки запусков, а в ноябре 1963 года он получил нынешнее название — Космический центр им. Джона Кеннеди. Примечательно, что мыс Канаверал тогда тоже переименовали в честь американского президента. Однако это название не пользовалось популярностью, и в 1973 году мысу вернули прежнее имя.

Объект особого хранения

Что же нужно, чтобы космодром действовал? Обычно в кинохронике видна только ракета, уходящая ввысь на столбе огня. Помимо нее на Земле мелькнут еще остающиеся решетчатые фермы непонятного назначения, и, пожалуй, это все, что видят неспециалисты. Для того чтобы понять, как работает космодром, попробуем проследить путь космического аппарата до отправки на орбиту.

Изготовленные на заводах ступени ракеты и космический аппарат по агрегатам доставляют на космодром. Там все компоненты проходят приемочные испытания на специальном оборудовании и поступают на хранение, для чего на космодроме предусмотрены складские помещения. Подготовка к запуску начинается в монтажно-испытательном корпусе с соединения ступеней ракеты-носителя, после чего к ее верхушке крепят космический аппарат и закрывают обтекателем. Примечательно, что российские специалисты производят сборку ракет-носителей в горизонтальном положении. А вот на Западе ракету собирают «стоймя». Это различие — традиционное и вызвано в основном климатом. В благодатной Флориде сборку ракеты-носителя вели непосредственно на месте старта. В степях Капустина Яра, где был построен первый советский ракетный полигон, и на Байконуре вести такую работу на открытом воздухе, особенно зимой и при сильных ветрах, было затруднительно. И для снижения ветровых нагрузок ракету собирали в горизонтальном положении.

При сборке все компоненты ракетно-космической системы подвергаются новой тщательной проверке — сначала по отдельности, а потом в комплексе. Вот теперь можно ехать на старт. Для этого на космодроме предусмотрена соответствующая транспортная инфраструктура. На Байконуре перевозки ведут по железнодорожным путям со скоростью до 5 км/ч — не быстрее пешехода. Это позволяет защитить от возможных сотрясений и ударов нежную «начинку» ракеты и космического аппарата. В Космическом же центре им. Кеннеди используют многоколесные платформы, которые мощные тягачи тянут по дорогам, схожим с автомобильными, но способным выдерживать куда большую нагрузку. Особые требования предъявляются и к качеству поверхности дороги. Ведь стоящая «свечой» ракета обладает сравнительно небольшим запасом устойчивости. Скорость перемещения платформы здесь примерно такая же, как и на российском космодроме. А космические челноки «шаттлы» вывозятся на стартовую позицию даже медленнее — специальный мощный гусеничный транспортер движется с совсем уж черепашьей скоростью — около 1 км/ч.

Тут надо сделать важную оговорку. В нашем рассказе мы рассматриваем подготовку к старту серийной ракеты-носителя. Но ведь на космодроме проводят также отработку новых, часто уникальных, боевых и космических ракетных систем. Естественно, новая ракета проходит более широкий спектр испытаний. Для их проведения в космодромном хозяйстве имеются многочисленные и разнообразные стенды. Ракету и ее компоненты нагревают и охлаждают, в баки подают высокое давление (этот процесс называется опрессовкой), конструкцию «трясут» на вибростенде, специальные приспособления имитируют нагрузки, которые ракета испытывает в полете, на комплексных стендах моделируют различные отказы, разрабатывая методики борьбы с ними, — всего и не перечислишь. Фактически для каждого типа ракет здесь приходится иметь отдельный комплекс сооружений, причем располагаться они должны достаточно далеко друг от друга, чтобы в случае аварии на одном не были повреждены другие. Это еще один ответ на вопрос, почему космодромы занимают такие большие территории.

Стартовый стол

Итак, доставив ракету к пусковой установке (ее еще иногда называют — не вполне точно — «стартовым столом»), транспортно-подъемный агрегат выводит ее в вертикальное положение. Дальше для конкретности будем вести рассмотрение на примере ракеты-носителя «Союз». Четыре «лапы» (фермы-опоры) пусковой установки с помощью приводов сдвигаются к центру, пока ракета специальными силовыми узлами своей конструкции не обопрется на них. Никакого дополнительного крепления не требуется — ракета «висит» на опорах, удерживаемая только собственным весом. При старте, когда тяга двигателей превосходит вес ракеты, опоры просто «разбрасываются» в стороны под действием противовесов.

После установки на опоры к ракете подводят ферму обслуживания. С ее «балконов» специалисты выполняют все операции подготовки к пуску. «Пятая нога» пусковой установки — кабель-мачта. По ней на борт ракеты подается электропитание, с ее же помощью к ракете подводятся многочисленные кабели для информационного обмена с пунктом управления. Непосредственно перед подъемом ракеты кабель-мачта, как и опоры, «отбрасывается» в сторону.

На пусковой установке ракета проходит еще одну проверку. На этот раз проверяются не только агрегаты, обеспечивающие автономный полет, но и прогоняются все стартовые процедуры, не происходит лишь запуск двигателей. Наконец, начинается заправка самой ракеты. В ракете-носителе «Союз» в качестве основного топлива используется керосин, а в качестве окислителя — жидкий кислород. Если керосин для заправки ракеты на космодром привозят с нефтеперегонного завода, то жидкий кислород вырабатывают непосредственно на Байконуре. Здесь построен крупнейший в мире завод, который может за час произвести 6 тонн жидкого кислорода и 7,2 тонны жидкого азота. Азот используется в системах термостатирования приборных отсеков и для наддува баков с керосином. С учетом того, что в баки «Союза» нужно закачать около 190 тонн жидкого кислорода, процесс подготовки «одной порции» окислителя занимает чуть меньше полутора суток. «Топливозаправщики» на Байконуре тоже представляют собой специальные поезда, в которых помимо цистерн имеется оборудование для перекачки соответствующего компонента топлива.

Готовящаяся к старту ракета оплетена многочисленными шлангами. По ним в баки поступают топливо и окислитель. Причем нередко требуется заливать в ракету более двух компонентов топлива. Например, «рулевые» двигатели «Союза» работают на перекиси водорода. Еще одна группа шлангов связывает ракету с мобильной (рельсовой) установкой охлаждения и кондиционирования. По ним в отсеки приборного оборудования (а если «Союз» несет пилотируемый космический корабль, — то и в кабину корабля) поступают очищенные, осушенные и охлажденные газы. Для хранения компонентов топлива на космодроме существует соответствующая база, подобная хранилищам химических заводов, где производят компоненты ракетного топлива. Единственное (но важное) отличие состоит в том, что здесь хранят несколько видов горючего и окислителя (как правило, эти компоненты производятся на разных заводах). Чтобы уменьшить риск пожара, участки хранения различных компонентов топлива разнесены и снабжены соответствующими системами защиты. Кроме того, на территории хранилища имеется мощная и разветвленная стационарная система пожаротушения.

Спасатели кораблей

Следующий компонент космодрома — Центр управления полетом ракетносителей. Не следует путать его с ЦУПом, который регулярно показывают по телевидению. Привычный нам ЦУП управляет космическим аппаратом на орбите. Центр управления космодрома отвечает только за полет ракеты-носителя. Его задача считается выполненной, когда космический аппарат оказывается на заданной орбите, и только тогда подключается «второй» ЦУП.

Есть на космодроме и еще одна служба — поисково-спасательная. Она существует на случай аварий при пилотируемых полетах. При возгорании ракеты на стартовой позиции или на ранних фазах полета срабатывает система аварийного спасения космонавтов (зрительно она выглядит, как «грибок» с соплами, размещенный на вершине ракеты). Она с большой перегрузкой поднимает корабль и отводит его в сторону. Такой случай на Байконуре был в 1983 году, когда при возгорании ракеты-носителя спаслись космонавты Титов и Стрекалов. Естественно, что после этого космонавтам, перенесшим ускорение до 18g, нужно помочь как можно скорее покинуть корабль. Поисково-спасательная служба имеет на вооружении авиационные и наземные транспортные средства, а также специальное оборудование для поиска спускаемого аппарата космического корабля и эвакуации космонавтов. Аналогичные поисково-спасательные операции проводятся и при штатных приземлениях.

Организация поисково-спасательной службы — дело не простое. Не так давно Европейское космическое агентство , которое будет запускать российские носители «Союз-2» с космодрома Куру, объявило, что пока не планирует совершать в рамках совместной программы пилотируемые запуски. Специалисты связывают это нежелание с тем, что космодром Куру не имеет поисково-спасательной службы. Организовать ее будет достаточно сложно, поскольку российские спасатели не имеют опыта и методик проведения работ в открытом море. Таким опытом обладают американцы, у которых до ввода в строй космических челноков практиковалась посадка на воду. Однако вряд ли они станут делиться своими методиками с конкурентами в борьбе за рынок коммерческих запусков.

Пуск с воды
Особняком в ряду космодромов мира стоит проект «Морской старт» (Sea Launch). Во-первых, это единственный (пока) частный комплекс для запуска орбитальных космических аппаратов. Соучредителями международной компании Sea Launch являются американская Boeing Commercial Space Company (40%), российская Ракетно-космическая корпорация «Энергия» имени С.П. Королева (25%), британско-норвежская фирма Kvaerner Maritime A.S. (20%) и украинские аэрокосмические предприятия: ПО «Южмашзавод» и ГКБ «Южное» им. М.К. Янгеля (вместе 15%). Вторая особенность, как явствует из названия, это запуск ракет не с суши, а с воды. Правда, в этом «Морской старт» не является ни уникальным, ни даже первым. Еще в 1967 году итальянские специалисты запустили первый спутник со своего плавучего космодрома Сан-Марко (San Marco). Он представляет собой две платформы, установленные в Индийском океане (залив Формоза у побережья Кении). На одной из платформ, которая и дала название космодрому, смонтированы пусковая установка и монтажно-испытательный комплекс. На второй (она называется «Санта-Рита»)— размещаются пост управления запуском и комплекс слежения за полетом ракет-носителей. С космодрома Сан-Марко было запущено девять ракет-носителей типа «Скаут» со спутниками на борту. Но с 1988 года пуски не производились, а оборудование космодрома находится на консервации. Но вернемся к «Морскому старту». Первые проработки проекта начались в 1991 году, причем рассматривались и многотоннажные плавучие комплексы для запуска тяжелых ракет-носителей «Энергия» и «Энергия-М». Однако в конце концов решено было ограничиться сравнительно легкими носителями типа «Зенит». В 1995 году было подписано соглашение о создании совместного предприятия «Морской старт». В октябре 1998 года стартовая платформа, переоборудованная на верфи в Выборге из морской нефтяной платформы, пришла в порт базирования — американский город Лонг-Бич (сборочно-командное судно пришло туда ранее). Первый пуск с макетом спутника массой 4,5 тонны состоялся 28 марта 1999 года из района экватора. К настоящему моменту комплекс «Морской старт» выполнил 21 запуск, включая первый демонстрационный и один аварийный (в 2000 году). Преимущество морских космодромов заключается в способности производить запуски с экватора. Это позволяет сравнительно небольшому носителю вывести тяжелые (до 3 тонн) спутники на геостационарную орбиту. Недостатки же связаны со сложными и трудоемкими погрузочно-разгрузочными операциями в порту, и особенно в открытом море, и с затратами времени на вывод стартовой платформы к экватору. По этой причине «Морской старт» заметно уступает наземным космодромам по интенсивности запусков.

Когда плавится бетон

Но вернемся к описанию пусковой установки. Помимо механических узлов, агрегатов и приспособлений, весьма сложной является и конструкция ее основания, которое сделано из высокопрочного бетона, рассчитанного на большие механические, термические, акустические и вибрационные нагрузки. Температура реактивной струи такова, что верхний слой бетона оплавляется. Конфигурация лотка выбрана таким образом, чтобы максимально снижать нагрузки на пусковую установку. Задача эта сложная, поскольку при исследованиях были обнаружены неизвестные ранее физические явления и процессы. Например, оказалось, что теплообмен между реактивной струей и материалом основания при высоких акустических нагрузках протекает быстрее, чем положено по «классической» физике.

При успешном старте повреждения пусковой установки не происходит. Но все равно требуется выполнить определенный цикл работ по обслуживанию и проверке оборудования. Технически стартовый комплекс способен обеспечить до 24 пусков в год. Но вот в случае катастрофы последствия для пусковой установки могут быть весьма тяжелыми. Например, взрыв на Бразильском космодроме Алькантара в 2003 году за три дня до очередного запуска фактически полностью уничтожил стартовую позицию. В таких случаях может оказаться дешевле не восстанавливать разрушенное сооружение, содержащее тысячи тонн монолитного бетона, а построить неподалеку новую пусковую установку.

Для разных типов ракет детали конструкции стартовых комплексов могут несколько отличаться. Так, например, ракета-носитель «Протон» устанавливается на стартовый стол, имеющий устройства фиксации, а вместо «откидной» фермы обслуживания используется башня обслуживания. Другую форму имеет и основание пусковой установки с газоотводами — они размещены по кругу, а их входы расположены непосредственно под соплами двигателей первой ступени. Впрочем, схема подготовки к пуску может отличаться даже для одного и того же типа ракет. Например, технический комплекс «Союз» на космодроме Куру предусматривает измененную схему сборки ракетно-космической системы. Здесь в горизонтальном положении собираются только три ступени ракеты-носителя. Затем она помещается на пусковую установку, и только там монтируются разгонный блок «Фрегат» и космический аппарат. Ферма обслуживания заменена башней, причем она полностью охватывает ракету в сборе. Это связано с тем, что во Французской Гвиане выпадает большое количество осадков, и ракетно-космическую систему нужно предохранить от них в процессе подготовки к пуску.

Всего Байконур имеет 9 стартовых комплексов с пятнадцатью пусковыми установками, 34 технических комплекса, 3 заправочные станции для ракет-носителей. Это оборудование дает возможность запускать ракеты-носители типа «Протон», «Зенит», «Союз» (или «Молния» — другая модификация знаменитой королевской ракеты Р-7), а также «Циклон». Еще два типа ракет— «Днепр» и «Рокот» — запускаются из шахтных установок. Ничего удивительного в этом нет: «Рокот» создан на основе межконтинентальной баллистической ракеты типа РС-18 (по классификации НАТО — «Стилет»), а «Днепр» — на базе РС-20 («Сатана»). Испытания боевых ракет сейчас на Байконуре не проводят, поскольку для России это уже не ее территория. Но в Плесецке наряду с запуском космических аппаратов продолжаются испытательные, контрольные и учебно-боевые пуски баллистических ракет. С 1981 года отсюда улетел 81 «Тополь».

Вопросы экологии
Одна из серьезных проблем, связанных с космодромами, — их неблагоприятное влияние на окружающую среду. В первую очередь это обусловлено применением в качестве компонентов топлива ядовитых и агрессивных веществ. Такие компоненты, как азотная кислота, азотный тетраксид (четырехокись азота) и гептил (иначе именуемый несимметричным диметилгидразином), способны нанести значительный ущерб растительности и здоровью человека и животных. Что и говорить, если применяемый в качестве горючего керосин у ракетчиков считается «экологически чистым».

Наиболее серьезный ущерб наносят аварии ракет, которые случаются в нескольких процентах запусков. Возьмем, например, аварию ракеты-носителя типа «Днепр», стартовавшей с космодрома Байконур 27 июля. Она упала на территории Казахстана на удалении 150 км от точки запуска. Результатом стало попадание в воздух и на землю значительного количества гептила. Однако наряду с катастрофами есть и так называемый плановый ущерб, обусловленный повседневной деятельностью космодрома. Это утечки компонентов топлива при хранении, происходящие на любых базах хранения агрессивных и ядовитых веществ, что является, увы, неизбежным следствием несовершенства технологий.

Утечки также происходят при заправке ракеты. Наверняка многие видели кадры, на которых готовая к старту ракета «парит». Это связано с тем, что горючее и окислитель в баках ракеты находятся под давлением. В процессе «ожидания» старта ракета нагревается, давление в баках повышается и клапаны начинают сброс давления, чтобы баки не «расперло». В основном подобное происходит при заправке ракеты криогенными компонентами топлива, но ими не ограничивается.

Наконец, отдельный тип планового экологического ущерба связан с падением «нижних» ступеней ракет-носителей. В баках обычно остаются излишки топлива — недозаправка может привести к потере дорогого спутника, так что лучше уж слегка перелить топлива. В результате, например, падающая на землю вторая ступень тяжелой ракеты «Протон» несет примерно 1 200 кг металла, 600—900 кг гептила и 1 000—1 500 кг азотного тетраксида. Причем раскаленная при торможении в атмосфере ступень может поджечь лес или взорваться. Как правило, вторые ступени ракет, запускаемых с космодрома Байконур, попадают в так называемый район падения № 326. Он имеет форму эллипса площадью более 5 000 км 2 , из которых больше половины — примерно 3 300 км 2 — приходятся на территорию Алтайского государственного природного заповедника, который с 1998 года включен в программу ЮНЕСКО «Всемирное наследие», и по закону его территория должна быть свободна от хозяйственной деятельности. Между тем за время эксплуатации «Протонов» на алтайскую землю упало около 180 их ступеней.

Выход видится в переносе района падения, но аналогичная территория все равно будет необходима, причем она не может отстоять далеко от трассы запуска ракет с Байконура. Сейчас первые ступени запущенных отсюда ракет падают также на территории Казахстана и Туркмении. Большая часть вторых ступеней летят в Томскую и Новосибирскую области. Однако существуют и другие районы падения, например в Якутии. Дело в том, что в советские времена практически единственным фактором для выбора трассы запуска было построение оптимальной траектории полета ракет. В результате по стране разбросаны десятки районов падения, занимая в общей сложности 4,8 миллиона гектаров, на которых нельзя жить и работать.

Космос становится ближе

С окончанием «холодной войны» появилось много «конверсионных» проектов, в которых роль космодрома могут играть мобильные наземные комплексы, подводные лодки и самолеты. На базе межконтинентальной баллистической ракеты РС-12М «Тополь» прорабатывался проект носителя «Старт». Основой носителей «Высота» и «Волна» послужили ракеты, размещаемые на подводных лодках. Они испытывались в 90-х годах.

Постоянно «витают в воздухе» проекты старта ракет-носителей с самолетов. Американцы уже выводили на орбиту спутники 18-тонной ракетой «Пегас», запускаемой с бомбардировщика В-52. В России есть серия космических проектов на основе тяжелого транспортного самолета «Мрия», ракета «Штиль», которую предлагается запускать с Ту-160, а также проект «Ориль» на основе Ан-124. В начале этого года правительство Казахстана подписало с московским Институтом теплотехники (одним из ведущих разработчиков баллистических ракет) соглашение по проекту «Ишим». В нем запуск легких ракет-носителей планируется производить с самолета «07» — модификации перехватчика МиГ-31М под противоспутниковую ракету.

От государственных проектов воздушных стартов не отстают и «частники». В октябре 2004 года известнейший авиаконструктор Берт Рутан победил в конкурсе Ansari X-Prize и выиграл 10 миллионов доларов. Этот приз был обещан еще в 1996 году создателям негосударственного аппарата, который в течение двух недель выполнит два полета с тремя пассажирами (или весовыми макетами) на высоту более 100 км, которая по правилам NASA считается космической. Поскольку первая ступень космоплана SpaceShipOne взлетает по-самолетному, то и облик космодрома, предназначенного для обслуживания таких кораблей, будет ближе к обычному аэродрому, чем к Байконуру и Космическому центру им. Кеннеди. Но даже при вертикальном старте и приземлении космопорт для маленького носителя окажется гораздо проще и дешевле, чем государственные «монстры». В настоящее время о планах создания частных космодромов объявили американские компании Blue Origin и Space Adventures (последняя занимается космическим туризмом в сотрудничестве с «Роскосмосом»), а также британская Virgin Galactic. Ожидается, что первые частные космодромы начнут отправку пассажиров уже через 3—4 года.

Тем не менее подобные туристические полеты не отобьют клиентов у «больших» космодромов. В будущее они могут смотреть вполне уверенно, хотя и без особых восторгов. В настоящее время бум космических пусков прошел. Достаточно сказать, что если в 1998 году был запущен 81 космический аппарат, в 2002 году — 65, то в 2005 году — только 55. В основном это связано с миниатюризацией коммерческих спутников, что позволяет осуществлять «пакетные» запуски. Например, потерпевшая аварию летом ракета-носитель «Днепр» несла целых 18 (!) космических аппаратов.

Перспективы рыночной ниши малых спутников эксперты оценивают более оптимистично. И вот здесь легкие, мобильные и недорогие средства вывода на орбиту могут составить конкуренцию «традиционным» космодромам. Впрочем, тяжелые космические аппараты, как коммерческие, так и «государственные», все равно останутся в портфеле космических агентств. Кроме того, существующие и перспективные программы совершенствования ракетного оружия тоже позволят космодромам всего мира существовать вполне благополучно.

Если же говорить о дальних перспективах, то фантастика остается фантастикой. Так и не сошли с ее страниц проекты космодромов на орбите и на Луне. Образцом пока несбыточной фантазии считается «космический лифт», описанный Артуром Кларком в романе «Фонтаны рая». Правда, автором идеи является наш соотечественник Юрий Арцутанов, к которому корифей мировой фантастики даже приезжал на консультацию. Космическая экспансия человечества переживает некоторую «паузу». Однако если будут реализованы планы полета на Марс, если начнется реальное освоение Луны, то, возможно, эти проекты все же воплотятся в жизнь в обозримом будущем.

А пока на космодромах всей планеты регулярно на разных языках звучат слова «Ключ на старт!»

Человечество активно осваивает ближний и дальний космос. Обслуживание Международной космической станции, функционирование спутниковой системы навигации, орбитальные и межпланетные научно-исследовательские программы - все это требует регулярных запусков космических аппаратов. На сегодняшний день в мире несколько стран, имеющих собственные площадки для запусков. Крупнейшие из них: Россия, США, ЕС, Китай, Индия, Бразилия, Япония и Иран. Но все ли страны находятся в одинаковых «стартовых» условиях?

Оказывается, нет. И речь идет не о разных материальных и технических возможностях космических держав. Все дело в географическом расположении точки запуска. Интересно, что самое выгодное место для пуска ракет, с точки зрения экономии топлива и веса полезного груза, находится на экваторе Земли. Ракета, стартующая на 0 широте или в максимальной близости к ней, наиболее полно использует энергию вращения нашей планеты вокруг своей оси. Можно сказать, что создается эффект «попутного ветра», когда к скорости ракеты добавляется скорость вращения планеты. Этот эффект уменьшается при продвижении на север или юг от экватора. По подсчетам специалистов, ракета, стартующая с экватора, экономит до 10% топлива по сравнению с ракетами, запущенными в средних широтах. В сравнении с более высокими широтами этот показатель еще выше. А если требуется меньше топлива, то освободившееся место можно занять полезным грузом. Получается, что старты с экватора не только экономят средства, но и увеличивают грузоподъемность ракеты.

Другим немаловажным фактом, влияющим на выбор местоположения для строительства будущего космодрома, является подходящая территория, на которую будут падать отделяющиеся ступени ракет-носителей. Ракеты запускаются в восточном направлении, а отделяющиеся части в несколько этапов приземляются на расстоянии от 300 до 2000 километров от космодромов. Это довольно щекотливый момент, связанный с загрязнением окружающей среды и с безопасностью проживающего там населения. Поэтому самым удобным местом считается точка, при запуске с которой ступени ракеты будут падать в океан. Другим приемлемым вариантом при отсутствии океана является собственная территория суши, главное, чтобы не соседнее государство.

Одной из наиболее удобных площадок для запусков по этим параметрам считается космодром Куру, с координатами 5°14′21″ северной широты. Он расположен во французской колонии Гвиане, на восточном побережье Южной Америки, в непосредственной близости к экватору, а к востоку от него простирается бескрайний Атлантический океан, хранящий в себе отделяющиеся части ракет. В основном оттуда запускают свои ракеты Европейское Космическое Агентство и Франция. Недалеко от него, также на побережье, расположен бразильский космодром Алкантара с координатами 2°21′54″ южной широты. А вот американский космодром Мыс Канаверал расположен уже на некотором удалении от экватора, его координаты 28°29′20″ северной широты. У США есть еще 5 космодромов, самый удобный из которых расположен на Маршалловых островах в Тихом океане с координатами 8°59′58″ северной широты.


Довольно интересно расположение итальянского космодрома Сан-Марко. Эта европейская страна оборудовала для себя космодром на двух соединенных нефтяных платформах у восточных берегов Африки, в заливе Формоза. Это территориальные воды Кении. Все эти сложности и удаленность от Италии с лихвой компенсируются выгодным расположением: всего 2°56′27″ южной широты и бескрайний океан на востоке. Хорошими позициями обладает также индийский космодром Шрихарикота, расположенный на 13°43′12″ северной широты и океаническом побережье. Китай, Иран и Япония обладают средними позициями с точки зрения географического преимущества.

А вот кому приходится тяжелее всех при выводе ракет на орбиту, так это России, стартовые площадки которой имеют одни из худших позиций ввиду ее северного местоположения. Ближайший к экватору космодром, с которого Россия осуществляет регулярные запуски, это Байконур с координатами 45°57′58″ северной широты. Расположен он на территории Казахстана, а отработанные ступени приземляются на территории Казахстана и России. Новый космодром Восточный в Амурской области еще севернее и находится на 51°53′04″ северной широты, правда ступени частично будут падать в море. А вот российский космодром Плесецк является самым северным в мире и расположен на 62°57′36″ северной широты.


Конечно, когда дело доходит до выбора места расположения нового полигона, во внимание берутся не только факторы географического удобства, но и безопасность будущего объекта, инфраструктура региона, а также ряд других параметров. Но сегодня, когда космические запуски приобретают массовый характер, игроки на рынке коммерческих космических запусков и государственные корпорации ищут пути наиболее дешевых и удобных площадок, перемещаясь в океан и к экватору.

4 марта 1997 года состоялся первый космический запуск с нового российского космодрома «Свободный». Он стал двадцатым действующим на тот момент космодромом мира. Сейчас на месте этой стартовой площадки строится космодром «Восточный», ввод которого запланирован на 2018 год. Таким образом, у России будет уже 5 космодромов — больше чем у Китая, но меньше чем у США. Сегодня мы расскажем о крупнейших мировых космических площадках.

Байконур (Россия, Казахстан)

Старейшим и крупнейшим и поныне является «Байконур», открытый в степях Казахстана в 1957 году. Его площадь составляет 6717 кв.км. В лучшие — 60-е годы — на нем производилось до 40 запусков в год. И действовало 11 пусковых комплексов. За весь период существования космодрома с него было произведено более 1300 пусков.

По этому параметру «Байконур» лидирует в мире и поныне. Ежегодно здесь запускаются в космос в среднем два десятка ракет. Юридически космодром со всей его инфраструктурой и громадной территорией принадлежит Казахстану. А Россия арендует его за $ 115 млн. в год. Договор на аренду должен закончиться в 2050 году.

Однако еще раньше большинство российских запусков должно быть перенесено на ныне строящийся в Амурской области космодром «Восточный».

Существует в штате Флорида с 1949 года. Первоначально на базе проходили испытания военных самолетов, а позже запуски баллистических ракет. Как полигон для космических запусков используется с 1957 года. Не прекращая военных испытаний, в 1957 году часть стартовых площадок предоставили в распоряжение NASA.

Здесь стартовали первые американские спутники, отсюда уходили в полет первые американские астронавты — Алан Шепард и Вирджил Гриссом (суборбитальные полеты по баллистической траектории) и Джон Гленн (орбитальный полет). После чего программа пилотируемых полетов переместилась на вновь отстроенный Космический центр, которому в 1963 году после гибели президента присвоили имя Кеннеди.

С этого момента база стала использоваться для запуска беспилотных кораблей, которые доставляли космонавтам на орбиту необходимые грузы, а также отправляли автоматические исследовательские станции на другие планеты и за пределы Солнечной системы.

Также с мыса Канаверел запускали и запускают спутники — как гражданские, так и военные. В связи с многообразием решаемых на базе задач здесь было построено 28 стартовых площадок. В настоящее время действующими являются 4. Еще две поддерживаются в рабочем состоянии в ожидании начала производства современных челноков Boeing X-37, которые должны «отправить на пенсию» ракеты «Дельта», «Атлас» и «Титан».

Был создан во Флориде в 1962 году. Площадь — 557 кв.км. Количество сотрудников — 14 тыс. человек. Комплексом безраздельно владеет NASA. Именно отсюда стартовали все пилотируемые корабли, начиная с полета в мае 1962 года четвертого астронавта Скотта Карпентера. Здесь была реализована программа «Аполлон», увенчавшаяся высадкой на Луне. Отсюда улетали и сюда же возвращались все американские корабли многоразового действия — челноки.

Сейчас все пусковые площадки находятся в режиме ожидания новой техники. Последний пуск состоялся в 2011 году. Однако Центр продолжает напряженно работать и по управлению полетом МКС, и над разработкой новых космических программ.

Находится в Гвиане — заморском департаменте Франции, расположенном на северо-востоке Южной Америки. Площадь — около 1200 кв.км. Космодром Куру был открыт Французским космическим агентством в 1968 году. За счет небольшого удаления от экватора отсюда можно запускать космические корабли со значительной экономией топлива, поскольку ракету «подталкивает» большая линейная скорость вращения Земли вблизи нулевой параллели.

В 1975 году французы пригласили Европейское космическое агентство (ESA) использовать Куру для реализации своих программ. В результате сейчас на содержание и развитие космодрома Франция отпускает 1/3 часть необходимых средств, все остальное лежит на ESA. При этом ESA является собственником трех из четырех пусковых установок.

Отсюда в космос уходят европейские узлы МКС и спутники. Из ракет здесь преобладает производящаяся в Тулузе евроракета «Ариан». Всего было произведено более 60 пусков. В то же время пять раз с космодрома стартовали наши «Союзы» с коммерческими спутниками.

КНР владеет четырьмя космодромами. Два из них решают только военные задачи, производя испытания баллистических ракет, запуск спутников-шпионов, испытания техники перехвата иностранных космических объектов. Два имеют двойное назначение, обеспечивая не только реализацию милитаристских программ, но и мирное освоение космического пространства.

Крупнейший и старейший из них — космодром Цзюцюань. Действует с 1958 года. Занимает площадь в 2800 кв.км.

Первое время на нем советские специалисты обучали китайских «братьев навек» премудростям военно-космического «ремесла». В 1960 году отсюда была запущена первая ракета ближнего действия — советская. Вскоре удачно стартовала ракета китайского производства, в создании которой также участвовали советские специалисты. После того, как произошел разрыв дружеских отношений между странами, деятельность космодрома застопорилась.

Лишь в 1970 году с космодрома был успешно запущен первый китайский спутник. Через 10 лет стартовала первая межконтинентальная баллистическая ракета. А в конце столетия отправился в космос первый спускаемый космический корабль без пилота. В 2003 году на орбите оказался первый тайквонавт.

Сейчас на космодроме действуют 4 из 7 стартовых площадок. 2 из них отведены исключительно для нужд министерства обороны. Ежегодно с космодрома Цзюцюань стартует 5−6 ракет.

Основан в 1969 году. Управляется Японским агентством аэрокосмических исследований. Расположен на юго-восточном побережье острова Танэгасима, на юге префектуры Кагосима.

Первый примитивный спутник был выведен на орбиту в 1970 году. С тех пор Япония, владея мощной технологической базой в области электроники, сильно преуспела в деле создания как эффективных орбитальных спутников, так и гелеоцентрических исследовательских станций.

На космодроме две пусковые площадки отведены под запуски суборбитальных геофизических аппаратов, две обслуживают тяжелые ракеты H-IIA и H-IIB. Именно эти ракеты доставляют на МКС научное оборудование и необходимое снаряжение. Ежегодно производится до 5 пусков.

Этот уникальный плавучий космодром, базирующийся на океанской платформе, был введен в действие в 1999 году. За счет того, что платформа базируется на нулевой параллели, запуски с нее наиболее выгодны энергетически за счет использования максимальной линейной скорости Земли на экваторе. Деятельность «Одиссея» контролирует консорциум, в который вошли Boeing, РКК «Энергия», украинское КБ «Южное», украинское ПО «Южмаш», производящий ракеты «Зенит», и норвежская судостроительная компания Aker Kværner.

«Одиссей» состоит из двух морских судов — платформы с пусковой установкой и судна, играющего роль центра управления полетами.

Стартовая площадка прежде была японской нефтедобывающей платформой, которую отремонтировали и переоборудовали. Ее размеры: длина 133 м, ширина 67 м, высота 60 м, водоизмещение 46 тыс. тонн.

Ракеты «Зенит», которые используются для запуска коммерческих спутников, относятся к среднему классу. Они способны выводить на орбиту более 6 тонн полезного груза.

За время существования плавучего космодрома на нем произведено около 40 пусков.

И все остальные

Помимо перечисленных космодромов существует еще 17. Все они считаются действующими.

Некоторые из них, пережив «былую славу», сильно сбавили активность, а то и вовсе заморожены. Некоторые обслуживают лишь военно-космический сектор. Есть и те, которые интенсивно развиваются и, очень может быть, станут со времени «законодателями космической моды».

Вот перечень стран, имеющих космодромы и их количество, включая перечисленные в этой статье

Россия — 4;

Китай — 4;

Япония — 2;

Бразилия — 1;

Израиль — 1;

Индия — 1;

Республика Корея — 1;



Поделиться