В чем основные преимущества цифровой фотографии. Цифровое фото

Теледерматология, сохранение, обработка и передача на расстояние цифровых изображений - темы, которые сейчас занимают многих дерматологов как в клиниках, так и в частной практике. Мы попытаемся в этой статье раскрыть важнейшие, по нашему мнению, возможности теледерматологии. Применение теледерматологии, наряду с улучшением качества лечения и диагностики, делает работу врача экономически эффективнее, что особенно важно для частнопрактикующих врачей.

Сохранение цифровых изображений и исследование пигментных образований кожи

Эпилюминесцентная дерматоскопия была "вновь открыта" в начале 70-х годов для предоперационной диагностики пигментных образований кожи . Вначале этот способ представлялся довольно сложным из-за применения стационарных, довольно громоздких, стереомикроскопов .

С появлением портативных, ручных дерматоскопов , а также бинокулярного дерматоскопа со значительно сильным увеличением эпилюминесцентная дерматоскопия заняла прочное место среди традиционных способов обследований.

С помощью дерматоскопа, так же как и при применении освещенной лупы, можно быстро обследовать поверхность кожи. При обследовании дерматоскопом на участок кожи помещают специальную шайбу из прозрачного материала, на которую наносят иммерсионную жидкость, что позволяет исследовать более глубокие слои кожи. Исследования показали, что уже при 10-кратном увеличении все существенные структурные и цветовые компоненты идентифицируемы .

Первоначально при обследованиях как стереомикроскопом, так и дерматоскопами разных видов делались (при необходимости) фотографии или диапозитивы . Это всегда сопровождалось значительными затратами по причине отсутствия моментального контроля за качеством изображения, так как результат съемки был виден только после проявления пленки. Все это существенно ограничивало возможности документации результатов обследований. В дальнейшем были найдены технические решения, позволяющие монтировать дерматоскопы на видеокамеру, подключенную к компьютеру. Такой способ дает возможность выводить изображения либо на монитор компьютера, либо на сепаратный монитор и затем их сохранять (рис.1 , рис.2).

Этот метод определенно превосходит традиционную фотографию в отношении скорости, стоимости (в связи с быстрым удешевлением качественной компьютерной техники в последние годы) и возможности контроля за качеством хранения изображений. Однако применение этого метода ограничено тем, что оптическое разрешение компьютерного изображения при использовании "обычных" на сегодняшний день видеокамер и компьютерных видеокарт ниже, чем при классических диапозитивах.

Кроме того, компьютерные изображения невозможно без ощутимой потери качества увеличить до степени, необходимой при клинических презентациях или лекциях. Хотя при рассмотрении сохраненной в компьютере дерматоскопической находки на мониторе или при распечатке ее на цветном или видеопринтере размером с фотографию (как это делается в повседневной практике при диагностике и документации), качество изображения практически не отличается от обычной фотографии.

Как при клинической фотографии, так и при видеофотографии важно, чтобы передаваемые цвета были натуральны. Современные видеокамеры способны сравнивать белый цвет как образец и постоянно контролируют спектр цвета в каждый момент съемки. Тем не менее в области цветового восприятия эпилюминесцентная дерматоскопия является абсолютно субъективным методом, так как какие-либо стандарты при сравнительном анализе цвета невозможны. Например, при оценке цветовых нюансов меланоцитарных образований исследователь должен полагаться только на личное восприятие. При анализе изображения необходимо помнить, что не только камера и освещение, но и компоненты компьютера, обрабатывающие и передающие изображение (монитор, график или видеокарта и др.), могут влиять на цвет. Диагноз ставит, как всегда, врач, а не система. Экспертные системы или автоматические скрининг-системы в настоящее время только разрабатываются.

1. Цель работы

Изучить аналоговую и цифровую технологии регистрации изображения, основные принципы работы, устройство, элементы управления и настройки современных фотокамер. Классификацию, структуру черно-белых и цветных негативных фотопленок, основные характеристики фотопленок и методику выбора фотоматериалов для решения конкретных фотографических задач. Аналоговую и цифровую технологии фотографирования. Получить практические навыки эксплуатации изучаемых приборов.

2. Теоретическая справка устройство пленочного (аналогового) фотоаппарата

Современный фотоаппарат с автоматической фокусировкой обоснованно сравнивают с глазом человека. На рис. 1 слева, схематически показан глаз человека. При открывании века световой поток, формирующий изображение, проходит через зрачок, диаметр которого регулируется радужной оболочкой в зависимости от интенсивности света (ограничивает количество света), затем он проходит через хрусталик, преломляется в нем и фокусируется на сетчатке, которая преобразует изображение в сигналы электрического тока и передает их по зрительному нерву в мозг.

Рис. 1. Сравнение глаза человека с устройством фотоаппарата

На рис. 1 справа, схематически показано устройство фотоаппарата. При фотографировании заслонка открывается (регулирует время освещения), световой поток, формирующий изображение, проходит через отверстие, диаметр которой регулируется диафрагмой (регулирует количество света), затем он проходит через объектив преломляется в нем и фокусируется на фотоматериале, который регистрирует изображение.

Пленочный (аналоговый) фотоаппарат – оптико-механический прибор, с помощью которого производится фотосъемка. Фотоаппарат содержит взаимосвязанные механические, оптические, электрические и электронные узлы (рис. 2). Фотоаппарат общего назначения состоит из следующих основных частей и органов управления:

- корпус со светонепроницаемой камерой;

- объектив;

- диафрагма;

- фотографический затвор;

- кнопка спуска – инициирует съёмку кадра;

- видоискатель;

- фокусировочное устройство;

- фотопленка;

- кассета (или иное приспособление для размещения фотопленки)

- устройство транспортировки пленки;

- фотоэкспонометр;

- встроенная фотовспышка;

- элементы питания камеры.

В зависимости от назначения и конструкции фотографические аппараты имеют различные дополнительные приспособления для упрощения, уточнения и автоматизации процесса фотосъемки.

Рис. 2. Устройство плёночного (аналогового) фотоаппарата

Корпус – основа конструкции фотоаппарата, объединяющая узлы и детали в оптико-механическую систему. Стенки корпуса представляют собой светонепроницаемую камеру, в передней части которой установлен объектив, а в задней – фотопленка.

Объектив (от латинского objectus – предмет) – оптическая система, заключенная в специальную оправу, обращенная к объекту съемки и образующая его оптическое изображение. Фотографический объектив предназначен для получения светового изображения объекта съемки на светочувствительном материале. От свойств объектива в значительной степени зависит характер и качество фотографического изображения. Объективы бывают постоянно-встроенными в корпус камеры или сменными. Объективы, в зависимости от отношения фокусного расстояния к диагонали кадра, принято подразделять нанормальные ,широкоугольные ителеобъективы .

Объективы с переменным фокусным расстоянием (зум-объективы) позволяют получать изображения разного масштаба при неизменном съемочном расстоянии. Отношение наибольшего фокусного расстояния к наименьшему называют кратностью объектива. Так, объективы с переменным фокусным расстоянием от 35 до 105 мм называют объективами с 3х-кратным изменением фокусного расстояния (3-х-кратным зумом).

Диафрагма (от греческого diaphragma) – устройство, с помощью которого ограничивается пучок лучей, проходящих через объектив, для уменьшения освещенности фотоматериала в момент экспонирования и изменения глубины резко изображаемого пространства. Этот механизм реализован в виде ирисовой диафрагмы, состоящей из нескольких лепестков, перемещение которых обеспечивает непрерывное изменение диаметра отверстия (рис. 3). Величину диафрагмы можно устанавливать вручную или автоматически с помощью специальных устройств. В объективах современных фотокамер настройка диафрагмы выполняется с электронной панели управления на корпусе камеры.

Рис. 3. Механизм ирисовой диафрагмы состоит из ряда перекрывающихся пластин

Фотографический затвор – устройство, с помощью которого обеспечивается воздействие световых лучей на фотоматериал в течение определенного времени, называемоговыдержкой . Открытие затвора происходит по команде фотографа при нажатии кнопки спуска или с помощью программного механизма – автоспуска. Выдержки, которые отрабатываются фотографическим затвором, называют автоматическими. Существует стандартный ряд выдержек, измеряемых в секундах:

30

15

8

4

2

1

1/2

1/4

1/8

1/15

1/30

1/60

1/125

1/250

1/500

1/1000

1/2000

1/4000

Смежные числа этого ряда отличаются друг от друга в 2 раза. Переходя от одной выдержки (например 1/125 ) к соседней, мы увеличиваем (1/60 ) или уменьшаем (1/250 ) время экспонирования фотографического материала в два раза.

По устройству затворы подразделяют на центральные (створчатые) ишторно-щелевые (фокально-плоскостные).

Центральный затвор имеет отсекатели света, состоящие из нескольких металлических лепестков-створок, концентрически расположенных непосредственно возле оптического блока объектива или между его линзами, приводимые в действие системой пружин и рычагов (рис. 4). В качестве датчика времени в центральных затворах чаще всего используется простейший часовой механизм, а на коротких выдержках время открытия затвора регулируется силой натяжения пружин. Современные модели центральных затворов имеют электронный блок управления временем выдержки, лепестки удерживаются в открытом состоянии с помощью электромагнита. Центральные затворы автоматически отрабатывают выдержки в диапазоне от 1 до 1/500 секунды.

Затвор-диафрагма – центральный затвор, максимальная степень раскрытия лепестков которого регулируется, за счет чего затвор одновременно выполняет и роль диафрагмы.

В центральном затворе при нажатии на спусковую кнопку отсекатели начинают расходиться и открывают световое отверстие объектива от центра к периферии подобно ирисовой диафрагме, образуя световое отверстие с центром, расположенным на оптической оси. При этом одновременно на всей площади кадра возникает световое изображение. По мере расхождения лепестков освещенность возрастает, а затем, по мере их закрытия, убывает. Перед началом съемки следующего кадра затвор приводится в исходное положение.

Рис. 4. Некоторые типы центральных затворов: слева – с отсекателями света одностороннего действия; центр – с отсекателями света двустороннего действия; справа – с отсекателями света, выполняющими функции затвора и диафрагмы

Принцип действия центрального затвора обеспечивает высокую равномерность освещенности получаемого изображения. Центральный затвор позволяет применять фотовспышку практически во всем диапазоне выдержек. Недостатком центральных затворов является ограниченная возможность получения коротких выдержек, связанная с большими механическими нагрузками на отсекатели, при увеличении скорости их движения.

Шторно-щелевой затвор имеет отсекатели, в виде шторок (металлической – латунной гофрированной ленты) или набора подвижно скрепленных лепестков-ламелей (рис. 5), выполненных из легких сплавов или углепластика, расположенные в непосредственной близости от фотоматериала (в фокальной плоскости). Затвор вмонтирован в корпус фотоаппарата и приводится в действие системой пружин. Вместо пружины, которая перемещает шторки в классическом шторно-щелевом затворе, в современных фотокамерах применяются электромагниты. Их преимущество – высокая точность отработки выдержек. Во взведенном состоянии затвора фотоматериал перекрыт первой шторкой. При спуске затвора она сдвигается под действием натяжения пружины, открывая путь световому потоку. По окончании заданного времени экспонирования световой поток перекрывается второй шторкой. На более коротких выдержках две шторки движутся вместе с некоторым интервалом, через образующуюся щель между задней кромкой первой шторки и передней кромкой второй шторки происходит экспонирование фотоматериала, а время экспозиции регулируется шириной щели между ними. Перед началом съемки следующего кадра затвор приводится в исходное положение.

Рис. 5. Шторно-щелевой затвор (движение шторок поперек кадрового окна)

Шторно-щелевой затвор позволяет применять различные сменные объективы, так как не связан механически с объективом. Такой затвор обеспечивает выдержки до 1/12000 c. Но он не всегда дает возможность получать равномерность экспозиции по всей поверхности кадрового окна, уступая по этому параметру центральным затворам. Использование импульсных источников света при шторно-щелевом затворе возможно только при таких выдержках (выдержка синхронизации ), при которых ширина щели обеспечивает полное открытие кадрового окна. В большинстве фотоаппаратов такими выдержками являются: 1/30, 1/60, 1/90, 1/125, 1/250 с.

Автоспуск – таймер, предназначенный для автоматического спуска затвора с регулируемой задержкой после нажатия на кнопку спуска. Большинство современных фотоаппаратов снабжено автоспуском в качестве дополнительного узла в конструкции затвора.

Фотоэкспонометр – электронный прибор для определения экспозиционных параметров (выдержки и диафрагменного числа) при данной яркости объекта съемки и заданной светочувствительности фотоматериала. В автоматических системах поиск такого сочетания называется отработкой программы. После определения номинальной экспозиции, параметры съемки (диафрагменное число и выдержка) устанавливаются на соответствующих шкалах объектива и фотографического затвора. В фотоаппаратах с той или иной степенью автоматизации оба экспозиционных параметра или только один из них устанавливаются автоматически. Для повышения точности определения экспозиционных параметров, особенно в тех случаях, когда съемка производится с применением сменных объективов, различных приставок и насадок, существенно влияющих на светосилу объектива, фотоэлементы экспонометрических устройств размещают за объективом. Такая система замера светового потока получила наименование TTL (англ. Through the Line – «сквозь линзу/объектив»). Один из вариантов этой системы показан на схеме зеркального видоискателя (рис. 6). Датчик экспозамера, являющийся приемником световой энергии, освещается светом, прошедшим через оптическую систему объектива, установленного на фотоаппарате, включая светофильтры, насадки и другие устройства, которыми в данный момент может быть оснащен объектив.

Видоискатель – оптическая система, предназначенная для точного определения границ пространства, входящего в пределы поля изображения (кадра).

Кадр (от фр.cadre) фотографический – единичное фотографическое изображение объекта съёмки. Границы кадра устанавливаются кадрированием на этапах съёмки, обработки и печати.

Кадрирование при фото-, кино- и видеосъёмке – целенаправленный выбор точки съёмки, ракурса, направления съёмки, угла поля зрения объектива для получения необходимого размещения объектов в поле зрения видоискателя фотоаппарата и на итоговом изображении.

Кадрирование при печати или редактировании изображения –выбор границ и форматного соотношения фотографического изображения. Позволяет оставить за пределами кадра всё несущественное, случайные объекты, мешающее восприятию изображения. Кадрирование обеспечивает создание определённого изобразительного акцента на сюжетно важной части кадра.

Оптические видоискатели содержат только оптические и механические элементы и не содержит электронных.

Параллаксные видоискатели представляют собой отдельную от съемочного объектива оптическую систему. Из-за несовпадения оптической оси видоискателя с оптической осью объектива возникает параллакс. Влияние параллакса зависит от угла поля зрения объектива и видоискателя. Чем больше фокусное расстояние объектива и, соответственно, меньше угол поля зрения, тем больше параллактическая ошибка. Обычно в простейших моделях фотоаппаратов оси видоискателя и объектива делают параллельными, тем самым ограничиваясь линейным параллаксом, минимальное влияние которого при установке фокусировки на «бесконечность». В более сложных моделях фотоаппаратов, механизм фокусировки, оснащается механизмом компенсации параллакса. В этом случае оптическая ось видоискателя наклоняется к оптической оси объектива, и при этом наименьшее расхождение достигается на расстоянии, на которое произведена фокусировка. Преимуществом параллаксного видоискателя является его независимость от съёмочного объектива, что позволяет достичь большей яркости изображения и получить уменьшенное изображение с четкими границами кадра.

Телескопический видоискатель (рис. 6). Применяется в компактных и дальномерных фотоаппаратах и имеет ряд модификаций:

Видоискатель Галилея – перевёрнутая зрительная труба Галилея. Состоит из короткофокусного отрицательного объектива и длиннофокусного положительного окуляра;

Видоискатель Альбада . Развитие видоискателя Галилея. Фотограф наблюдает изображение рамки, расположенной вблизи окуляра и отражённой от вогнутой поверхности объектива видоискателя. Положение рамки и кривизна линз выбирается таким образом, чтобы её изображение казалось расположенным на бесконечности, что решает проблему получения чёткого изображения границ кадра. Наиболее распространённый тип видоискателя на компактных фотоаппаратах;

Беспараллаксные видоискатели.

Зеркальный видоискатель состоит из объектива, отклоняющего зеркала, фокусировочного экрана, пентапризмы и окуляра (рис. 6). Пентапризма переворачивает изображение в прямое, привычное для нашего зрения. Отклоняющее зеркало во время кадрирования и фокусировки отражает практически 100% поступающего через объектив света на матовое стекло фокусировочного экрана (при наличии автоматики фокусировки и экспозамера часть светового потока отражается на соответствующие датчики).

Светоделительный. При использовании светоделителя (полупрозрачного зеркала или призмы), 50–90 % света проходит через наклоненное под углом 45° зеркало на фотоматериал, а 10–50 % отражается под углом 90° градусов на матовое стекло, где рассматривается через окулярную часть, как в зеркальном фотоаппарате. Недостаток данного видоискателя его низкая эффективность при съёмке в условиях слабой освещенности.

Фокусировка заключается в установке объектива относительно поверхности фотоматериала (фокальной плоскости) на таком расстоянии, при котором изображение на этой плоскости получается резким. Получение резких изображений определяется соотношением между расстояниями от первой главной точки объектива до объекта съемки и от второй главной точки объектива до фокальной плоскости. На рис. 7 показаны пять различных случаев расположения объекта съемки и соответствующие им положения изображения:

Рис. 6. Схемы телескопического и зеркального видоискателей

Рис. 7. Связь между расстоянием от главной точки объектива О до объекта К и расстоянием от главной точки объектива О до изображения объекта К"

Пространство слева от объектива (перед объективом) называют пространством предметов, а пространство справа от объектива (за объективом) – пространством изображений.

1. Если объект находится в «бесконечности», то его изображение получится за объективом в главной фокальной плоскости, т.е. на удалении, равном главному фокусному расстоянию f .

2. По мере приближения объекта съемки к объективу его изображение начинает все больше перемещаться в сторону точки двойного фокусного расстояния F’ 2 .

3. Когда объект будет в точке F 2 , т.е. на удалении, равном двойному фокусному расстоянию, его изображение окажется в точке F’ 2 . Причем, если до этого момента размеры объекта были больше размеров его изображения то, теперь они станут равны.

5. Когда объект окажется в точке F 1 , пришедшие от него лучи за объективом образуют параллельный пучок и изображения не получится.

При крупномасштабных съемках (макросъемка) объект располагают на близком расстоянии (иногда меньшем, чем 2 f ) и применяют различные приспособления для выдвижения объектива на большее расстояние, чем это позволяет оправа.

Таким образом, для получения резкого изображения снимаемого объекта необходимо перед съемкой установить объектив на некотором расстоянии от фокальной плоскости, то есть произвести фокусировку. В фотоаппаратах фокусировка производится посредством перемещения вдоль оптической оси группы линз объектива с помощью фокусировочного механизма. Обычно управление фокусировкой осуществляется вращением кольца на оправе объектива (может отсутствовать на фотоаппаратах, у которых объектив установлен на гиперфокальное расстояние или в аппаратах в которых предусмотрен лишь режим автоматической фокусировки – автофокус).

Производить фокусировку непосредственно по поверхности фотоматериала невозможно, поэтому применяют различные фокусировочные устройства для осуществления визуального контроля резкости.

Фокусировка по шкале расстояний на оправе объектива обеспечивает хорошие результаты для объективов, обладающих большой глубиной резкости (широкоугольных). Такой способ наводки применяется в обширном классе шкальных пленочных фотоаппаратов.

Фокусировка с помощью дальномерного устройства отличается высокой точностью и применяется для светосильных объективов со сравнительно небольшой глубиной резкости. Схема дальномерного устройства, совмещенного с видоискателем, показана на рисунке 8. При наблюдении за объектом съемки через видоискатель-дальномер в центральной части его поля зрения видно два изображения, одно из которых образовано оптическим каналом дальномера, а другое – каналом видоискателя. Перемещение объектива вдоль оптической оси через рычаги7 вызывает поворот отклоняющей призмы6 так, что передаваемое ею изображение перемещается в горизонтальном направлении. Когда оба изображения в поле зрения видоискателя совпадут, объектив будет сфокусирован.

Рис. 8. Принципиальная схема дальномерного устройства для наводки объектива на резкость: а: 1 – окуляр видоискателя; 2 – кубик с полупрозрачным зеркальным слоем; 3 – диафрагма; 4 – объектив фотоаппарата; 5 – объектив дальномера; 6 – отклоняющая призма; 7 – рычаги связи оправы объектива с отклоняющей призмой; б – наводка объектива на резкость выполняется совмещением двух изображений в поле зрения видоискателя (два изображения – объектив установлен неточно; одно изображение – объектив установлен точно)

Фокусировка в зеркальном фотоаппарате. Схема зеркального фотоаппарата показана на рис. 6. Лучи света, пройдя через объектив, попадают на зеркало и отражаются им на матовую поверхность фокусировочного экрана, образуя на ней световое изображение. Это изображение переворачивается пентапризмой и рассматривается через окуляр. Расстояние от задней главной точки объектива до матированной поверхности фокусировочного экрана равно расстоянию от этой точки до фокальной плоскости (поверхности фотопленки). Фокусировка объектива производится вращением кольца на оправе объектива, с непрерывным визуальным контролем изображения на матированной поверхности фокусировочного экрана. При этом необходимо определить положение, при котором резкость изображения будет максимальной.

Чтобы облегчить наводку объектива на резкость и повысить ее точность, используются различные системы автоматической фокусировки .

Автофокусировка объектива производится в несколько этапов:

Измерение параметра (расстояние до объекта съёмки, максимального контраста изображения, фазового сдвига составляющих выбранного луча, времени задержки прихода отраженного луча и т.п.) чувствительного к резкости изображения в фокальной плоскости и его вектора (для выбора направления изменения сигнала рассогласования и предсказания возможной дистанции фокусировки в следующий момент времени при движении объекта);

Генерация эталонного сигнала, эквивалентного измеряемому параметру и определение сигнала рассогласования системы автоматического регулирования автофокуса;

Подача сигнала на исполнительный механизм фокусировки.

Эти процессы происходят практически одновременно.

Наведение оптической системы на резкость выполняется электродвигателем. Время, затраченное на измерение выбранного параметра, и время отработки сигнала рассогласования механикой объектива определяют быстродействие системы автофокусировки.

Работа системы автофокуса может основываться на различных принципах:

Активные системы автофокусировки: ультразвуковой; инфракрасный.

Пассивные системы автофокусировки: фазовый (применяется в зеркальных плёночных и цифровых фотоаппаратах); контрастный (видеокамеры, незеркальные цифровые фотоаппараты).

Ультразвуковая и инфракрасные системы рассчитывают расстояние до объекта по времени возвращения от объекта съемки фронтов, излученных фотоаппаратом инфракрасных (ультразвуковых) волн. Наличие прозрачной преграды между объектом и фотоаппаратом приводит к ошибочной фокусировке данных систем на данную преграду, а не на объект съемки.

Фазовый автофокус. В корпусе фотоаппарата размещаются специальные датчики, получающие фрагменты светового потока от разных точек кадра с помощью системы зеркал. Внутри датчика расположены две разделительные линзы, которые проецируют двойное изображение объекта фотосъемки на два ряда светочувствительных датчиков, вырабатывающих электрические сигналы, характер которых зависит от количества, попадающего на них света. В случае точной фокусировки на объект два световых потока будут находиться друг от друга на определённом расстоянии, заданном конструкцией датчика и эквивалентным ему эталонным сигналом. Когда точка фокусаК (рис. 9) находится ближе объекта два сигнала сходятся друг к другу. Когда точка фокуса находится дальше объекта – сигналы расходятся дальше друг от друга. Датчик, измерив это расстояние, вырабатывает эквивалентный ему электрический сигнал и, сравнив его с эталонным сигналом с помощью специализированного микропроцессора определяет рассогласование и выдаёт команду на исполнительный механизм фокусировки. Фокусировочные моторы объектива, отрабатывают команды, уточняя фокусировку пока сигналы с датчика не совпадут с эталонным сигналом. Быстродействие такой системы очень высоко и зависит, в основном от быстродействия исполнительного механизма фокусировки объектива.

Контрастный автофокус. Принцип работы контрастного автофокуса основан на постоянном анализе микропроцессором степени контрастности изображения, и отработке команд на перемещение объектива для получения резкого изображения объекта. Контрастный автофокус характеризуется низким быстродействием, обусловленным отсутствием у микропроцессора исходной информации о текущем состоянии фокусировки объектива (изображение считается изначально нерезким) и как следствие необходимости выдачи команды на смещение объектива от исходного положения и анализа полученного изображения на степень изменения контраста. Если контраст не увеличился, то процессор меняет знак команды на исполнительный механизм автофокуса и электродвигатель перемещает группу линз объектива в противоположном направлении, пока не будет зафиксирован максимум контраста. Когда максимум достигнут, автофокусировка прекращается.

Задержка между нажатием на кнопку спуска затвора и моментом съёмки кадра, объясняется работой пассивного контрастного автофокуса и тем, что в незеркальных фотоаппаратах процессор вынужден считывать с матрицы (ПЗС) весь кадр, чтобы проанализировать на степень контрастности лишь зоны фокусировки.

Фотовспышка . Электронные фотовспышки используются в качестве основного или дополнительного источника света, и могут быть разных типов: встроенная фотовспышка фотоаппарата, внешняя фотовспышка с автономным питанием, студийные фотовспышки. Несмотря на то, что встроенная вспышка стала стандартным устройством всех фотоаппаратов, высокая мощность автономных вспышек обеспечивает дополнительные преимущества за счет возможности более гибкого управления диафрагмой и расширения технических приемов съемки.

Рис. 9. Схема работы фазового автофокуса

Основные узлы фотовспышки:

Импульсный источник света – газоразрядная лампа, наполненная инертным газом –ксеноном;

Устройство поджига лампы – повышающий трансформатор и вспомогательные элементы;

Накопитель электрической энергии – конденсатор большой емкости;

Устройство электропитания (батареи гальванических элементов или аккумуляторов, преобразователь тока).

Узлы объединены в единую конструкцию, состоящую из корпуса с отражателем, или скомпонованы в два блока и более.

Импульсные газоразрядные лампы – это мощные источники света, спектральная характеристика которых близка к естественному дневному свету. Лампы, применяемые в фотографии (рис. 10), представляют собой стеклянную или кварцевуютрубку, заполненную инертным газом (ксеноном ) под давлением 0,1–1,0 атм, в торцах которой установлены электроды из молибдена или вольфрама.

Газ, находящийся внутри лампы, не проводит электричество. Для включения лампы (поджига) существует третий электрод (поджигающий ) в виде прозрачного слоя двуокиси олова. При подаче на электроды напряжения не ниже напряжения зажигания и высоковольтного (>10000 В) поджигающего импульса между катодом и поджигающим электродом, лампа зажигается. Импульс высокого напряжения ионизирует газ в колбе лампы вдоль внешнего электрода, создавая ионизированное облако, соединяющее положительный и отрицательный электроды лампы, давая возможность ионизации газа теперь уже между этими двумя электродами лампы. В силу того, что сопротивление ионизированного газа 0,2–5 Ом, электрическая энергия, накопленная на конденсаторе за короткий промежуток времени преобразуется в световую энергию. Длительность импульса – период времени, в течение которого интенсивность импульса снижается до 50% от максимального значения и составляет 1/400 – 1/20000 с и короче. Кварцевые баллоны импульсных ламп пропускают свет с длиной волны от 155 до 4500 нм, стеклянные – от 290 до 3000 нм. Излучение импульсных ламп начинается в ультрафиолетовой части спектра и требует нанесения на колбу специального покрытия, которое не только отсекает ультрафиолетовую область спектра, выступая в качестве ультрафиолетового фильтра, но и корректирует цветовую температуру импульсного источника под фотографический стандарт 5500 К.

Рис. 10. Устройство импульсной газоразрядной лампы

Мощность импульсных ламп измеряется в джоулях (ваттсекунда) по формуле:

где С – емкость конденсатора (фарада),U заж – напряжение зажигания (вольт),U пог – напряжение погасания (вольт),Е макс – максимальная энергия (втс).

Энергия вспышки зависит от емкости и напряжения накопительного конденсатора.

Три способа управления энергией импульса фотовспышки.

1. Параллельное соединение нескольких конденсаторов (С = С 1 + С 2 + С З + ... + С n ) и, включение/выключение каких-то их групп для регулирования мощности излучения. Цветовая температура при таком управлении мощностью остается стабильной, но управление мощностью возможно лишь дискретными значениями.

2. Изменение начального напряжения на накопительном конденсаторе позволяет регулировать энергию в пределах 100–30%. При более низких значениях напряжения лампа не зажигается. Дальнейшее совершенствование данной технологии, ввод в схему запуска лампы еще одного конденсатора малой емкости, на котором достигается напряжение, достаточное для запуска лампы, а остальные конденсаторы заряжаются до меньшего значения, что позволяет получать любые промежуточные значения мощности в пределах от 1:1 до 1:32 (100–3 %). Разряд в таком режиме включения лампы по своим характеристикам приближается к тлеющему, что удлиняет время свечения лампы, а суммарная цветовая температура излучения приближается к стандартной 5500К.

3. Прерывание длительности импульса при достижении необходимой мощности. Если в момент ионизации газа в колбе лампы разорвать электрическую цепь, ведущую от конденсатора к лампе, ионизация прекратится и лампа погаснет. Данный способ требует применения в управлении импульсной лампой специальных электронных схем отслеживающих заданное падение напряжения на конденсаторе, либо учитывающих световой поток, вернувшийся от объекта съемки.

Ведущее число – мощность фотовспышки, выраженная в условных единицах, равна произведению расстояния от фотовспышки до объекта съемки на диафрагменное число. Ведущее число зависит от энергии вспышки, угла рассеяния светового потока и конструкции отражателя. Обычно ведущее число указывается для фотоматериала чувствительностью 100ISO.

Зная ведущее число и расстояние от вспышки до объекта съемки можно определить необходимую для правильного экспонирования диафрагму по формуле:

Например, при ведущем числе 32 мы получим следующие параметры: диафрагма 8=32/4 (м), диафрагма 5,6=32/5,7 (м) или диафрагма 4=32/8 (м).

Количество света обратно пропорционально квадрату расстояния от источника света до объекта (первый закон освещенности), поэтому для увеличения эффективного расстояния фотовспышки в 2 раза, при фиксированном значении диафрагмы, необходимо увеличить чувствительность фотоматериала в 4 раза (рис. 11).

Рис. 11. Первый закон освещенности

Например, при ведущем числе 10 и диафрагме 4 мы получим:

При ISO100 – эффективное расстояние =10/4=2,5 (м)

При ISO400 – эффективное расстояние =5 (м)

Режимы автоматики фотовспышек

Современная фотовспышка, согласуясь с данными чувствительности пленки и диафрагмы, установленными на фотоаппарате, может дозировать количество света, обрывая разряд лампы по команде автоматики. Количество света может регулироваться только в сторону уменьшения, т.е. либо полный разряд, либо меньшая его часть, если объект съемки находится достаточно близко и максимальная энергия не требуется. Автоматика таких приборов улавливает отраженный от объекта свет, предполагая, что перед ней среднесерый объект, коэффициент отражения которого равен 18 %, что может приводить к ошибкам экспонирования в случае если отражательная способность объекта значительно отличается от данной величины. Для решения этой проблемы в фотовспышках предусмотренрежим экспокоррекции , который позволят регулировать энергию вспышки, исходя из светлоты объекта, как в сторону увеличения (+), так и в сторону уменьшения (–) энергии от уровня, рассчитанного автоматикой. Механизм экспокоррекции при работе с фотовспышкой аналогичен рассмотренному ранее.

Очень важно знать, с какой выдержкой можно использовать ручную или автоматическую вспышку, поскольку длительность светового импульса вспышки очень мала (измеряется тысячными долями секунды). Срабатывание вспышки должно произойти тогда, когда затвор полностью открыт, иначе шторка затвора может перекрыть часть изображения в кадре. Такая скорость затвора называется выдержкой синхронизации . Она колеблется у разных камер от 1/30 до 1/250 с. Но если выбрать выдержку длиннее выдержки синхронизации, то появятся возможность назначить время срабатывания вспышки.

Синхронизация по первой (открывающей) шторке – позволяет сразу после полного открытия кадрового окна произвести импульс света, а далее движущийся объект будет освещен постоянным источником, оставляя смазанные следы изображения в кадре – шлейф. При этом шлейф будет находиться перед движущимся объектом.

Синхронизация по второй (закрывающей) шторке – синхронизирует срабатывание импульса перед началом закрытия кадрового окна затвором фотоаппарата. Результат – шлейф от движущегося объекта экспонируется позади объекта, подчеркивая его динамику движения.

В наиболее совершенных моделях фотовспышек есть режим деления энергии на равные части и возможность выдавать ее чередующимися частями в течение определенного интервала времени и с определенной частотой. Такой режим называется стробоскопическим, частота указывается в герцах (Гц). Если объект съемки движется относительно кадрового пространства, стробоскопический режим позволит зафиксировать отдельные фазы движения, «замораживая» их светом. В одном кадре можно будет увидеть все фазы движения объекта.

Эффект «красных глаз». При съемке людей со вспышкой их зрачки на снимке могут оказаться красными. Эффект «красных глаз» вызван отражением света испускаемого фотовспышкой от сетчатки на задней поверхности глаза, который возвращается прямо в объектив. Данный эффект характерен для встроенной вспышки из-за близкого расположения ее к оптической оси объектива (рис. 12).

Способы уменьшения эффекта «красных глаз»

Используя для фотосъемки компактную камеру, можно лишь уменьшить вероятность появления эффекта «красных глаз». Проблема также носит и субъективный характер – есть люди, у которых эффект «красных глаз» может появиться даже при съемках без вспышки…

Рис. 12. Схема образования эффекта «красных глаз»

Для снижения вероятности появления эффекта «красных глаз» существует ряд методов в основе которых лежит свойство глаза человека уменьшать размер зрачка при увеличении освещенности. Производится освещение глаз с помощью предварительной вспышки (меньшей мощности) перед основным импульсом или яркой лампой на которую необходимо смотреть фотографируемому.

Единственный надежный способом борьбы с этим эффектом – использование внешней автономной фотовспышки с удлинителем, расположив ее оптическую ось примерно в 60 см от оптической оси объектива.

Транспортировка пленки. Современные пленочные фотокамеры снабжены встроенным моторным приводом, для транспортировки пленки внутри камеры. После каждого снимка пленка автоматически перематывается на следующий кадр и одновременно производится взвод затвора.

Существует два режима транспортировки пленки: покадровый и непрерывный. В покадровом режиме после нажатия на кнопку спуска затвора выполняется один снимок. В непрерывном режиме производится съемка серии кадров до тех пор, пока нажата кнопка спуска затвора. Обратная перемотка отснятой пленки – осуществляется фотоаппаратом автоматически.

Механизм транспортировки пленки состоит из следующих элементов:

Кассета с пленкой;

Приемная катушка, на которую наматывается отснятая пленка;

Зубчатый валик входит в зацепление с перфорацией и перемещает пленку в кадровом окне на один кадр. Более совершенные системы транспортировки пленки вместо зубчатого валика используют специальные ролики, а один ряд перфорации пленки используется системой датчиков для точной установки пленки на следующий кадр;

Замки открытия и закрытия задней крышки аппарата для смены кассеты с плёнкой.

Кассета – представляет собой светонепроницаемый металлический футляр, в котором фотопленка храниться, устанавливается в фотоаппарат перед съемкой и вынимается из него после окончания съемки. Кассета 35 миллиметрового фотоаппарата имеет цилиндрическую форму, состоит из катушки, корпуса и крышки и вмещает пленку длиной до 165 см (36 кадров).

Фотопленка – светочувствительный материал на гибкой прозрачной основе (полиэстер, нитрат или ацетат целлюлозы), на который нанесена фотоэмульсия, содержащая зерна галогенидов серебра, определяющие светочувствительность, контраст и оптическое разрешение фотопленки. После воздействия света (или других форм электромагнитного излучения, например рентгеновского) на фотопленке формируется скрытое изображение. С помощью последующей химической обработки получают видимое изображение. Наиболее распространена перфорированная фотоплёнка шириной 35 мм на 12, 24 и 36 кадров (формат кадра 24×36 мм).

Фотопленки подразделяются на: профессиональные и любительские.

Профессиональные пленки рассчитаны на более точное экспонирование и последующую обработку, они выпускаются с более жесткими допусками по основным характеристикам и, как правило, требуют хранения при пониженной температуре. Любительские пленки менее требовательны к условиям хранения.

Фотоплёнка бывает чёрно-белой илицветной :

Черно-белая пленка предназначена для регистрации черно-белых негативных или позитивных изображений с помощью фотоаппарата. В чёрно-белой фотоплёнке есть один слой серебряных солей. При попадании света и дальнейшей химической обработке соли серебра превращаются в металлическое серебро. Структура черно-белой фотопленки представлена на рис. 13.

Рис. 13. Структура черно-белой негативной фотопленки

Цветная фотопленка предназначена для регистрации цветных негативных или позитивных изображений с помощью фотоаппарата. Цветная плёнка использует как минимум три слоя. Окрашивающие, адсорбирующие вещества, взаимодействуя с кристаллами серебряных солей, делают кристаллы чувствительными к различным участками спектра. Этот способ изменения спектральной чувствительности называется сенсибилизацией. Чувствительный только к синему, обычно несенсибилизированный, слой расположен сверху. Так как все остальные слои, помимо «своих» диапазонов спектра, чувствительны и к синему, их отделяет жёлтым фильтровым слой. Далее идут зелёный и красный. В процессе экспонирования в кристаллах галогенидов серебра образуются скопления атомов металлического серебра, точно так же, как у чёрно-белой плёнки. Впоследствии это металлическое серебро служит для проявления цветных красителей (пропорционально количеству серебра), далее снова превращается в соли и вымывается в процессе отбелки и фиксирования, так что изображение в цветной плёнке формируется цветными красителями. Структура цветной фотопленки представлена на рис. 14.

Рис. 14. Структура цветной негативной фотопленки

Существует специальная монохромная плёнка , она обрабатывается по стандартному цветному процессу, но формирует чёрно-белое изображение.

Широкое распространение цветная фотография получила благодаря появлению разнообразных фотоаппаратов, современных негативных материалов и, конечно, развитию широкой сети мини-фотолабораторий, позволяющих быстро и качественно печатать снимки различных форматов.

Фотопленка делится на две большие группы:

Негативная . На плёнке этого типа изображение инвертировано, то есть наиболее светлым участкам сцены соответствуют наиболее темные участки негатива, на цветной пленке инвертированы также цвета.Только при печати на фотобумаге изображение становится позитивным (действительным) (рис. 15).

Обращаемые или слайдовые фотопленки названы так потому, что на обработанной пленке цвета соответствуют действительным – позитивное изображение. Обращаемая пленка , называемая часто пленкой для слайдов, используется в основном профессионалами и позволяет достичь великолепных результатов по богатству цвета и четкости детализации. Проявленная обращаемая пленка уже представляет собой конечный продукт – диапозитив (каждый кадр – единственный).

Под термином «слайд», понимаем диапозитив, обрамленный рамкой размером 50×50 мм (рис. 15). Основное применение слайдов – это проекция на экран при помощи диапроектора и цифровое сканирование для целей полиграфии.

Выбор светочувствительности фотопленки

Светоч увствительность фотоматериала – способность фотографического материала образовывать изображение под действием электромагнитного излучения, в частности света, характеризует экспозицию, которая может нормально передать на снимке фотографируемый сюжет, и численно выражается в единицах ISO (сокр. от International Standard Organization – Международная организация по стандартизации), являющихся универсальным стандартом расчета и обозначения светочувствительности всех фотопленок и матриц цифровых фотоаппаратов. Шкала ISO является арифметической – удвоение значения соответствует удвоению светочувствительности фотоматериала. Светочувствительность ISO 200 вдвое выше, чем ISO 100, и вдвое ниже, чем ISO 400. Например, если для ISO 100 при данной освещенности сцены вы получили экспозицию: 1/30 сек., F2,0, для ISO 200 Вы можете уменьшить выдержку до 1/60 сек., а при ISO 400 – до 1/125.

Среди цветных негативных пленок общего назначения самые распространенные: ISO100, ISO 200 и ISO 400. Самая чувствительная пленка общего назначения – ISO 800.

Возможна ситуация, когда в простейших камерах не хватает диапазона экспозиционных параметров (выдержки, диафрагмы) для конкретных условий съемки. Сориентироваться в выборе светочувствительности для планируемой съемки поможет таблица 1.

Рис. 15. Аналоговый фотопроцесс

Рис. 16. Аналоговая технология фотографирования

Таблица 1

Оценка возможности съемки на фотоматериал различной светочувствительности

Светочувствительность, (ISO )

Условия съемки

Солнце

Облачность

Движение, спорт

Съемка с фотовспышкой

Допустимо

Допустимо

Чем меньше светочувствительность фотопленки в единицах ISO, тем меньше ее зернистость, особенно при больших увеличениях. Необходимо всегда использовать пленку наименьшей светочувствительности, пригодную для данных условий съемки.

Параметр зернистости пленки говорит о визуальной заметности того факта, что изображение не непрерывно, а состоит из отдельны зерен (сгустков) красителя. Зернистость пленки выражается в относительных единицах зернистости О.Е.З. (RMS– в англоязычной литературе).Beличина эта достаточно субъективна, поскольку определяется визуальным сравнением под микроскопом тестовых образцов.

Цветовые искажения. Наличие цветовых искажений, связанных с качеством пленок, сказывается на уменьшении цветовых различий между деталями в светах и тенях (градационные искажения ), на уменьшении насыщенности цветов (цветоделительные искажения ) и на уменьшении цветовых различий между мелкими деталями изображения (искажения зрительного восприятия ). Большинство цветных фотопленок универсальны по своим свойствам и сбалансированы для съемок при дневном свете с цветовой температурой5500 К (градус Кельвина – единица измерения цветовой температуры источника света) или с импульсной фотовспышкой (5500 К ). Несовпадение цветовых температур источника освещения и применяемой фотопленки становится причиной появления на отпечатке искажения цвета (неестественных оттенков). Значительное влияние на цвет изображения оказывает искусственное освещение люминесцентными лампами (2800–7500 К ) и лампами накаливания (2500–2950 К ) при съемке на пленку, предназначенную для дневного света.

Рассмотрим несколько наиболее типичных примеров съемки на универсальную пленку для естественного освещения:

- Съемка в ясную солнечную погоду . Цветопередача на снимке получается правильной – действительной.

- Съемка в помещении с люминесцентными лампами . Цветопередача на снимке получается смещенной в сторону преобладания зеленого цвета.

- Съемка в помещении с лампами накаливания . Цветопередача на снимке получается смещенной в сторону преобладанияжелто-оранжевого оттенка.

Подобные цветовые искажения требуют введения цветокоррекции при фотосъемке (коррекционные светофильтры) или при фотопечати, чтобы восприятие отпечатков было близким к действительному.

Современные фотопленки упаковываются в металлические кассеты. Фотокассеты, на своей поверхности имеют код содержащий информацию о фотопленке.

DX кодирование – способ обозначения типа фотопленки, ее параметров и характеристик для ввода и автоматической обработки этих данных в системе управления автоматическим фотоаппаратом при фотосъемке или автоматом минифотолаборатории при фотопечати.

Для DХ кодирования применяют штриховой и шахматный коды. Штриховой код (для минифотолаборатории) представляет собой ряд параллельных темных полос разной ширины со светлыми промежутками, наносимых в определенном порядке на поверхность кассеты и непосредственно на фотопленку. Код для минифотолабораторий содержит данные, необходимые для автоматической проявки и фотопечати: сведения о типе пленки, ее цветовом балансе, количестве кадров.

Шахматный DХ код, предназначается для автоматических фотоаппаратов и выполняется в виде 12 чередующихся в определенном порядке светлых и темных прямоугольников на поверхности кассеты (рис. 17). Токопроводящим (металлического цвета) участкам шахматного кода соответствует «1», а изолированным (черным) – «0» двоичного кода. Для фотоаппаратов кодируются светочувствительность фотопленки, количество кадров, фотографическая широта. Зоны 1 и 7 всегда проводящие – соответствуют «1» двоичного кода (общие контакты); 2–6 – светочувствительность фотопленки; 8–10 – количество кадров; 11–12 – определяют фотографическую широту пленки, т.е. максимальное отклонение экспозиции от номинальной (EV).


Рис. 17. DX кодирование шахматным кодом

Динамический диапазон – одна из основных характеристик фотографических материалов (фотоплёнки, матрицы цифровой фото- или видеокамеры) в фотографии, телевидении и кино, определяющая максимальный диапазон яркостей объекта съёмки, которые могут быть достоверно переданы данным фотоматериалом при номинальной экспозиции. Достоверная передача яркостей означает, что равные отличия яркостей элементов объекта передаются равными отличиями яркости в его изображении.

Динамический диапазон – это отношение максимального допустимого значения измеряемой величины (яркости) к минимальному значению (уровню шума). Измеряется как отношение величин максимальной и минимальной экспозиции линейного участка характеристической кривой. Динамический диапазон принято измерять в единицах экспозиции (EV) или ступенями диафрагмы и выражать в виде логарифма по основанию 2 (EV), реже (аналоговая фотография) десятичного логарифма (обозначается буквой D).1EV = 0,3D .

где L – фотографическая широта, Н – экспозиция (рис. 1).

Для характеристики динамического диапазона фотопленок обычно используют понятие фотографическая широта , показывающая тот диапазон яркостей, который пленка может передать без искажений, с равномерным контрастом (диапазон яркостей линейной части характеристической кривой плёнки).

Характеристическая кривая галогенсеребряных (фотопленка и др.) фотоматериалов нелинейна (рис. 18). В ее нижней части имеется область вуали, D 0 – оптическая плотность вуали (для фотоплёнки оптическая плотность вуали –плотность неэкспонированного фотоматериала ). Между точками D 1 и D 2 можно выделить участок (соответствующий фотографической широте) практически линейного нарастания почернения при увеличении экспозиции. При больших экспозициях степень почернения фотоматериала переходит через максимум D max (для фотоплёнки этоплотность засвеченных участков ).

На практике чаще используют понятие «полезная фотографическая широта » фотоматериала L max , соответствующая более длинному участку «умеренной нелинейности» характеристической кривой, от порога наименьшего почернения D 0 +0,1 до точки вблизи точки максимальной оптической плотности фотослоя D max -0,1.

У светочувствительных элементов фотоэлектрического принципа действия существует физический предел, называемый – «пределом квантования заряда». Электрический заряд в одном светочувствительном элементе (пиксель матрицы) состоит из электронов (до 30000 в одном насыщенном элементе – для цифровых устройств это «максимальное» значение пикселя ограничивающее сверху фотографическую широту), собственный тепловой шум элемента не ниже 1–2 электронов. Так как число электронов примерно соответствует количеству поглощённых светочувствительным элементом фотонов, то это определяет максимальную теоретически достижимую для элемента фотографическую широту – около 15EV(двоичный логарифм от 30000).

Рис. 18. Характеристическая кривая фотоплёнки

Для цифровых устройств ограничение снизу (рис. 19), выражающиеся в увеличении «цифрового шума» причины которого складываются из: теплового шума матрицы, шума переноса заряда, погрешности аналого-цифрового преобразования (АЦП), также называемой «шумом дискретизации» или «шумом квантования сигнала».

Рис. 19 Характеристическая кривая матрицы цифрового фотоаппарата

Для АЦП с разной разрядностью (числом бит) используемого при квантовании двоичного кода (рис. 20), чем больше число разрядов квантования, тем меньше шаг квантования и выше точность преобразования. В процессе квантования за величину отсчета принимается номер ближайшего уровня квантования.

Шум квантования означает, что непрерывное изменение яркости передаётся в виде дискретного, ступенчатого сигнала, следовательно, не всегда разные уровни яркости объекта передаются разными уровнями выходного сигнала. Так при трёхбитном АЦП в диапазоне от 0 до 1 ступеней экспозиции любые изменения яркости преобразуются в значение 0 или 1. Поэтому все детали изображения, оказавшиеся в этом диапазоне экспозиций, будут потеряны. При четырёхбитном АЦП передача деталей в диапазоне экспозиций от 0 до 1 становится возможной – это практически означает расширение фотографической широты на 1 ступень (EV). Отсюда фотографическая широта цифрового аппарата (выраженная в EV) не может быть больше, разрядности аналого-цифрового преобразования.

Рис. 20 Аналогово-цифровое преобразование непрерывного изменения яркости

Под термином фотографическая широта понимается также, величина допустимого отклонения экспозиции от номинальной для заданного фотоматериала и данных условий съёмки, с сохранением передачи деталей в светлых и темных участках сцены.

Например: фотографическая широта плёнки KODAK GOLD равна 4 (-1EV....+3EV), эта означает, что при номинальной экспозиции для данной сцены F8, 1/60, Вы получите на снимке детали приемлемого качества, которые требовали бы выдержки от 1/125 сек до 1/8 сек, при фиксированной диафрагме.

При использовании слайдовой фотопленки FUJICHROME PROVIA с фотографической широтой равной 1 (-0,5EV....+0,5EV), необходимо определить экспозицию как можно точнее, так как при такой же номинальной экспозиции F8, 1/60, при фиксированной диафрагме Вы получите на снимке детали приемлемого качества, которые требовали бы выдержки от 1/90 сек до 1/45 сек.

Недостаточная фотографическая широта фотографического процесса приводит к потере деталей изображения в светлых и темных участках сцены (рис. 21).

Динамический диапазон человеческого глаза соответствует ≈15EV, динамический диапазон типичных объектов съемки достигает 11EV, динамический диапазон ночного сюжета с искусственным освещением и глубокими тенями может доходить до 20EV. Отсюда следует, что динамического диапазона современных фотоматериалов недостаточен для того, чтобы передать любой сюжет окружающего мира.

Типичные показатели динамического диапазона (полезной фотографической широты) современных фотоматериалов:

– цветные негативные плёнки 9–10 EV.

– цветные обращаемые (слайдовые) плёнки 5–6 EV.

– матрицы цифровых фотоаппаратов:

Компактные камеры: 7–8 EV;

Зеркальные камеры: 10–14 EV.

– фотоотпечаток (на отражение): 4–6,5 EV.

Рис. 21 Влияние динамического диапазона фотоматериала на результат съемки

Элементы питания камеры

Химические источники тока – устройства, в которых энергия протекающих в них химических реакций преобразуется в электроэнергию.

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Элемент Вольта – сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенными проволокой. Затем учёный собрал батарею из этих элементов, которая в последствии была названа Вольтовым столбом (рис. 22).

Рис. 22. Вольтов столб

Основу химических источников тока составляют два электрода (катод, содержащий окислитель и анод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов – электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая электрический ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.

В современных химических источниках тока используются:

– в качестве восстановителя (на аноде): свинец – Pb, кадмий – Cd, цинк – Zn и др. металлы;

– в качестве окислителя (на катоде): оксид свинца PbO 2 , гидроксид никеля NiOOH, оксид марганца MnO 2 и др.;

– в качестве электролита: растворы щелочей, кислот или солей.

По возможности многократного использования химические источники тока делятся на:

гальванические элементы , которые из-за необратимости протекающих в них химических реакций, невозможно использовать многократно (перезаряжать);

электрические аккумуляторы – перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить и использовать многократно.

Гальванический элемент – химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита. Сейчас широко распространены следующие гальванические элементы:

Наиболее распространены солевые и щелочные элементы следующих типоразмеров:

Обозначение ISO

Обозначение МЭК

По мере исчерпания химической энергии напряжение и ток падают, элемент перестаёт действовать. Разряжаются гальванические элементы по-разному: солевые – снижают напряжение постепенно, литиевые – сохраняют напряжение на протяжении всего срока эксплуатации.

Электрический аккумулятор – химический источник тока многоразового действия. Электрические аккумуляторы используются для накопления энергии и автономного питания различных потребителей. Несколько аккумуляторов, объединенных в одну электрическую цепь, называют аккумуляторной батареей. Емкость аккумуляторов обычно измеряют в ампер-часах. Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:

Принцип действия аккумулятора основан на обратимости химической реакции. По мере исчерпания химической энергии напряжение и ток падают – аккумулятор разряжается. Работоспособность аккумулятора может быть восстановлена путём заряда с помощью специального устройства, пропусканием тока в направлении, обратном направлению тока при разряде.

Современные цифровые камеры во многом напоминают старые пленочные фотоаппараты. И в этом нет ничего удивительного, ведь цифровая фотография, по сути, выросла из пленочной, позаимствовав различные узлы и компоненты. Особенное сходство прослеживается между зеркальным цифровым фотоаппаратом и пленочной камерой: ведь и там и там применяется объектив, с помощью которого аппарат фокусируется на снимаемом объекте. Схожий процесс: фотограф просто нажимает на кнопку затвора и, в конечном счете, получается фотоизображение.

Тем не менее, несмотря на схожесть процесса съемки, устройство цифрового фотоаппарата является гораздо более сложным по сравнению с пленочным. И эта сложность конструкции обеспечивает «цифровикам» существенные преимущества — мгновенный результат съемки, удобство, широкие функциональные возможности по управлению фотосъемкой и обработке изображений. Для того, чтобы разобраться в устройстве цифрового фотоаппарата, нужно, прежде всего, ответить на следующие вопросы: Как создается фотоизображение? Какие узлы цифровой фотоаппарат позаимствовал у пленочного? И что нового появилось в фотокамере с развитием цифровых технологий?

Принцип работы пленочного и цифрового фотоаппарата

Принцип работы обычной пленочной камеры состоит в следующем. Свет, отражаясь от снимаемого объекта или сцены, проходит через диафрагму объектива и фокусируется особым образом на гибкой, полимерной пленке. Фотопленка покрыта светочувствительным эмульсионным слоем на основе галоидного серебра. Мельчайшие гранулы химических веществ на пленке под действием света изменяют свою прозрачность и цвет. В результате, фотопленка благодаря химическим реакциям «запоминает» изображение.

Как известно, для формирования любого существующего в природе оттенка достаточно использовать комбинацию трех основных цветов — красного, зеленого и синего. Все остальные цвета и оттенки получаются путем их смешивания и изменения насыщенности. Каждая микрогранула на поверхности фотопленки отвечает, соответственно, за свой цвет в изображении и изменяет свои свойства именно в той степени, в которой на нее попали лучи света.

Поскольку свет различается по цветовой температуре и интенсивности, то в результате химической реакции на фотопленке получается практически полное дублирование снимаемой сцены. В зависимости от характеристик оптики, освещенности, времени выдержки/экспозиции сцены на пленке и времени раскрытия диафрагмы, а также других факторов формируется тот или иной стиль фотографии.

Что же касается цифрового фотоаппарата, то тут также используется система оптики. Лучи света проходят через линзу объектива, преломляясь особым образом. Далее они достигают диафрагмы, то есть отверстия с изменяемым размером, посредством которого регулируется количество света. Далее при фотографировании лучи света попадают уже не на эмульсионный слой фотопленки, а на светочувствительные ячейки полупроводникового сенсора или матрицы. Чувствительный сенсор реагирует на фотоны света, захватывает фотоизображение и передает его на аналого-цифровой преобразователь (АЦП).

Последний анализирует простые, аналоговые электрические импульсы, и преобразует их с помощью специальных алгоритмов в цифровой вид. Это перекодированное изображение в цифровом виде сохраняется на встроенном или внешнем электронном носителе. Готовое изображение уже можно посмотреть на ЖК-экране цифровой камеры, либо вывести его на монитор компьютера.

В течение всего этого многоступенчатого процесса получения фотоизображения электроника камеры непрерывно опрашивает систему на предмет немедленной реакции на действия фотографа. Сам фотограф через многочисленные кнопки, регуляторы и настройки может влиять на качество и стиль получаемого цифрового снимка. И весь этот сложный процесс внутри цифровой камеры происходит за считанные доли секунды.

Основные элементы цифрового фотоаппарата

Даже визуально корпус цифровой камеры схож с пленочным аппаратом, за исключением того, что в «цифровике» не предусмотрено катушки фотопленки и фильмового канала. На катушку в пленочных фотоаппаратах закреплялась пленка. И по окончании кадров на пленке фотографу приходилось перематывать кадры в обратном направлении вручную. В фильмовом канале фотопленка перематывалась до нужного для съемки кадра.

В цифровых фотоаппаратах все это кануло в лету, причем за счет избавления от фильмового канала и места для катушки с пленкой удалось сделать корпус камеры существенно тоньше. Впрочем, некоторые узды пленочных фотоаппаратов плавно перешли в цифровую фототехнику. Чтобы убедиться в этом, рассмотрим основные элементы современной цифровой камеры:

— Объектив


И в пленочной, и в цифровой фотокамере световые лучи проходят через объектив для получения изображения. Объектив представляет собой оптическое устройство, состоящее из набора линз и служащее для проецирования изображения на плоскости. В зеркальных цифровых фотоаппаратах практически ничем не отличаются от тех, что использовались в пленочных камерах. Более того, многие современные «зеркалки» обладают совместимостью с объективами, разработанными для пленочных моделей. К примеру, старые объективы с байонетом F могут применяться со всеми цифровыми зеркальными фотоаппаратами Nikon.

— Диафрагма и затвор

– это круглое отверстие, посредством которого можно регулировать величину светового потока, попадающего на светочувствительную матрицу или фотопленку. Это изменяемое отверстие, обычно размещающееся внутри объектива, образуется несколькими серповидными лепестками, которые при съемке сходятся или расходятся. Естественно, что диафрагма имеется как в пленочных, так и в цифровых аппаратах.


Тоже самое можно сказать и о затворе, который устанавливается между матрицей (фотопленкой) и объективом. Правда, в пленочных камерах используется механический затвор, представляющий собой своеобразные шторки, которые ограничивают воздействие света на пленку. Современные же цифровые аппараты оснащены электронным эквивалентом затвора, способным включать/выключать сенсор для приема приходящего светового потока. Электронный обеспечивает точную регуляцию времени приема света матрицей фотоаппарата.

В некоторых цифровых камерах, впрочем, имеется и традиционный механический затвор, который служит для предотвращения попадания на матрицу световых лучей после окончания времени выдержки. Тем самым, предотвращается смазывание картинки или появления эффекта ореола. Стоит отметить, что поскольку цифровому фотоаппарату может потребоваться некоторое время, чтобы обработать изображение и сохранить его, то возникает задержка по времени между тем моментом, когда фотограф нажал на кнопку спуска, и моментом, когда камера зафиксировала изображение. Эта задержка по времени называется задержкой срабатывания затвора.

— Видоискатель

Как в пленочном, так и в цифровом фотоаппарате имеется устройство для визирования, то есть устройство для предварительной оценки кадра. Оптический видоискатель, состоящий из зеркал и пентапризмы, показывает фотографу изображение именно в том виде, в котором оно существует в натуре. Однако многие современные цифровые камеры оборудованы электронным видоискателем. Он снимает изображение со светочувствительной матрицы и показывает фотографу таким, каким камера его видит с учетом предустановленных настроек и используемых эффектов.

В недорогих компактных цифровых фотоаппаратах видоискатель как таковой может просто отсутствовать. Его функции выполняет встроенный ЖК-экран с функцией LiveView. ЖК-экраны сегодня встраиваются и в зеркальные цифровые аппараты, поскольку благодаря такому экрану фотограф имеет возможность сразу же просмотреть результаты съемки. Таким образом, если снимок не удался, его можно тут же удалить и отснять новый кадр уже с другими настройками или в другом ракурсе.

— Матрица и аналого-цифровой преобразователь (АЦП)

После того, как мы рассмотрели принцип работы пленочного и цифрового фотоаппарата, стало понятно, в чем собственно состоит основная разница между ними. В цифровой камере вместо фотопленки появилась светочувствительная матрица или сенсор. Матрица представляет собой полупроводниковую пластину, на которой размещается огромное множество фотоэлементов.

Не превышают размеров кадра фотопленки. Каждый из чувствительных элементов матрицы при попадании на него светового потока создает минимальный элемент изображения – пиксел, то есть одноцветный квадрат или прямоугольник. Элементы сенсора реагируют на свет и создают электрический заряд. Таким образом, матрица цифрового фотоаппарата фиксирует световые потоки.

Матрица цифровой камеры характеризуется такими параметрами, как физические размеры, разрешение и чувствительность, то есть способность матрицы точно уловить поток попадающего на нее света. Все эти параметры оказывают свое влияние на качество фотоизображения.

Полученная информация от сенсора в виде электрических импульсов далее поступает на обработку в аналого-цифровой преобразователь (АЦП). Функция последнего состоит в том, чтобы превратить эти аналоговые импульсы в цифровой поток данных, то есть перевести изображение в цифровой вид.

— Микропроцессор

Микропроцессор присутствовал и в некоторых последних моделях пленочных камер, однако в цифровом фотоаппарате он стал одним из ключевых элементов. Микропроцессор отвечает в «цифровике» за работу затвора, видоискателя, матрицы, автофокуса, системы стабилизации изображения, оптики, а также за запись отснятого фото- и видеоматериала на носитель, выбор настроек и программных режимов съемки. Это своеобразный мозговой центр камеры, управляющий всей электроникой и отдельными узлами.


От производительности микропроцессора во многом зависит то, насколько быстро цифровая камера сможет осуществлять непрерывную съемку. В этой связи в некоторых продвинутых моделях цифровых камер используется сразу два микропроцессора, которые могут производить отдельные операции параллельно. Тем самым, обеспечивается максимальная скорость серийной съемки.

— Носитель информации

Если аналоговый (пленочный) фотоаппарат сразу же фиксирует изображение на пленке, то в цифровом, электроника записывает изображение в цифровом формате на внешний или внутренний носитель информации. Для этой цели в большинстве случаев используются . Но в некоторых камерах имеется и встроенная память небольшого объема, которой хватает для размещения нескольких отснятых кадров.


Также цифровые камеры обязательно оснащаются соответствующими разъемами для возможности их подключения к персональному или планшетному компьютеру, телевизору и другим устройствам. Благодаря этому фотограф получает возможность всего через несколько минут после съемки поместить готовое изображение в Интернете, передать по электронной почте или распечатать.

— Батарея

Во многих пленочных фотоаппаратах используется аккумуляторная батарея для приведения в действие электроники, которая, в частности, управляет фокусировкой и автоматической экспозицией сцены. Но эта работа не требует значительного энергопотребления, поэтому на одном заряде батареи пленочная камера способна проработать несколько недель.

Другое дело цифровая фототехника. Здесь жизнь аккумуляторной батареи камеры измеряется часами. А потому для поддержания работы камеры в условиях отсутствия источника электричества фотографу порой приходится запасаться дополнительными батареями.

Несмотря на то, что цифровая фототехника заимствовала многие узлы и компоненты из пленочной фотографии, она обладает рядом существенных преимуществ. Прежде всего, это возможность оперативно контролировать результаты съемки и вносить необходимые коррективы. Цифровой фотоаппарат в силу особенностей своего устройства предоставляет любому фотографу больше гибкости в процессе съемки за счет широких возможностей управления качеством изображений. Цифровые технологии обеспечивают мгновенный доступ к любому кадру и высокоскоростную фотосъемку. Сочетание гибкости, широких функциональных возможностей и оперативности ведения съемки гарантируют обладателю цифровой камеры получение фотографий превосходного качества практически в любых условиях.

Возможности цифровой фототехники сегодня далеко не исчерпаны. По мере развития устройство цифровых камер будет все более усложняться, в них будут реализованы новые технологии, увеличивающие функциональность аппаратов и обеспечивающие еще более высокое качество изображений.

История изобретений подчас весьма причудлива и непредсказуема. Прошло ровно 40 лет с момента изобретения в сфере полупроводниковой оптоэлектроники, приведшего к появлению цифровой фотографии.

10 ноября 2009 года изобретатели Виллард Бойл (родился в Канаде в 1924 году) и Джордж Смит (родился в 1930 году) награждены Нобелевской премией. Работая в Лабораториях Белла, в 1969 году они изобрели прибор с зарядовой связью: ПЗС-сенсор, или CCD (Charge-Coupled Device). В конце 60-х гг. ХХ в. ученые обнаружили, что МОП-структура (соединение типа металл—окисел—полупроводник) обладает светочувствительностью. Принцип действия ПЗС-сенсора, состоящего из отдельных МОП-светочувствительных элементов, основан на считывании электрического потенциала, возникшего под влиянием света. Сдвиг заряда выполняется последовательно от элемента к элементу. ПЗС-матрица, состоящая из отдельных светочувствительных элементов, стала новым прибором для фиксации оптического изображения.

Виллард Бойл (слева) и Джордж Смит. 1974 г. Фото:: Alcatel-Lucent/Bell Labs

ПЗС-сенсор. Фото: Alcatel-Lucent/Bell Labs

Но для создания переносной цифровой фотокамеры на основе нового фотоприемника необходимо было разработать малогабаритные ее составляющие с низким электропотреблением: аналогово-цифровой преобразователь, процессор для обработки электрических сигналов, малый монитор высокого разрешения, энергонезависимый накопитель информации. Проблема создания многоэлементной ПЗС-структуры представлялась не менее актуальной. Интересно проследить некоторые этапы создания цифровой фотографии.

Первая ПЗС матрица, созданная 40 лет назад новоиспеченными Нобелевскими лауреатами, содержала лишь семь светочувствительных элементов. На ее базе в 1970 ученые из Bell Labs создали прототип электронной видеокамеры. Через два года компания Texas Instruments получила патент на «Полностью электронное устройство для записи и последующего воспроизведения неподвижных изображений». И хотя изображения хранились на магнитной ленте, а воспроизводить их можно было на экране телевизора, т.е. устройство, по сути, было аналоговым, в патенте давалось исчерпывающее описание цифровой камеры.

В 1974 году на ПЗС-матрице компании Fairchild (черно-белой, с разрешением 100х100 пикселов) создана астрономическая электронная фотокамера. (Пиксел - аббревиатура английских слов picture (pix-) картина и element (-el)- элемент, т.е. элемент изображения). Используя все те же ПЗС-матрицы, год спустя инженер Kodak Стив Сассон создал первую условно переносную камеру. Снимок размером 100x100 пикселов записывался на магнитную кассету в течение 23 секунд, а весила она почти три килограмма.

1975 г., прототип первой цифровой фотокамеры камеры Kodak в руках у инженера Стива Сассона.

В бывшем СССР также велись подобные разработки. В 1975 г. были проведены испытания телевизионных камер на отечественных ПЗС.

В 1976 году Fairchild запускает в производство первую коммерческую электронную камеру MV-101, использовавшуюся на конвейере для контроля качества продукции. Изображение передавалось на мини-компьютер.

Наконец в 1981 г. корпорация Sony объявила о создании электронной модели фотоаппарата Mavica (аббревиатура Magnetic Video Camera) на базе зеркальной камеры со сменными объективами. Впервые в бытовой фотокамере приемником изображения служила полупроводниковая матрица — ПЗС размером 10х14 мм с разрешением 570х490 пикселов. Так появился первый прототип цифровой фотокамеры (ЦФК). Она записывала отдельные кадры в аналоговой форме на носитель с металлизированной поверхностью — гибкий магнитный диск (эту двухдюймовую дискету назвали Mavipak) в формате NTSC и поэтому официально она называлась «статической видеокамерой» (Still video camera). Технически Mavica была продолжением линейки телевизионных камер Sony на основе ПЗС-матриц. На смену громоздким телекамерам с электронно-лучевыми трубками уже пришло компактное устройство на основе твердотельного ПЗС-сенсора - еще одно направление использования изобретения нынешних Нобелевских лауреатов.

Sony Mavica

С середины 80-х практически все ведущие фотобренды и ряд электронных гигантов проводят работы по созданию цифровых фотокамер. В 1984 г. компания Canon создает видеофотокамеру Canon D-413 с улучшенной вдвое по сравнению с Mavica разрешающей способностью. Рядом компаний разработаны прототипы цифровых фотокамер: Canon выпустила на рынок Q-PIC (или ION RC-250); Nikon — прототип ЦФК QV1000C с записью данных в аналоговом виде; Pentax продемонстрировала прототип ЦФК под названием PENTAX Nexa с трехкратным зум-объективом. ПЗС-приемник камеры выполнял попутно функции датчика экспозамера. Фирма Fuji представила на выставке Photokina цифровую фотокамеру Digital Still Camera (DSC) DS-IP. Правда, коммерческого продвижения она не получила.


Nikon QV1000C


Pentax Nexa


Сanon Q-PIC (или ION RC-250)

В середине 80-х компания Kodak разработала промышленный образец CCD-сенсора с разрешением 1,4 мегапиксела и ввела в обращение сам термин «мегапиксел».

Камерой, сохранявшей изображение в виде цифрового файла, стала анонсированная в 1988 году Fuji DS-1P(Digital Still Camera-DSC), оснащенная 16 Мб встроенной энергозависимой памятью.

Fuji DS-1P(Digital Still Camera-DSC)

Компания Olympus показала на выставке PMA в 1990 прототип цифровой камеры Olympus 1C. На этой же выставке компания Pentax продемонстрировала свою усовершенствованную камеру PENTAX EI-C70, оснащенную активной системой автофокуса и функцией экспокоррекции. Наконец, на американском рынке появилась любительская ЦФК Dycam Model 1, более известная под наименованием Logitech FotoMan FM-1. Ее ПЗС-матрица с разрешением 376х284 точки формировала только черно-белое изображение. Информация записывалась в обычное ОЗУ (не на флэш-память) и при выключении батарей (два элемента типа АА) или их разрядке безвозвратно пропадала. Дисплей для просмотра кадров отсутствовал, объектив был с ручной фокусировкой.

Logitech FotoMan FM-1

В 1991 Фирма Kodak дополнила цифровой начинкой профессиональную фотокамеру Nikon F3, назвав новинку Kodak DSC100. Запись происходила на жесткий диск, находящийся в отдельном блоке, весившем около 5 кг.

Kodak DSC100

Sony, Kodak, Rollei и другие компании в 1992 г. представили камеры высокого разрешения, которые можно было отнести к классу профессиональных. Sony продемонстрировала Seps-1000, светочувствительный элемент которой состоял из трех ПЗС, что обеспечивало разрешение 1,3 мегапиксела. Kodak разработала DSC200 на базе камеры Nikon.

На выставке Photokina в 1994 г. была анонсирована профессиональная цифровая фотокамера Kodak DSC460 с высоким разрешением, ПЗС-матрица содержала 6,2 мегапиксела. Ее разработали на базе профессиональной пленочной зеркальной фотокамеры Nikon N90. Сама ПЗС-матрица размером 18,4х27,6 мм была встроена в электронный адаптер, который пристыковывался к корпусу. В том же 1994 году появились первые Flash-карты форматов Compact Flash и SmartMedia объёмом от 2 до 24 Мбайт.

Kodak DSC460

Стартовым по массовой разработке цифровых фотокамер стал 1995 год. Компания Minolta совместно с Agfa изготовила фотокамеру RD175 (ПЗС-матрица 1528х1146 точек). На выставке в Лас-Вегасе демонстрировалось уже около 20 моделей любительских ЦФК: малогабаритная цифровая фотокамера фирмы Кодак с разрешением 768х512 точек, глубиной цвета 24 бита и встроенной памятью, позволяющей записать до 20 снимков; карманная ES-3000 фирмы Chinon с разрешением 640х480 со сменными картами памяти; малогабаритные камеры Photo PC фирмы Epson c двумя возможными разрешениями — 640х480 и 320х240 точек; аппарат Fuji X DS-220 с размером изображения 640х480 точек; камера RDC-1 фирмы Ricoh с возможностью как покадровой, так и видеосъемки с разрешением формата видеозаписи Super VHS 768х480 точек. Аппарат RDC-1 был оснащен объективом с трехкратным зумом и фокусным расстоянием 50—150 мм (в 35-мм эквиваленте), автоматизированы функции фокусировки, определения экспозиции и настройки баланса белого. Имелся и ЖК-дисплей для оперативного просмотра отснятых кадров. Компания Casio также продемонстрировала коммерческие образцы своих камер. Выпущены первые потребительские фотоаппараты Apple QuickTake 150, Kodak DC40, Casio QV-11 (первая цифровая фотокамера с LCD-дисплеем и первая же — с поворотным объективом), Sony Cyber-Shot.

Так цифровая гонка стала набирать темпы. Ныне известны тысячи моделей цифровых фотокамер, видеокамер и телефонов со встроенными фотокамерами. Марафон далеко не окончен.

Необходимо обратить внимание на факт, что некоторые цифровые фотокамеры оснащены КМОП светочувствительной матрицей. КМОП — это комплементарная структура металл-окисел-полупроводник. Не вдаваясь в топологические особенности КМОП и ПЗС матриц, подчеркнем, что серьезные их различия лишь в способе считывания электронного сигнала. Но оба типа матриц строятся на основе светочувствительных МОП-структур (металл-окисел-полупроводник).

Довольно сложно научиться хорошо фотографировать если не знаешь основ и главных терминов и понятий в фотографии. Поэтому задача данной статьи — дать общее понимание того, что есть фотография, как работает фотоаппарат и познакомиться с основными фотографическими терминами.

Так как на сегодняшний день, пленочная фотография уже стала в основном историей, то речь дальше пойдет про цифровую фотографию. Хотя 90% всей терминологии неизменно, а принципы получения фотографии одни и те же.

Как получается фотография

Термин фотография означает рисование светом. Фактически, фотоаппарат фиксирует свет попадающий через объектив, на матрицу и на основе этого света формируется изображение. Механизм того, как на основе света получается изображение — довольно сложен и на эту тему написано много научных трудов. По большому счету, детальное знание данного процесса не столь необходимо.

Как же происходит формирование изображения?

Проходя через объектив, свет попадает на светочувствительный элемент, который его фиксирует. В цифровых камерах этим элементом является матрица. Матрица изначально закрыта от света шторкой (затвор фотоаппарата), которая при нажатии кнопки спуска убирается на определенное время (выдержка), позволяя свету в течении этого времени воздействовать на матрицу.

Результат, то есть сама фотография, напрямую зависит от количества света, попавшего на матрицу.

Фотография — это фиксация света на матрице фотоаппарата

Типы цифровых фотоаппаратов

По большому счету можно выделить 2 основных типа фотокамер.

Зеркальные (DSLR) и без зеркальные. Основная разница между ними в том, что в зеркальном фотоаппарате, через установленное в корпусе зеркало, вы видите в видоискателе изображение непосредственно через объектив.
То есть «что вижу — то снимаю».

В современных без зеркальных для этого используются 2 приема

  • Видоискатель оптический и расположен в стороне от объектива. При съемке надо делать небольшую поправку на смещение видоискателя относительно объектива. Обычно используется на «мыльницах»
  • Электронный видоискатель. Самый простой пример — передача изображения прямо на дисплей фотокамеры. Обычно используется на мыльницах, но в зеркальных камерах этот режим часто используется вместе с оптическим и называется Live View.

Как работает фотоаппарат

Рассмотрим работу зеркальной камеры, как наиболее популярного варианта, для тех кто действительно хочет чего то добиться в фотографии.

Зеркальная камера состоит из корпуса (обычно — «тушка»,»боди» — от английского body) и объектива («стекло», «линза»).

Внутри корпуса цифровой камеры стоит матрица, которая фиксирует изображение.

Обратите внимание на схему выше. Когда вы смотрите в видоискатель, свет проходит через объектив, отражается от зеркала,затем преломляется в призме и попадает в видоискатель. Таким образом вы видите через объектив то, что будете снимать. В момент, когда вы нажимаете спуск, зеркало поднимается, открывается затвор, свет попадает на матрицу и фиксируется. Таким образом получается фотография.

Теперь перейдем к основным терминам.

Пиксель и мегапиксель

Начнем с термина «новой цифровой эры». Он относится скорее к компьютерной области, чем к фото, но тем не менее важен.

Любое цифровое изображение создается из маленьких точек, которые называются пикселями. В цифровой фотографии — количество пикселей на снимке ровняется количеству пикселей на матрице камеры. Собственно матрица и состоит из пикселей.

Если вы многократно увеличите любой цифровой снимок, то заметите что изображение состоит из маленьких квадратиков — это и есть пиксели.

Мегапиксель — это 1 миллион пикселей. Соответственно, чем больше мегапикселей в матрице фотоаппарата, тем из большего числа пикселей состоит изображение.

Если сильно увеличить фото — можно увидеть пиксели

Что дает большое количество пикселей? Все просто. Представьте что вы рисуете картину не штрихами, а ставя точки. Сможете ли вы нарисовать круг, если у вас есть всего 10 точек? Возможно получится это сделать, но скорее всего круг будет «угловатым». Чем больше точек, тем более детальным и точным получится изображение.

Но тут кроется два подвоха, успешно эксплуатируемые маркетологами. Во первых — одних лишь мегапикселей мало для получения качественных снимков, для этого еще нужен качественный объектив. Во вторых — большое количество мегапикселей важно для печати фотографий в большом размере. Например для постера во всю стену. При просмотре снимка на экране монитора, особенно уменьшенного под размер экрана — разницы между 3 или 10 мегапикселями вы не увидите по простой причине.

В экран монитора обычно влезает намного меньше пикселей, чем содержится в вашем снимке. То есть на экране, при сжатии фотографии до размеров экрана и менее, вы теряете бОльшую часть своих «мегапикселей». И 10 мегапиксельный снимок превратится в 1мегапиксельный.

Затвор и выдержка

Затвор — это то, что закрывает матрицу фотоаппарата от света, пока вы не нажали на кнопку спуска.

Выдержка — это то время, на которое открывается затвор и приподнимается зеркало. Чем меньше выдержка — тем меньше света попадет на матрицу. Чем больше время выдержки — тем больше света.

В яркий солнечный день, чтобы на матрицу попало достаточное количество света, вам потребуется очень короткая выдержка — например, всего лишь 1/1000 секунды. Ночью, чтобы получить достаточное количество света, может потребоваться выдержка в несколько секунд и даже минут.

Выдержка определяется в долях секунды или в секундах. Например 1/60сек.

Диафрагма

Диафрагма это многолепестковая перегородка находящаяся внутри объектива. Она может быть полностью открыта или закрыта настолько, что остается всего лишь маленькое отверстие для света.

Диафрагма так же служит для ограничения количества света попадающего в итоге на матрицу объектива. То есть выдержка и диафрагма выполняют одну задачу — регулирование потока света попадающего на матрицу. Зачем же использовать именно два элемента?

Строго говоря, диафрагма не является обязательным элементом. Например в дешевых мыльницах и камерах мобильных устройств она отсутствует как класс. Но диафрагма крайне важна для достижения определенных эффектов связанных с глубиной резкости, о которой речь пойдет далее.

Диафрагма обозначается буквой f за которой через дробь стоит число диафрагмы, например, f/2.8. Чем меньше число, тем больше раскрыты лепестки и шире отверстие.

Светочувствительность ISO

Грубо говоря это чувствительность матрицы к свету. Чем выше ISO тем матрица восприимчивее к свету. Например, для того чтобы получить хороший снимок при ISO 100 вам потребуется определенное количество света. Но если света мало, вы можете поставить ISO 1600, матрица станет более чувствительной и хорошего результата вам потребуется в несколько раз меньше света.

Казалось бы в чем проблема? Зачем делать разное ISO если можно сделать максимальное? Причин несколько. Во первых — если света очень много. Например, зимой в яркий солнечный день, когда кругом один снег, у нас встанет задача ограничить колоссальное количество света и большое ISO будет только мешать. Во вторых (и это главная причина) — появление «цифрового шума».

Шум это бич цифровой матрицы, который проявляется в появлении «зернистости» на фотографии. Чем выше ISO тем больше шума, тем хуже качество фото.

Поэтому количество шума на высоких ISO один из важнейших показателей качества матрицы и предмет постоянного совершенствования.

В принципе, показатели шума на высоких ISO у современных зеркалок, особенно топового класса находятся на довольно хорошем уровне, но до идеала еще далеко.

Из за технологических особенностей, количество шума зависит от реальных, физических размеров матрицы и размеров пикселей матрицы. Чем меньше матрица и чем больше мегапикселей — тем выше шумы.

Поэтому «кропнутые» матрицы фотокамер мобильных устройств и компактных «мыльниц» всегда будут шуметь намного больше чем у профессиональных зеркалок.

Экспозиция и экспопара

Познакомившись с понятиями — выдержка, диафрагма и чувствительность, перейдем к самому главному.

Экспозиция является ключевым понятием в фотографии. Не понимая что такое экспозиция — вы вряд ли научитесь хорошо фотографировать.

Формально экспозиция - это величина засветки светочувствительного сенсора. Грубо говоря — количество света попавшего на матрицу.

От этого будет зависеть ваш снимок:

  • Если он получился слишком светлый — то изображение переэкпонированное, на матрицу попало слишком много света и вы «засветили» кадр.
  • Если снимок слишком темный — изображение недоэкспонированное, нужно чтобы на матрицу попало больше света.
  • Не слишком светлый, не слишком темный — значит экспозиция выбрана правильно.

Слева направо — переэкпонированный снимок, недоэкспонированный и правильно экспонированный

Экспозиция формируется подбором комбинации выдержки и диафрагмы, которая еще называется «экспопара». Задача фотографа, подобрать комбинацию так, чтобы обеспечить необходимое количество света для создания изображения на матрице.

При этом надо учитывать чувствительность матрицы — чем выше ISO, тем меньше должна быть экспозиция.

Точка фокусировки

Точка фокусировки или просто фокус — это та точка, на которую вы «навели резкость». Сфокусировать объектив на предмете, значит таким образом подобрать фокусировку, чтобы этот предмет получился максимально резким.

В современных камерах обычно используется автофокус, сложная система позволяющая автоматически фокусироваться на выбранной точке. Но принцип работы автофокуса зависит от множества параметров, например от освещенности. При плохом освещении автофокус может промахиваться или вообще окажется неспособен выполнить свою задачу. Тогда придется переключиться на ручную фокусировки и надеяться на свой собственный глаз.

Фокусировка по глазам

Точку, на которой будет фокусироваться автофокус — видно в видоискателе. Обычно это маленькая красная точка. Изначально она стоит по центру, но на зеркальных камерах вы можете выбрать другую точку для лучшей компоновки кадра.

Фокусное расстояние

Фокусное расстояние — это одна из характеристик объектива. Формально эта характеристика показывает расстояние от оптического центра объектива до матрицы, где образуется резкое изображение объекта. Фокусное расстояние измеряется в миллиметрах.

Важнее физическое определение фокусного расстояния, а в чем практический эффект. Тут все просто. Чем больше фокусное расстояние, тем сильнее объектив «приближает» объект. И тем меньше «угол зрения» объектива.

  • Объективы с небольшим фокусным расстоянием называют широкоугольными («ширики») — они ничего не «приближают» но зато захватывают большой угол зрения.
  • Объективы с большим фокусным расстоянием — называют длиннофокусными, или телеобъективами («телевик»).
  • называют «фиксами». А если вы можете менять фокусное расстояние, то это «объектив с трансфокатором», а проще говоря — зум объектив.

Процесс зуммирования — это процесс изменения фокусного расстояния объектива.

Глубина резкости или ГРИП

Еще одним важным понятием в фотографии является ГРИП — глубина резко изображаемого пространства. Это та зона за точкой фокусировки и перед ней, в пределах которой объекты в кадре выглядят резкими.

При небольшой глубине резкости — предметы будут размыты уже в нескольких сантиметрах или даже миллиметрах от точки фокусировки.
При большой глубине резкости — резкими могут быть предметы на расстоянии десятков и сотен метров от точки фокусировки.

Глубина резкости зависит от значения диафрагмы, фокусного расстояния и расстояния до точки фокусировки.

Подробнее про то, от чего зависит глубина резкости можно прочитать в статье « »

Светосила

Светосила — это пропускная способность объектива. Другими словами — это максимальное количество света, которое объектив способен пропустить к матрице. Чем больше светосила, тем лучше и тем дороже объектив.

Светосила зависит от трех составляющих — минимально возможной диафрагмы, фокусного расстояния, а так же от качества самой оптики и оптической схемы объектива. Собственно качество оптики и оптическая схема как раз и влияют на цену.

Не будем углубляться в физику. Можно сказать что светосила объектива выражается отношением максимально открытой диафрагмой к фокусному расстоянию. Обычно именно светосилу производители указывают на объективах в виде числа 1:1.2, 1:1.4, 1:1.8, 1:2.8, 1:5.6 и т.п.

Чем больше соотношение, тем больше светосила. Соответственно, в данном случае, самым светосильным будет объектив 1:1.2

Carl Zeiss Planar 50мм f/0.7 — один из самых светосильных объективов в мире

К выбору объектива по светосиле надо относиться разумно. Так как светосила зависит от диафрагмы, то светосильный объектив на минимальной диафрагме будет иметь очень небольшую глубину резкости. Поэтому есть шанс, что вы никогда не воспользуетесь f/1.2, так как просто не сможете толком сфокусироваться.

Динамический диапазон

Понятие динамического диапазона так же очень важно, хотя вслух звучит не очень часто. Динамический диапазон — это способность матрицы, передать без потерь одновременно яркие и темные участки изображения.

Вы наверняка замечали, что если попытаться снять окно находясь в центре комнаты, то на снимке получится два варианта:

  • Хорошо получится стена, на которой расположено окно, а само окно будет просто белым пятном
  • Хорошо будет виден вид из окна, но стена вокруг окна превратится в черное пятно

Это происходит из за очень большого динамического диапазона подобной сцены. Разница в яркости внутри комнаты и за окном, слишком большая, чтобы цифровой фотоаппарат смог ее воспринять целиком.

Другой пример большого динамического диапазона — пейзаж. Если небо яркое, а низ достаточно темный, то или небо на снимке будет белым или низ черным.

Типичный пример сцены с большим динамическим диапазоном

Мы видим все нормально, потому что динамический диапазон воспринимаемый человеческим глазом намного шире чем тот, что воспринимают матрицы фотоаппаратов.

Брекетинг и экспокоррекция

В экспозицией связано еще понятие — брекетинг. Брекетинг, это последовательная съемка нескольких кадров с разной экспозицией.

Обычно используется так называемый автоматический брекетинг. Вы задаете камере количество кадров и смещение экспозиции в ступенях (стопы).

Чаще всего используется три кадра. Допустим мы хотим сделать 3 кадра во смещением в 0.3 стопа (EV). В этом случае камера сначала сделает один кадр с заданным значением экспозиции, затем с экспозицией смещенной на -0.3 стопа и кадр со смещением на +0.3 стопа.

В итоге вы получите три кадра — недоэкспонированный, переэкспонированный и нормально экспонированный.

Брекетинг может использоваться для более точного подбора параметров экспозиции. Например вы не уверены в том, что выбрали правильную экспозицию, снимаете серию с брекетингом, смотрите на результат и понимаете в какую сторону надо изменить экспозицию, в большую или меньшую.

Пример снимка с экспокоррекцией на -2EV и +2EV

После чего можно воспользоваться экспокоррекцией. То есть вы точно так же устанавливаете на камере — сделать кадр с экспокоррекцией +0.3 стопа и нажимаете на спуск.

Камера берет текущее значение экспозиции, добавляет к ней 0.3 стопа и делает кадр.

Экспокорекция бывает очень удобна для быстрой подстройки, когда вам некогда думать над тем, что нужно изменить — выдержку, диафрагму или чувствительность чтобы получить правильную экспозицию и сделать снимок светлее или темнее.

Кроп фактор и полнокадровая матрица

Это понятие пришло в жизнь вместе с цифровой фотографией.

Полнокадровым принято считать физический размер матрицы, равный размеру 35мм кадра на пленке. Ввиду стремления к компактности и стоимости изготовления матрицы, в мобильных устройствах, мыльницах и не профессиональных зеркалках устанавливают «кропированные» матрицы, то есть уменьшенные в размерах относительно полнокадровой.

Исходя из этого, полнокадровая матрица имеет кроп фактор равный 1. Чем больше кроп фактор — тем меньше площадь матрицы относительно полного кадра. Например при кроп факторе 2 — матрица будет в два раза меньше.

Объектив предназначенный для полного кадра, на кропнутой матрице захватит только часть изображения

В чем недостаток кропнутой матрицы? Во первых — чем меньше размер матрицы — тем выше шум. Во вторых 90% объективов, произведенных за десятилетия существования фото, расчитаны на размер полного кадра. Таким образом, объектив «передает» изображение в расчете на полный размер кадра, но маленькая кропнутая матрица воспринимает только часть этого изображения.

Баланс белого

Еще одна характеристика, появившаяся с приходом цифровой фотографии. Баланс белого — это подстройка цветов снимка для получения естественных оттенков. При этом отправной точкой служит чистый белый цвет.

При правильном балансе белого — белый цвет на фото (например бумага) выглядит действительно белым, а не синеватым или желтоватым.

Баланс белого зависит от типа источника света. Для солнца он один, для пасмурной погоды другой, для электрического освещения третий.
Обычно новички снимают на автоматическом балансе белого. Это удобно, так как камера сама выбирает нужное значение.

Но к сожалению, автоматика далеко не всегда так умна. Поэтому профи часто выставляют баланс белого вручную, используя для этого лист белой бумаги или другой предмет, имеющий белый цвет или максимально близкий к нему оттенок.

Другим способом является коррекция баланса белого на компьютере, уже после того как снимок сделан. Но для этого крайне желательно снимать в RAW

RAW и JPEG

Цифровая фотография это компьютерный файл с набором данных из которых формируется изображение. Самый распространенный формат файла для показа цифровых фотографий — JPEG.

Проблема в том, что JPEG — это так называемый формат сжатия с потерями.

Допустим у нас есть красивое закатное небо, в котором тысяча полутонов самых разных мастей. Если мы попытаемся сохранить все многообразие оттенков, размер файла будет просто огромен.

Поэтому JPEG при сохранении выкидывает «лишние» оттенки. Грубо говоря если в кадре есть синий цвет, чуть более синий и чуть менее синий, то JPEG оставит только один из них. Чем сильнее «сжат» Jpeg — тем меньше его размер, но тем меньше цветов и деталей изображения он передает.

RAW — это «сырой» набор данных зафиксированный матрицей фотоаппарата. Формально эти данные еще не являются изображением. Это исходное сырье для создания изображения. Благодаря тому, что RAW хранит полный набор данных, у фотографа появляется намного больше возможностей для обработки этого изображения, особенно если требуется какая то «коррекция ошибок» допущенных на стадии съемки.

Фактически при съемке в JPEG, происходит следующее, камера передает «сырые данные» микропроцессору фотоаппарата, он обрабатывает их согласно заложенным в него алгоритмам «чтобы получилось красиво», выкидывает все лишнее с его точки зрения и сохраняет данные в JPEG который вы и видите на компьютере как итоговое изображение.

Все бы хорошо, но если вы захотите что то изменить, может оказаться что нужные вам данные процессор уже выкинул как ненужные. Вот тут то и приходит на помощь RAW. Когда вы снимаете в RAW камера просто отдает вам набор данных, а дальше — делайте с ними что хотите.

Об это часто стукаются лбом новички — начитавшись, что RAW дает лучшее качество. RAW не дает лучшего качества сам по себе — он дает намного больше возможностей получить это лучшее качества в процессе обработки фотографии.

RAW это исходное сырье — JPEG готовый результат

Например загружайте в Lightroom и создавайте свое изображение «вручную».

Популярной практикой является одновременная съемка RAW+Jpeg — когда камера сохраняет и то и другое. JPEG можно использовать для быстрого просмотра материала, а если что не так и требуется серьезная коррекция, то у вас есть исходные данные в виде RAW.

Заключение

Надеюсь эта статья поможет тем, кто только хочет заняться фотографией на более серьезном уровне. Возможно некоторые термины и понятия покажутся вам слишком сложными, но не бойтесь. На самом деле все очень просто.

Если у вас есть пожелания и дополнения к статье — пишите в комментариях



Поделиться