Большая советская энциклопедия - критерий оптимальности. Критерии оптимальности

Тема 2. Основные понятия исследования операций

Основные понятия и особенности исследования операций

Термин "операционные исследования", по-видимому, впервые применил в 1938 г. А.Раув, руководитель научной группы в Бодси (Англия), отнеся его к работам по оценке эффективности операций, проводимых военно-воздушными силами. Однако сегодня больше используют американский термин "исследование операций", имеющий тот же смысл.

Возникнув в недрах военных ведомств, новая наука, развиваясь, находит применение в самых разных областях человеческой деятельности, в том числе в бизнесе.

В настоящее время исследование операций можно рассматривать как одну из важнейших дисциплин, связанных с принятием решений, или как составную часть системного анализа. Суть исследования операций остается неизменной: всесторонний анализ операции, оценка последствий возможных решений, поиск наиболее эффективных вариантов достижения цели. Приведем одно краткое определение, отражающее его главное предназначение:

Исследование операций (ИСО )- это наука о количественном обосновании оптимальных решений.

При этом под оптимальным понимается решение, наилучшее в определенном смысле. Нельзя говорить об оптимальном решении вообще, корректное применение этого понятия требует конкретизации его смысла и условий, в которых принимается решение.

В то же время "операция "- широкое понятие: это есть совокупность действий или мероприятий, направленных на достижение определенной цели. В ИСО описание операции включает следующее.

1. Цель операции, то есть то, ради чего проводится операция.

2. Оперирующая сторона - лицо или группа лиц, преследующих поставленную цель. В сложных операциях оперирующая сторона состоит из лица, принимающего решение (ЛПР), и аналитиков - специалистов по исследованию операций. Физически ЛПР - это одно лицо или группа лиц, наделенных правом принимать решения и несущих за них ответственность. Подготовка решений ложится на аналитиков. Разница между первыми и вторыми не только в знаниях методологии и методов ИСО, но и в информированности об операции. Причины этого кроются в сложности извлечения и представления информации, которой владеет ЛПР, или в нежелании ЛПР раскрывать все карты. В простых случаях ЛПР и аналитик могут быть в одном лице.



3. Активные средства - это, как правило, ресурсы, используемые для достижения цели.

4. Способы действий, поведения или использования активных средств. Их называют решениями, альтернативами или стратегиями в зависимости от типа операции.

5. Результаты или исходы операции.

6. Тип связи между решениями (стратегиями) и исходами операции. Он зависит от условий, в которых протекает операция.

Говоря об ИСО как о самостоятельном направлении, обычно отмечают его три основные особенности : системный подход, комплексный коллектив исследователей, применение научных методов.

Под системным подходом понимается комплексная методология исследования сложных систем или проблем. В этой методологии определяющим является подход к любой части системы (проблемы) с позиции системы в целом, превалирование цели системы над целями ее подсистем. Другое важнейшее требование системного подхода состоит в том, что необходимо стремиться выявить все существенные факторы и взаимосвязи, влияющие на достижение цели системы. Для этого приходится расширять первоначальный объект исследования, искать скрытые от первого взгляда связи между факторами и частями системы.



Вторая особенность ИСО обусловлена необходимостью изучения и анализа проблемы с разных точек зрения, стремлением выйти за рамки стереотипов. Именно поэтому с момента возникновения исследования операций группы исследователей состояли из специалистов разного профиля (военных, математиков, физиков, психологов и др.), объединенных единой методологией. Такое комплексное исследование позволяет расширять множество альтернатив и находить действительно наилучшее решение.

Применение научных методов присуще любой науке, но в ИСО они имеют свою специфику, которая обусловлена задачей исследования и количественным характером результатов. Чтобы яснее представить эту особенность ИСО, рассмотрим, как проводится операционное исследование.

Этапы операционного исследования и их содержание

Не существует строгой регламентации хода и содержания операционного исследования, но в любом выполненном проекте можно выделить характерные для ИСО этапы разработки.

1. Постановка задачи. Она включает содержательное описание задачи: объект и цель исследования, внутренние и внешние условия, ресурсы, значения параметров или их оценки, возможные способы действий и возможные результаты, другую имеющуюся информацию. Эту работу выполняют совместно ЛПР и аналитик. После тщательного анализа первоначальной постановки аналитик уточняет с ЛПР содержание задачи по всем аспектам и особо согласовывает показатель, который предлагается в качестве критерия оптимальности.

2. Построение математической модели. Характер задач исследования операций таков, что их решение не может проводиться путем натурного эксперимента или физического моделирования. Например, выбор места и мощности нового производства, определение оптимального плана выпуска продукции, формирование портфеля заказов немыслимо производить путем реализации и сравнения различных вариантов. Такая ситуация в науке не нова: так в астрономии нельзя манипулировать небесными телами, но предсказывать положение планет солнечной системы возможно благодаря использованию математической модели. Модели, и в частности математические, широко применяются в различных областях. Математические модели исследования операций отличаются своей направленностью, которая отражается в структуре модели. Математическая модель в ИСО включает:

зависимость критерия от управляемых и неуправляемых переменных;

уравнения, отражающие связи между переменными, например, уравнения на основе материально-энергетических балансов;

ограничения, обусловленные реальными условиями и требованиями к показателям и переменным (неотрицательность, целочисленность, комплектность, допустимые и/или директивные значения и т.п.). В конкретных задачах могут отсутствовать отдельные составляющие модели полностью или частично за исключением критериальной функции, которая должна быть в модели обязательно.

3. Проверка адекватности модели. Математическая модель представляет собой формализованную гипотезу исследователя о реальных взаимосвязях и поведении системы. Поэтому прежде чем использовать модель для прогнозирования последствий и выбора решений, необходимо убедиться в ее адекватности системе или операции с точки зрения поставленной цели исследования. Для "прозрачных" моделей может быть достаточной качественная проверка, в сложных моделях необходим количественный анализ. В последнем случае для моделирования поведения на модели используются численные методы (иногда это называют прямой задачей: по задаваемым входам нужно определить выходы). Для осуществляемых ранее операций проверка адекватности может производиться по ретроспективным данным (при отсутствии качественных изменений в операции). В других случаях проверка проводится путем наблюдения за реакцией модели и системы на одинаковые решения. При обнаружении неадекватности модель корректируется: при качественном совпадении повысить количественную адекватность можно путем уточнения коэффициентов модели, при более серьезных расхождениях может потребоваться изменение и/или добавление ограничений и уравнений или даже построение другого вида модели. Следует заметить, что такая проверка невозможна для вновь разрабатываемых операций, и тогда приходится довольствоваться качественным тестированием модели.

4. Поиск оптимального решения на модели. Это центральный этап операционного исследования (с математической точки зрения - обратная задача). Он заключается в определении решения, оптимального в смысле принятого критерия. Для отыскания оптимального решения на математической модели применяются методы оптимизации, главным образом методы математического программирования.

5. Анализ оптимального решения. Сюда входит анализ чувствительности полученного решения, параметрический и вариантный анализ, выявление альтернативных оптимальных решений и др. Анализ чувствительности критерия к отклонению переменных от их оптимальных значений позволяет определить разумные требования к точности реализации оптимального решения. Результаты параметрического и вариантного анализа показывают, каким будет оптимальное решение при изменении коэффициентов модели, состава ограничений или при изменении критерия. При этом может устанавливаться значимость отдельных элементов модели, то есть их влияние на оптимальное значение критерия. В случае неединственности оптимального решения появляется дополнительная возможность выбора по показателю, который не представлен в критерии. Важное место в анализе решения отводится интерпретации полученных результатов в терминах предметной области Л ПР.

6. Внедрение результатов исследования. Здесь главное требование состоит в необходимости непосредственного участия разработчиков на всех стадиях реализации предлагаемых решений.

Таким образом, применение научных методов в ИСО отличается всесторонним количественным исследованием, основанным на математической модели и ставящим своей целью определение оптимального решения в интересах ЛПР.

Критерий оптимальности

Поставленная в операции цель может быть достигнута по-разному и в разной степени в зависимости от принимаемых решений. Критерий есть тот показатель, который характеризует (оценивает) эффективность решений с точки зрения достижения цели, а следовательно, позволяет выбрать среди них наилучшее. В ИСО применяют равнозначные термины: критерий оптимальности, критерий эффективности, целевая функция. Последний термин подчеркивает неразрывную связь критерия с целью. Таким образом, решение может быть оптимальным только в смысле конкретного критерия в пределах адекватности используемой модели.

В исследовании операций к критерию предъявляются определенные требования. Наиболее важные из них следующие.

1. Критерий должен быть количественной и неслучайной величиной.

2. Критерий должен правильно и полно отражать поставленную цель. Его можно рассматривать как количественную модель качественной цели.

3. Критерий должен иметь простой и понятный ЛПР физический смысл.

4. Критерий должен быть чувствителен к управляемым (искомым) переменным.

При исследовании действующих систем к критерию могут предъявляться дополнительные требования, такие как измеримость, статистическая однозначность, статистическая эффективность и др.

Множество показателей, которые в ИСО используются в качестве критериев, можно условно разделить на ряд групп: социальные (среднедушевой доход, обеспеченность жильем и т.п.), экономические (прибыль, рентабельность, себестоимость и др.), технико-экономические (производительность, урожайность и др.), технико-технологические (прочность, чистота материала, другие физические или химические показатели), прочие. Они приведены в порядке убывания глобальности применения: первые применяются в системах более высокого уровня (страна, регион, предприятие), последние - в основном на уровне процесса, объекта.

Однако во многих случаях не удается полностью отразить поставленную цель одним критерием и тем более это невозможно, когда в операции преследуется более одной цели. Например, цели типа повышение уровня жизни, улучшение экологической обстановки и т.п. нельзя "покрыть" одним критерием. В таких ситуациях вводится несколько показателей, характеризующих достижение цели. Как правило, оптимальные решения, получаемые по разным показателям-критериям, не совпадают, что создает неопределенность в выборе окончательного решения. Задачи, в которых приходится определять наилучшее решение по нескольким критериям, называются многокритериальными или задачами векторной оптимизации. Они составляют особый и более сложный класс задач исследования операций.

Критерий оптимальности

Термин "критерий" широко используется как во всех областях знаний, так и в обыденной жизни в интуитивно понятном смысле. Ввиду особой важности этого термина для исследования операций дадим краткие пояснения. Греческое слово kriterion означает мерило, оценку, средство для суждения. Именно в этом смысле используется понятие критерия в ИСО. Поставленная в операции цель может быть достигнута по-разному и в разной степени в зависимости от принимаемых решений. Критерий есть тот показатель, который характеризует (оценивает) эффективность решений с точки зрения достижения цели, а следовательно, позволяет выбрать среди них наилучшее. В ИСО применяют равнозначные термины: критерий оптимальности, критерий эффективности, целевая функция. Последний термин подчеркивает неразрывную связь критерия с целью. Таким образом, решение может быть оптимальным только в смысле конкретного критерия в пределах адекватности используемой модели.

В исследовании операций к критерию предъявляются определенные требования. Наиболее важные из них следующие.

1. Критерий должен быть количественной и неслучайной величиной.

2. Критерий должен правильно и полно отражать поставленную цель. Его можно рассматривать как количественную модель качественной цели.

3. Критерий должен иметь простой и понятный ЛПР физический смысл.

4. Критерий должен быть чувствителен к управляемым (искомым) переменным.

При исследовании действующих систем к критерию могут предъявляться дополнительные требования, такие как измеримость, статистическая однозначность, статистическая эффективность и др.

Многочисленные примеры из практики показывают огромную важность правильного выбора критерия оптимальности. Из истории второй мировой войны известен случай неверного выбора критерия для оценки эффективности мероприятий по охране караванов судов, доставляющих грузы в северные советские порты (об одном из таких караванов написан роман В. Пикуля). С целью защиты караванов от воздушных налетов немцев на судах стали устанавливать зенитные системы. Через некоторое время решили оценить эффективность принятых мер, чтобы определить дальнейшие действия, и в качестве критерия взяли число самолетов противника, сбиваемых установленными зенитными системами. Этот показатель оказался очень низким, что объяснялось непрофессиона-льностью орудийных расчетов, а также отсутствием стабилизационных платформ на используемых судах. Исходя из такой оценки, предлагалось демонтировать зенитные орудия, передав их береговым батареям, и искать другие способы защиты караванов. Но вовремя спохватились, поняв, что принятый критерий не отражает поставленную цель, которая заключается в повышении живучести судов, а не в уничтожении самолетов противника (поражение самолетов - это только одно из средств). Достижение такой цели с помощью рассматриваемого мероприятия должно определяться по проценту судов, приходящих в порты назначения. Проведенный анализ показал, что для караванов с зенитными системами этот критерий значимо вырос и, следовательно, предложенный способ эффективен. А объясняется данный феномен тем, что при стрельбе из зенитных орудий немецкие летчики боялись приближаться к судам и бомбометание производили с больших высот и расстояний, что значительно снижало эффективность налетов.

В истории советского периода немало примеров, когда нарушение требований к выбору критерия приводило к печальным последствиям. Это прежде всего критерии развития экономики, например, пресловутый вал, который привел к тому, что мы выпускали самое тяжелое и энергоемкое оборудование, больше всех металла, угля, тракторов и, в то же время использовали их с самой низкой эффективностью и т.п. А сколько человеческих судеб искалечено из-за тех критериев, которые применяла КПСС к людям?!

Множество показателей, которые в ИСО используются в качестве критериев, можно условно разделить на ряд групп: социальные (среднедушевой доход, обеспеченность жильем и т.п.), экономические (прибыль, рентабельность, себестоимость и др.), технико-экономические (производительность, урожайность и др.), технико-технологические (прочность, чистота материала, другие физические или химические показатели), прочие. Они приведены в порядке убывания глобальности применения: первые применяются в системах более высокого уровня (страна, регион, предприятие), последние - в основном на уровне процесса, объекта.

Однако во многих случаях не удается полностью отразить поставленную цель одним критерием и тем более это невозможно, когда в операции преследуется более одной цели. Например, цели типа повышение уровня жизни, улучшение экологической обстановки и т.п. нельзя "покрыть" одним критерием. В таких ситуациях вводится несколько показателей, характеризующих достижение цели. Как правило, оптимальные решения, получаемые по разным показателям-критериям, не совпадают, что создает неопределенность в выборе окончательного решения. Задачи, в которых приходится определять наилучшее решение по нескольким критериям, называются многокритериальными или задачами векторной оптимизации. Они составляют особый и более сложный класс задач исследования операций, который рассмотрен в последней главе настоящего пособия.

    Виды математических моделей ИСО

Не останавливаясь на классификации моделей, в том числе и математических, рассмотрим их только в одном аспекте, который обусловливает принципиальные различия математических моделей и методов отыскания на них оптимальных решений.

Вид модели определяется типом связи между решениями (альтернативами, стратегиями) и результатами, который в свою очередь зависит от условий, в которых протекает операция и приходится принимать решения.

1. Решения принимаются в условиях определенности. Это значит, что каждому решению можно поставить в соответствие (пусть даже путем сложных расчетов) определенный результат, то есть имеет место детерми-нированный тип связи. Модели, описывающие такие ситуации, называются детерминированными . Этот тип модели на практике применяется наиболее широко, так как он "удобен в работе". По этой причине такие модели часто используют в качестве первого приближения и в условиях, отличающихся от ситуации определенности.

Приведем простой пример детерминированной модели. Пусть в пункте A , возле которого проходит прямая дорога, расположена пожарная часть, а на лугу в точке C - некоторое строение (рис.1.1). В случае возгорания строения пожарная машина должна быстро прибыть к месту пожара. Известны расстояния AB и BC и скорости движения машины по дороге и по лугу . Требуется определить кратчайший путь движения машины. Если правомерно допущение об отсутствии влияния на скорость машины каких-либо случайных факторов, то описанная ситуация характеризуется полной определенностью. Очевидно, что оптимальный маршрут машины надо искать в классе ломаных линий, включающих не более двух отрезков прямых (любой другой путь будет заведомо хуже). Такой путь полностью определяется точкой излома - расстоянием от пункта A до места съезда машины с дороги. Выбрав в качестве критерия оптимальности время движения машины, можем представить математическую модель операции в виде

Как видно из модели, каждой альтернативе в выборе маршрута (значению ) ставится в соответствие его показатель T . Детерминизм данной модели отражает определенность ситуации.

2. Решения принимаются в условиях риска. Между решениями и результатами имеет место стохастическая связь: определенному решению может соответствовать более одного результата, вероятности появления которых известны. Адекватным отображением таких условий являются вероятностные (стохастические) модели. Если под результатом имеется в виду значение критерия, то исходная постановка задачи (и модель!) некорректна: нельзя максимизировать или минимизировать случайную величину. В этом случае в качестве критерия следует выбирать не исходный показатель, а одну из его вероятностных характеристик, например, математическое ожидание или дисперсию. Неоднозначность обусловлена наличием случайных факторов. Но осреднение случайных аргументов и осреднение результатов, на которые первые влияют, далеко не всегда одно и то же. Это объясняется тем, что в общем случае не выполняется равенство

где - случайные величины; M - знак математического ожидания.

Рассмотрим пример такой ситуации. Пусть фирма "Апельсин" постоянно занимается продажей фруктов. Для простоты будем считать, что поставка и продажа фруктов осуществляется целыми контейнерами, а единицей времени является неделя. Спрос на фрукты C колеблется случайным образом, но вероятность спроса в случайно взятую неделю P (C ) известна. При заключении договора с поставщиком на очередной период фирма должна определить наиболее выгодное для нее количество контейнеров, которое будет поставляться еженедельно, если известны прибыль от реализации одного контейнера и убыток при его невостребовании. Так как спрос случаен, то и результат - доход за неделю D , для фиксированного числа заказываемых контейнеров n будет случайной величиной: в случае, когда спрос превысит предложение, то есть при C>n ,

D = dn , (1.2)

если же предложение окажется выше спроса (C £n ), доход

D = dC- (n-C )b . (1.3)

Таким образом, доход D является функцией управляемой величины n и случайного фактора C . Очевидно, что максимизация такого показателя бессмысленна. В качестве критерия оптимальности разумно взять математическое ожидание дохода за неделю, так как его максимизация обеспечит максимум дохода за весь период. Поскольку вероятность появления случаев (1.2) и (1.3) определяется P (C ), модель задачи будет иметь вид

где означает "целое". При составлении этой модели в явном виде учитывалась стохастичность ситуации и, следовательно, принимаемые по ней решения в такой же степени учитывают фактор случайности. Упрощенное представление операции может базироваться на аппрок-симации реальной ситуации детерминированной. В этом случае спрос рассматривается как неслучайная величина, равная его математическому ожиданию . При этом доход

также неслучаен. На такой моделиоптимальное решение, максимизирующее , определяется просто: n ° = .

Чтобы показать отличие результатов при использовании упрощенной модели и модели (1.4), произведем расчет для исходных данных =30, =5 и вероятности спроса:

Р (С )

Вычисляем средний спрос: . Тогда по упрощенной модели получим: n ° = 3, D =90. Такой доход имел бы место при детерминированном и неизменяемом уровне спроса. Но при случайном спросе величина D =90 будет достигаться только в те недели, когда спрос окажется не меньше 3, а в другие недели доход будет ниже и, следовательно, средний доход за весь период станет меньше 90. Чтобы показать это и одновременно определить оптимальное число контейнеров при случайном спросе, вычислим значения среднего дохода по модели (1.4) при всех возможных n :

По результатам вычислений видно, что решение n ° =3, полученное на детерминированной модели, не обеспечивает максимального среднего дохода. Кроме того, видно, что в условиях случайного спроса оптимальным является решение n * =4, при котором средний доход составляет 81.5 против 74.25 при n ° =3. Это пример операции, для которой не выполняется равенство (1.1), хотя случайный фактор имеет симметричное распределение. Судя по разнице результатов на двух моделях, в данной операции стохастичность оказывает значимое влияние и поэтому ее нельзя не учитывать.

Однако наличие случайных факторов не всегда влечет за собой неоднозначность результатов. Возможны случаи, когда элементарные составляющие процесса или системы ведут себя случайно, а результаты системы в целом не случайны. Характерным примером такой системы является идеальный газ, поведение которого подчиняется детерминированному закону БойляМариотта. Неслучайное поведение на макроуровне при наличии элементов случайности на микроуровне называют стохастическим детерминизмом.

3.Решения принимаются в условиях неопределенности. Это ситуация, противоположная первой рассмотренной. Природа неопределенности может быть различной, но в общем случае она проявляется в том, что определенному решению соответствует более одного результата, а вероятностные характеристики результатов неизвестны. Математические модели, описывающие неопределенный тип связи, разнообразны и не имеют единого названия. В частности, к этому классу относятся матричные модели, модели типа "игра", "аукционный торг", нечеткие модели.

Во многих случаях ситуацию неопределенности можно представить (или аппроксимировать) матрицей вида

Состояние среды

(где - результат (исход) выбора альтернативы при условии, что среда окажется в состоянии ; может иметь смысл прибыли, дохода, выигрыша или затрат, проигрыша, убытков и т.п.).

Прежде чем выбирать решение на этой модели, нужно определиться с принципом оптимальности, на основе которого будут сравниваться альтернативы, так как только одно желание ЛПР получить наилучший результат не дает такой основы. Принцип оптимальности зависит от точки зрения на ситуацию ЛПР, его отношения к риску, от предположений относительно поведения среды. Наиболее характерной гипотезой поведения среды является представление, что среда ведет себя наихудшим образом ("как назло"). Это самый пессимистический взгляд на ситуацию, свойственный ЛПР, не склонному к риску. В этом случае выбор решения основывается на принципе гарантированного результата (иногда его называют критерием Вальда). Он состоит в том, что эффективность каждой альтернативы оценивается наихудшим из исходов, возможных при выборе данной альтернативы. Такой результат гарантируется, то есть будет не хуже, при любом фактическом состоянии среды. Теперь очевидно, что наилучшим решением в смысле принятого принципа оптимальности будет выбор той альтернативы, которая имеет наилучший гарантированный результат. Так, если имеет смысл прибыли, то оценкой -м состоянии среды и выигрышем при выборе отражают разный уровень риска ЛПР. Возможны и другие подходы к выбору оптимальных решений в условиях неопределенности, но все они, как и последние два, не гарантируют достижение расчетных результатов.

Как следует из вышерассмотренного, выбор вида модели требует от исследователя интуиции и опыта наряду с глубокими знаниями моделируемой области. Следует особо отметить, что построение модели основывается на представлениях аналитика, которые могут не соответствовать реальным связям в большей или меньшей степени. При этом большое значение имеют оценка влияния случайных факторов, факторов неопределенности, уровень агрегирования, допустимая сложность модели. Так, нередко возникает дилемма: построить высокоточную, но очень сложную модель, на которой можно будет получить только приближенное к оптимальному решение, либо поступиться точностью моделирования и иметь возможность применять на модели точные методы оптимизации. Какое решение окажется ближе к истинному оптимальному, заранее сказать невозможно. К сожалению, не существует готовых рецептов построения математических моделей. Это один из этапов операционного исследования, который, следуя Саати, можно отнести к области искусства.

Лабораторных и самостоятельных занятий. Общая постановка задачи об оптимизации . Основные понятия и определения. Графики... энергосистемы О рациональном управлении энергосистемой. Постановка задачи оптимизации режима энергосистемы и основные этапы ее...

  • Оптимизация в системах управления

    Задача

    Адаптивными или экстремальными регуляторами. При постановке задачи оптимизации разработчику системы (устройства) необходимо... поэтому широко применяются при расчетах. Задача оптимизации - задача нелинейного программирования Мы познакомились с...

  • Оптимизация конструктивных параметров и алгоритмов управления радиального электромагнитного подвеса

    Автореферат диссертации

    Характеристики и динамические параметры РЭМП. - Постановка задачи оптимизации РЭМП и методика ее реализации, основанная... второй главе сформулирована постановка задачи оптимизации РЭМП, выбраны критерии (параметры) оптимизации и варьируемые факторы. ...

  • объективно обусловлено многими факторами: характером общественного строя, экономическими законами, масштабами решений (народное хозяйство, отрасль производства, отдельное предприятие), содержанием целей, на достижение которых направлены действия, и т. д. Принцип оптимальности заимствован из математического программирования и теории управления. Методологической основой теории оптимизации экономики является принцип народно-хозяйственной оптимальности, т. е. изучение экономических явлений с позиций целого, с позиций всего народного хозяйства.

    Критерий оптимальности призван помочь обосновать решение. Практические задачи обоснования решения можно условно подразделить на 3 типа. Сущность задач 1-го типа заключается в необходимости выбора наилучшего варианта действий, обеспечивающих достижение вполне определённого, т. е. заданного результата при минимальном расходе ресурсов. В задачах 2-го типа объём имеющихся ресурсов зафиксирован, нужно найти наилучший вариант их использования для получения максимального результата. Задачи, в которых поиск наилучшего варианта ведётся при отсутствии жёстких ограничений как по объёму используемых ресурсов, так и по конечному результату, относятся к 3-му типу. При обосновании решений оперируют понятием степень достижения цели, которую характеризуют определённым показателем.

    Ресурсы, имеющиеся в распоряжении общества, отрасли или предприятия, ограничены, поэтому объём ресурсов, выделяемых на одну цель, в какой-то степени зависит от того, сколько их выделено на др. цели. Следовательно, любой вариант распределения ресурсов прямо или косвенно касается одновременно несколько целей и поэтому характеризуется несколькими показателями.

    Решение задачи любого типа в принципе сводится к рассмотрению множества альтернатив с последующей их сравнительной оценкой и выбором наилучшей. Примером задачи 1-го типа может служить т. н. транспортная задача. В стране имеется n мест добычи угля, откуда он доставляется т потребителям, расположенным в различных городах страны. Известна стоимость доставки тонны угля из i -го места добычи (i = 1, 2,..., n ) в j -й пункт потребления (j = 1, 2,..., m ).

    Количество угля x j , необходимое каждому потребителю, также известно. Следует определить план доставки потребителям требующегося количества угля при минимуме затрат. Решение такой задачи методологически просто, поскольку значения всех показателей, характеризующих результаты действий, - x j зафиксированы (являются ограничениями в виде равенств). Каждый вариант плана обеспечения потребителей углём оценивается одним переменным показателем - затратами, являющимися Критерий оптимальности Значительно сложнее решать задачи подобного типа, когда, кроме денежных затрат, приходится учитывать расход материальных, трудовых и др. ресурсов, которые иногда не удаётся выразить в денежной форме. Аналогичные трудности возникают в задачах 2-го типа, поскольку результаты распределения ресурсов характеризуются несколькими показателями, имеющими переменное значение. Случай, когда сравниваются различные варианты капиталовложений в развитие отрасли, производственные объединения или отдельные предприятия и соответствующие им конечные результаты работы, является примером задачи 3-го типа. С такими задачами чаще всего приходится встречаться в процессе планирования, когда нужно решить, что лучше - повысить производственные возможности за счёт увеличения капиталовложений или, предположим, оставить те и др. на прежнем уровне. Результаты каждого решения характеризуются сочетанием значений нескольких показателей. Чтобы установить, какое из возможных решений лучше, нужно сравнить их по нескольким показателям. В этом случае может возникнуть необходимость в формировании Критерий оптимальности , который облегчит сравнительную оценку альтернатив. В качестве Критерий оптимальности можно использовать величину, которая, как и отдельные показатели, измеряется в непрерывной или дискретной шкалах. Причём дискретные оценки могут быть порядковыми и метрическими. Порядковая шкала представляет собой последовательность различных сочетаний значений показателей, составленную исходя из соответствия этих сочетаний определённым целям. При использовании подобной шкалы для сравнения вариантов нельзя установить, насколько один результат лучше другого, можно только определить, какой из вариантов лучше других. Метрическая шкала, в отличие от порядковой, допускает оценку «расстояния» между двумя соседними порядками (рангами), т. е. позволяет установить, насколько одна альтернатива лучше другой. Примером порядковой шкалы для одного показателя могут быть словесные (качественные) определения степени достижения намеченной цели: полное удовлетворение какой-либо потребности, частичное удовлетворение потребности и т. п. Показатель, выраженный в метрической шкале, может представлять собой объём продукции определённого назначения. На практике чаще всего приходится сравнивать альтернативы, различающиеся конечными результатами и затратами типа «лучше и дороже», «хуже и дешевле». Причём результаты характеризуются несколькими показателями. Задачи подобного типа иногда называют задачами векторной оптимизации. При этом компонентами вектора являются показатели, характеризующие степень достижения отдельных целей. Среди сравниваемых вариантов обычно выделяют рациональные, к числу которых относятся варианты, обеспечивающие достижение определённого результата при минимуме затрат или достижение максимального результата при определённых затратах. Выбор наилучшего (оптимального) варианта из числа рациональных может производиться с помощью соответствующих Критерий оптимальности Объективная необходимость сравнивать варианты по нескольким несоизмеримым показателям является основной причиной трудностей, которые нужно преодолеть при формировании Критерий оптимальности Нельзя считать лучшим вариант, при котором один показатель невозможно дальше увеличивать, не уменьшая значения хотя бы одного из остальных (т. н. оптимум или максимум по Парето ). Критерий оптимальности должен быть таким, чтобы в общем случае можно было сравнивать варианты, когда один из показателей (одна из компонент вектора) возрастает, а другой уменьшается. По-видимому, самое большое, на что можно рассчитывать при сравнении векторов (сочетаний значений нескольких показателей, характеризующих степень достижения различных целей),- это установление предпочтений между ними, т. е. оценка векторов с помощью порядковой шкалы. Следует заметить, что оценки векторов по порядковой шкале вполне достаточно для сравнения вариантов и выбора наилучшего из них.

    В условиях социалистического общества все решения, принимаемые на различных уровнях в системе планирования и управления, должны в максимально возможной степени соответствовать высшей цели - наиболее полному удовлетворению потребностей общества. Эта цель может быть достигнута при условии постановки и последующего достижения определённой совокупности социально-экономических целей, предусматривающих удовлетворение всех потребностей общества. Для удовлетворения потребностей общество должно производить различную продукцию. Необходимость в этой продукции зависит от уровня удовлетворения личных и др. непроизводственных потребностей сегодня и в будущем. Т. о., уровень развития производства можно рассматривать как аргумент, функцией которого является степень удовлетворения непроизводственных потребностей общества. Одна из задач планирования - определение наиболее рациональных пропорций в производстве различных продуктов. В процессе планирования должны быть рассмотрены варианты распределения трудовых и др. ресурсов, имеющихся в распоряжении общества, и выбран тот вариант, который в наибольшей степени отвечает потребностям общества. Маркс писал, что «общественная потребность, то есть потребительная стоимость в общественном масштабе, - вот что определяет здесь долю всего общественного рабочего времени, которая приходится на различные особые сферы производства» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 25, ч. 2, с. 186). Т. о., сравнительная оценка вариантов народно-хозяйственного плана должна производиться по критерию, отражающему степень соответствия плана общественным потребностям. Планы реализуются во времени и пространстве. Следовательно, в общем случае значения отдельных показателей должны характеризовать изменения степени удовлетворения потребностей в разные годы периода планирования и в различных районах страны. Сравнение вариантов плана по большому числу показателей представляет значительные трудности. Чтобы уменьшить число показателей, прибегают к обобщению информации. Чем выше уровень планирующего органа, тем больше степень обобщения. Так, для принятия решения на высшем уровне степень удовлетворения определённой потребности населения, по-видимому, можно представить как отношение планируемого объёма производства продуктов некоторого вида к количеству продуктов (услуг), обеспечивающему данную потребность в соответствии с платёжеспособным спросом населения, а также за счёт общественных фондов. При этом степень удовлетворения потребности будет характеризоваться одним показателем . Чтобы избежать необходимости оперировать значениями этого показателя в разные годы, можно учитывать его значение на конец планируемого периода. Это допустимо, если предполагается равномерное увеличение значения показателя по годам. Если исходить из необходимости удовлетворения n потребностей общества, то каждый вариант народно-хозяйственного плана будет характеризоваться, как минимум, сочетанием значений n показателей 1 , 2 ,..., n .

    Сравнительная оценка вариантов плана, разрабатываемого на любом уровне, может производиться либо непосредственно по сочетанию значений показателей, либо по специально сформированному Критерий оптимальности Главным требованием, которому должен отвечать Критерий оптимальности , используемый на любом уровне, является возможность обеспечить оценку вариантов исходя из поставленной цели. Одним из способов отражения соответствия различных сочетаний значений нескольких показателей высшей цели является упорядоченная последовательность этих сочетаний.

    Выбор или формирование Критерий оптимальности - главный вопрос сравнительной оценки альтернатив. При этом основным методологическим принципом является системный подход к оценке возможных решений. Сущность системного подхода заключается в том, что целесообразность тех или иных изменений объекта определяется с учётом его взаимосвязей, исходя из интересов системы, составной частью которой является рассматриваемый объект. Нельзя дать заранее какие-либо рекомендации относительно конкретного содержания Критерий оптимальности Они могут быть сделаны только после рассмотрения общих целей и установления степени соответствия различных сочетаний значений показателей, характеризующих объект, целям, которые стоят перед системой.

    При обосновании решений особое значение имеет учёт неопределённости, например, характеристик разрабатываемой техники, её стоимости, условий, в которых она будет использоваться, и т. п.

    Существует формальная «теория принятия решений», которая рассматривает различные способы формирования критерия оценки альтернатив в условиях неопределённости: критерий максимина, критерий минимаксного сожаления и т. п. Сравнение альтернатив нужно всегда проводить по одному критерию. Однако это не исключает возможности поочерёдной оценки вариантов сначала по одному, а затем по другому критерию.

    Вопросам количественного обоснования решений в условиях неопределённости уделено значительное внимание в литературе по анализу систем. Анализ систем представляет собой метод оценки альтернатив в условиях неопределённости при наличии нескольких противоречивых целей. Применение этого метода облегчает обоснование целей действий, а также выявление преимуществ и недостатков альтернативных вариантов действия. Однако окончательный выбор осуществляется руководителем, ответственным за принятие решения.

    Лит.: Льюс Р. Д., Райфа Х., Игры и решения, пер. с англ., М., 1961; Пугачев В. Ф., Оптимизация планирования (теоретические проблемы), М., 1968; Федоренко Н. П., О разработке системы оптимального функционирования экономики, М., 1968; Солнышков Ю. С., Как обосновать решение, М., 1972.

    Ю. С. Солнышков.

    Статья про слово "Критерий оптимальности " в Большой Советской Энциклопедии была прочитана 11410 раз

    Рис.4

    Рис.1

    Измененное устройство выдает информацию (в том числе и управляющему устройству) о текущем состоянии объекта. В случае если на основании вектора измерений бывают найдены значения всœех координат состояния , не бывают найдены при известном значении вектора измерений , то система будет не полностью наблюдаемой. Управляющее устройства вырабатывает управляющее воздействие . Таких управляющих воздействий будет несколько, в связи с этим полагаем, что вектором - мерный

    На вход управляющего устройства поступает задающее воздействие , ĸᴏᴛᴏᴩᴏᴇ содержит инструкцию о том, каково должно быть состояние объекта - так называемое ʼʼжелаемое состояниеʼʼ.

    На объект управления может поступать возмущающие воздействие , представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями , называемыми шумами измерения.

    Задачей управляющего устройства является выработка такого управляющего воздействия , чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле.

    В дальнейшем будем рассматривать только те объекты, которые являются управляемыми, ᴛ.ᴇ. вектор состояния которых можно изменять требуемым образом путем соответствующего измерения вектора управления. Вместе с тем, объект предполагается полностью наблюдаемым, ᴛ.ᴇ. в данном случае, очевидно, можно не делать разницы между векторами и .

    Отметим, что в дальнейшем измеряемые внешние воздействия и при рассмотрении задач управления для упрощения задачи не учитывается. Кроме того мы ограничимся рассмотрением объектов, динамика которых описывается обыкновенными дифференциальными уравнениями. С учетом всœего сказанного функциональная схема САУ должна быть приведены к виду рис.2

    рис.2

    Уточним и конкретизируем постановку задачи оптимального управления. Ранее при обсуждении типовых задач ОУ 5 и 6, речь шла об несколько абстрактных понятиях – управления связи.

    , где

    и задавалось начальное и конечное значения вектора .

    Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

    Чтобы иметь количественные основания для предпочтения одного способа управления всœем другим, крайне важно определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели –критерий оптимальности управления. Обычно критерий оптимальности- это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определœенное значение критерия. В качестве критерия оптимальности бывают выбраны различные технические и экономические показатели рассматриваемого процесса.

    Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, который одновременно наилучшим образом удовлетворял бы каждому требованию, не существует.

    По этой причине из всœех требований нужно выбрать одно главное, ĸᴏᴛᴏᴩᴏᴇ должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений.

    Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

    В качестве критерия, характеризующего качество процесса управления, чаще всœего выбирается функционал

    или

    Относительно подынтегральной функции будем предполагать, что она непрерывна по всœем аргументам и имеет непрерывные частные производные по переменным .

    Для выполнения задачи управления мы располагаем ограниченными энергетическими и материальными ресурсами. Учёт ограничений, естественно, стесняет выбор закона управления и одновременно делает задачу более определœенной. Некоторые задачи более определœенной. Некоторые задачи, сформулированные без учета ограничений, вообще не имеют смысла.

    К примеру, задача о предельном воздействии в линœейной системе (в случае с нажимным устройством прокатного стана) при неограниченных управляющих воздействиях лишена смысла. Время процесса в данном случае будет равно нулю, а воздействия бесконечны.

    Математически ограничения часто имеют вид неравенств, относящихся к координатам, управляющим воздействиям или их функциям. К примеру, используемая нами ранее в типовой задаче ʼʼ6ʼʼ запись

    Носит достаточно абстрактный характер, говорит лишь о том, что соответствующая величина не может или не должна выходить за допустимые границы, вид которой здесь конкретизирован. Чаше всœего эта граница задается многомерным параллелœепипедом

    Так, к примеру, для параллелœепипед предстает прямоугольником, за границы которого конец вектора управления не должен выходить. Такое управление принято называть допустимым.

    Максимально допустимые значения координат или воздействий определяются характеристиками технологического процесса и оборудования. Заметим, что учет ограничений – существенно влияет на постановку задачи об оптимальном управлении.

    Основную задачу определœения оптимального управления можно сформировать следующим образом.

    В фазовом пространстве заданы начальное и конечное состояния ОУ. Среди всœех допустимых управлений , для которых соответствующих траектории проходят через начальное и конечное состояния (если такие управления существуют), крайне важно выбрать такое , для которого функционал (2) принимал минимальное (максимальное) значение.

    Проиллюстрируем сказанное. Рассмотрим два пространства- управлений и состояний для .

    Отметим в них начальное и конечное состояние векторов состояние управления

    Кривые в пространстве управлений есть фазовые траектории вектора управления фазовые траектории вектора управления. Траектории допустимые траектории 5,6 –недопустимые т.к. выходят за область ограничений. Аналогично в пространстве состоящие фазовые траектории состояний допустимые, а недопустимые. Предполагается, что фазовой траектории под определœенным номером в пространстве управлений соответствует фазовая траектория в пространстве состояний под тем же номером. Требуется из допустимых управлений (кривая 4 не рассматривается, т.тк.ая 4 нерассматривается авлений ом. тствует фазовая траекттория к. она вызывает недопустимую траекторию состояния 4) выбрать такую, которая, вызывает допустимые траектории состояния доставляет экстремум функционалу (2).

    Это шестая типовая задача у управления, как уже отмечалось выше, принято называть неклассической вариационной задачей оптимального управления. В случае если же ограничения на координаты и управления (3) отсутствуют, и всœе вектора управления и состояния являются допустимыми, то возникает пята я типовая задача или классическая вариационная задача оптимального управления, (исследованию которой и посвящена настоящая глава).

    Второй важной задачей оптимального управления является синтез оптимального регулятора, ᴛ.ᴇ. определœение оптимального управления как функции либо вектора наблюдения , либо вектора состояния объекта , а не , как мы только что рассматривали.

    Выше уже говорилось, что в теории оптимального управления в качестве критериев оптимальности, как правило, применяются интегральные функционалы вида (2). Учитывая зависимость отвида подынтегральной функции бывают получены различные критерии оптимизации, применяемые в практике проектирования оптимальных САУ.

    Одним из наиболее распространенных критериев, для которого методика синтеза оптимального управления достаточно хорошо разработана, является время переходного процесса объекта управления из начального состояния в конечное . Этот критерий представляет собой частный случай функционала (2) при тогда

    Казалось бы логично пользоваться интегральным критерием вида

    , где

    Отклонения регулируемой координаты от нового установившегося значения, ĸᴏᴛᴏᴩᴏᴇ она будут иметь после завершения переходного процесса.

    Геометрически интеграл (5) интегрируется как площадь под кривой . Эта площадь, а, следовательно, и величина критерия оптимальности, будет тем меньше, чем быстрее затухает переходной процесс и чем меньше величина отклонения в совокупности. Значит управление системой нужно выбирать так, что минимизировать критерий (5). Неудобством этой интегральной оценки является то, что она годится только для монотонных процессов, когда не меняется . В случае если же имеет место колебательный процесс рис.5, то при вычислении интеграла (5) площади будут складываться алгебраически и минимум этого интеграла может соответствовать колебаниям с малым затуханием или вообще без затухания. Что избежать риски подобных ситуаций, следует использовать квадратичный, интегральный функционал

    который не зависит от знаков отклонений, а значит и от формы переходного процесса (монотонный или колебательный).

    В случае если при проектировании системы оптимального управления ставится задача ограничить резкие изменения выходной переменной во время изменения переходного процесса, при которых 1-ая производная может принимать достаточно большие значения, используется функция:

    , где

    Весовой коэффициент.

    Минимизация этой формулы означает, что составляющая запрещает значительные отклонения от установившегося значения, составляющая запрещает существование больших производных . Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, получается не только быстрый, но и плавный, без разных колебаний переходной процесс. Иногда для этих целœей применяется и более сложные оценки вида:

    Выбор того или иного функционала определяется техническими показателями и условиями работы проектируемой САУ и во многом зависит от инструкции и опыта инженера – проектировщика.

    Критерий оптимальности - понятие и виды. Классификация и особенности категории "Критерий оптимальности" 2017, 2018.

    Процедуры параметрического синтеза в САПР либо выполняются человеком в процессе многовариантного анализа (в интерактивном режиме), либо реализуются на базе формальных методов оптимизации (в автоматическом режиме). В последнем случае находят применение несколько постановок задач оптимизации.

    Наиболее распространенной является детерминированная постановка: заданы условия работоспособности на выходные параметры Y и нужно найти номинальные значения проектных параметров X , к которым относятся параметры всех или части элементов проектируемого объекта. Назовем эту задачу оптимизации базовой. В частном случае, когда требования к выходным параметрам заданы нечетко, к числу рассчитываемых величин могут быть отнесены также нормы выходных параметров, фигурирующие в их условиях работоспособности.

    Если проектируются изделия для дальнейшего серийного производства, то важное значение приобретает такой показатель, как процент выпуска годных изделий в процессе производства. Очевидно, что успешное выполнение условий работоспособности в номинальном режиме не гарантирует их выполнения при учете производственных погрешностей, задаваемых допусками параметров элементов. Поэтому целью оптимизации становится максимизация процента выхода годных, а к результатам решения задачи оптимизации относятся не только номинальные значения проектных параметров, но и их допуски.

    Базовая задача оптимизации ставится как задача математического программирования

    где F (X ) – целевая функция; X – вектор управляемых параметров; φ(X ) и ψ(X ) – функции-ограничения; D x – допустимая область в пространстве управляемых параметров. Указанная запись описывает задачу поиска экстремума путем варьирования управляемых параметров в пределах допустимой области.

    Таким образом, для выполнения расчета номинальных значений параметров необходимо, во-первых, сформулировать задачу, во-вторых, решить задачу поиска экстремума F(X).

    Сложность постановки оптимизационных проектных задач обусловлена наличием у проектируемых объектов нескольких выходных параметров, которые могут быть критериями оптимальности, но в задаче (2.1) целевая функция должна быть одна. Другими словами, проектные задачи являются многокритериальными, и воз­никает проблема сведения многокритериальной задачи к однокритериальной.

    Применяют несколько способов выбора критерия оптимальности.

    В частном критерии среди выходных параметров один выбирают в качестве целевой функции, а условия работоспособности остальных выходных параметров относят к ограничениям задачи. Эта постановка вполне приемлема, если действительно можно выделить один наиболее критичный выходной параметр. Но в большинстве случаев сказывается недостаток частного критерия (рис. 2.1).

    На рис. 2.1 представлено двумерное пространство выходных параметров y 1 и у 2 , для которых заданы условия работоспособности у 1 < Т 1 и у 2 < Т 2 . Кривая АВ является границей достижимых значений выходных параметров. Это ограничение объективное и связано с существующими физическими и технологическими условиями производства, называемыми условиями реализуемости. Область, в пределах которой выполняются все условия реализуемости и работоспособности, называют областью работоспособности.

    Множество точек пространства выходных параметров, из которых невозможно перемещение, приводящее к улучшению всех выходных параметров, называют областью компромиссов или областью Парето. Участок кривой АВ(см. рис. 2.1) относится к области Парето.

    Если в качестве целевой функции (рис. 2.1) выбрать параметр у 1 , то результатом оптимизации будут параметры X , соответствующие точке В . Но это граница области работоспособности, и, следовательно, при нестабильности внутренних и внешних параметров велика вероятность выхода за пределы области работоспособности. Конечно, результаты можно улучшить, если применять так называемый метод уступок, при котором в качестве ограничения принимают условие работоспособности со скорректированной нормой в виде

    У 2 < Т 2 + Δ,

    где Δ – уступка. Но возникает проблема выбора значений уступок, т. е. результаты оптимизации будут иметь субъективный характер. Очевидно, что ситуация не изменится, если целевой функцией будет выбран параметр у 2 , так как оптимизация приведет в точку А .

    Аддитивный критерий объединяет (свертывает) все выходные параметры (частные критерии) в одну целевую функцию, представляющую собой взвешенную сумму частных критериев

    , (2.2)

    где ω j – весовой коэффициент; т число выходных параметров. Функционал (2.2) подлежит минимизации.

    Недостатки аддитивного критерия – субъективный подход к выбору весовых коэффициентов и неучет требований ТЗ. Действительно, в (2.2) не входят нормы выходных параметров.

    Аналогичные недостатки присущи и мультипликативному критерию, целевая функция которого имеет вид

    , (2.3)

    Нетрудно видеть, что если прологарифмировать (2.3), то мультипликативный критерий превращается в аддитивный.

    Более предпочтительным является максиминный критерий, в качестве целевой функции которого принимают выходной параметр, наиболее неблагополучный с позиций выполнения условий работоспособности. Для оценки степени выполнения условия работоспособности этого выходного параметра вводят запас работоспособности этого параметра Sj и этот запас можно рассматривать как нормированный j-й выходной параметр. Здесь и далее для лаконичности изложения предполагается, что все выходные параметры приведены к виду, при котором условия работоспособности становятся неравенствами в форме у j < Т j :

    S j = (T j – y j)/T j ,

    S j = (T j – y ном j )/ d j ,

    где y ном . j номинальное значение, δ j – некоторая характеристика рассеяния j-го выходного параметра, например, трехсигмовый допуск. Тогда целевая функция в максиминном критерии есть

    .

    Здесь запись означает множество целых чисел в диапазоне от 1 до т . Задача (2.2) при максиминном критерии конкретизируется следующим образом:

    , (2.4)

    где допустимая область D x определяется только прямыми ограничениями на управляемые параметры x i:

    x i min < x i < x i max .



    Поделиться