Мультипликативная свертка критериев. Решение мкз с помощью сверстки

Другая очень распространенная группа методов скаляризации векторной задачи математического программирования - свертка критериев.

Существует большое количество разных видов сверток . Теоретически все они базируются на подходе, связанном с понятием функции полезности лица, принимающего решение.

При данном подходе предполагается, что лицо, принимающее решение, всегда имеет функцию полезности, независимо от того, может ли лицо, принимающее решение задать ее в явном виде (т.е. дать ее математическое описание). Эта функция отображает векторы критериев на действительную прямую так, что большее значение на этой прямой соответствует более предпочтительному вектору критериев. Смысл разных сверток состоит в том, чтобы из нескольких критериев получить один «коэффициент качества» (сводный критерий), приближенно моделируя таким образом неизвестную (не заданную в явном виде) функцию полезности лица, принимающего решение. Наиболее популярной сверткой является метод взвешенных сумм с точечным оцениванием весов. При этом задается вектор весовых коэффициентов критериев, характеризующий относительную важность того или иного критерия:

A = {ak ,k = 1~K}. (64)

Весовые коэффициенты обычно используются в нормированном виде и удовлетворяют равенству:

X ak = 1, ak > 0, Vk е K , (65)

т.е. предполагается, что весовые коэффициенты неотрицательны. Каждый критерий умножается на свой весовой коэффициент, а затем все взвешенные критерии суммируются и образуют взвешенную целевую функцию, значение которой интерпретируются как «коэффициент качества» полученного решения. Полученная скаляризованная функция максимизируется на допустимой области ограничений.

Получается однокритериальная (скалярная) задача математического программирования:

F0 = max X af (X). (66)

В результате решения данной задачи получается точка оптимума X0.

Основным достоинством данной свертки является то, что с ней связаны классические достаточные и необходимые условия оптимальности по Парето (теоремы Карлина).

Теорема Карлина 1.

В выпуклой задаче многокритериальной оптимизации точка X0 е S оптимальна по Парето, если существует вектор весовых коэффициентов A0 = {a° > 0, k = 1,K}, для которого выполняется соотношение:

X«Оf0(X0) = maxX«0h (X). (67)

Теорема Карлина 2.

Если в выпуклой задаче многокритериальной оптимизации точка X0 е S Парето-оптимальна, то существует вектор весовых коэффициентов A0 = {a° > 0, к = 1,К}, для которого выполняется соотношение:

X«0f^X°) = maxX«0fk (X). (68)

«h (X) =ma„xXakJkк=1 40eS к =1

Согласно данным теоремам, данную свертку можно использовать для получения Парето-оптимальных точек.

Примером данной свертки может служить итоговый рейтинг надежности банка Кромонова, полученный как аддитивная свертка ряда коэффициентов.

Достоинством данного метода является то, что он согласно теореме Карлина генерирует Парето-оптимальные точки. Однако ему присущ целый ряд фундаментальных недостатков. Во-первых, неявная функция полезности лица, принимающего решения, как правило, нелинейна, поэтому «истинные» веса критериев (т.е. такие веса, при которых градиент взвешенное целевой функции совпадает по направлению в градиентом функции полезности) будут меняться от точки к точке, поэтому можно говорить лишь о локально подходящих весах, кроме того, часто лицо, принимающее решение вообще не может задать весовые коэффициенты. Во-вторых, далеко не всегда потеря качества по одному из критериев компенсируется приращением качества по другому. Поэтому полученное решение, оптимальное в смысле единого суммарного критерия, может характеризоваться низким качеством по ряду частных критериев и быть поэтому абсолютно неприемлемым. В-третьих, полученное решение часто бывает неустойчиво, т. е. малым приращениям весовых коэффициентов соответствуют большие приращения целевых функций. В-четвертых, свертка критериев разной физической природы не позволяет интерпретировать значение взвешенной целевой функции. В-пятых, значительные затруднения могут возникнуть в случае сильной корреляции между критериями.

Некоторые из вышеперечисленных недостатков могут быть скорректированы. Так, в случае разной физической (экономической) природы критериев возможна их нормализация и последующая свертка нормализованных критериев. Чтобы исключить неприемлемо низкие значения отдельных критериев, можно наложить дополнительные ограничения на эти критерии.

Другим методом борьбы с данным недостатком - неприемлемо низкими значениями отдельных критериев при хорошем значении суммарного критерия - является применение сверток не аддитивного, а мультипликативного вида:

F0 = max П (af (X))Рк. (69)

Однако данная свертка не получила большого распространения ввиду того, что существуют аналогичные, но более перспективные виды сверток.

Так, существует свертка вида: (70)

minF0 =X| f (X)V

fк Наиболее широкое применение данная свертка получила при p = 2, которая трактуется как минимизация суммы квадратов относительных отклонений функционалов от своих достижимых оптимальных значений. Данная точка в случае равноценности критериев показывает решение, наиболее близкое к недостижимой «идеальной» точке (в которой все критерии принимают свое максимальное значение). Однако данной свертке также свойственен следующий распространенный недостаток: «хорошее» значение сводного критерия достигается ценой низких значений некоторых частных критериев.

Другим направлением решения задачи многокритериального анализа является отказ от множества критериев путем сведения их к одному. Простейший подход, когда один критерий считают главным и упорядочивают лишь по нему, а остальные используют, только если у двух альтернатив значения главного критерия одинаковы (если одинаковы значения и главного, и второго по важности критерия, используют третий и т.д.), оказывается удовлетворительным лишь в редких случаях. Обычно среди критериев невозможно выделить важнейший. Лучше работают методы, учитывающие все значения вектора критериев. Такие составные критерии принято именовать свертками.

Рассмотрим основные способы свертки критериев. Сумма критериев представляет собой аддитивную свертку. Умножение значений критериев на весовые коэффициенты позволит придать им разную степень важности -чем больше вес критерия, тем большее влияние он окажет на окончательный результат отбора.

Произведение критериев является мультипликативной сверткой. В этом случае, подобно введению весов в аддитивной свертке, можно перед перемножением критериев возвести их в степень тем большую, чем больше важность, придаваемая критерию. Очевидно, что мультипликативная свертка оправданна, если критерии неотрицательны–иначе правило «минус на минус дает плюс» сыграет с нами плохую шутку, сделав «хорошее» значение свертки из двух заведомо плохих критериев. Впрочем, если только один из критериев принимает отрицательные значения, подобного рода парадоксы не возникают, и мы можем пользоваться мультипликативной сверткой. Также нужно учитывать, что если один из критериев равен нулю, то и мультипликативная свертка равна нулю, для аддитивной же свертки такое правило не выполняется. Вообще, в мультипликативной свертке по сравнению с аддитивной большее влияние оказывают те критерии, которые для данного объекта имеют низкие значения.

Аддитивная свертка наиболее приемлема для критериев, представляющих собой однородные по смыслу и близкие по масштабу значений величины, каковыми в нашей классификации являются прогнозные критерии. Например, комбинируя «математическое ожидание прибыли по логнормальному распределению» и «математическое ожидание прибыли по эмпирическому распределению», естественно взять в качестве критерия их сумму. С другой стороны, для свертывания таких классов критериев, как «математическое ожидание прибыли» и «вероятность прибыли» (по любому из распределений), лучше применять мультипликативную свертку. В этом случае мы используем полезное свойство произведения – если прогнозируемая вероятность прибыли близка к нулю, то и сводный критерий также будет стремиться нулю. Впрочем, в применении произведения есть дополнительная тонкость – если матожидание прибыли отрицательно, то, умножая его на меньшую вероятность, получаем величину более близкую к нулю и, следовательно, большую. Однако это не создает трудностей, если комбинации с отрицательным матожиданием прибыли просто не принимаются к рассмотрению.

Кроме аддитивной и мультипликативной, существует также селективная свертка, когда для каждого элемента исходного множества принимается в качестве значения свертки наименьшее (или наибольшее) значение из всего набора критериев. В главе 5 мы предложили методику минимаксной свертки для функций полезности. Аналогичные принципы могут использоваться и для свертки критериев.

При расчете свертки не стоит забывать о том, что критерии могут измеряться в разных единицах и иметь различный масштаб величин. Существует несколько способов их приведения к единой мере. Так, можно вычесть из значений критериев их средние значения и разделить на стандартные отклонения (метод нормализации) или же вычесть минимальные (минимальные по данной выборке или минимальные принципиально достижимые) значения, разделив затем на разность между максимальным и минимальным значением (в этом случае значения критерия будут лежать в интервале от нуля до единицы). Первый из предложенных способов более пригоден для построения аддитивной, второй–для мультипликативной свертки.

Еще один подход к построению свертки критериев состоит в нахождении расстояния от данного элемента до некоторого «идеального». Для этого значения критериев приводятся к интервалу (0,1), и предполагается, что идеальный вариант имеет все единичные оценки критериев (т. е. у него достигаются все максимально возможные значения критериев одновременно). Для каждого оцениваемого элемента исходного множества j рассчитываем значение свертки R по формуле

Для проведения описанных ниже исследований мы использовали аддитивную свертку с приведением критериев к единому масштабу методом умножения на поправочные коэффициенты. Это самый простой и грубый способ, но он наиболее приемлем при выполнении разноплановых статистических исследований, поскольку дает легко сопоставимые результаты. Для практической же работы предпочтительно использовать более усовершенствованные методы свертки и нормировки, подобные описанным выше, или другие, здесь не упомянутые.

Метод свёртки критериев

Стандартный приём «борьбы» с многокритериальным выбором это переход к однокритериальной задаче с использованием метода свёртки критериев.

Свёртка критериев означает построение интегрального показателя на основе частных критериев. Интегральный показатель I рассчитывается или как взвешенная сумма частных показателей (выражение (1) - аддитивная форма) или как их произведение (выражение (2) – мультипликативная форма), опять же нормированное на соответствующие веса (важность критериев).

K – частный критерий,

a – вес критерия, причём ,

N – количество критериев,

v - номер критерия.

Использование такого метода как свёртка критериев предполагает, что частные критерии измеряются в абсолютной шкале. Кроме того, критерии должны быть независимы друг от друга. Это означает, что справедливы выражения (3) и (4), то есть отношение предпочтения определяется либо критерием «2» - выражение (3), - либо критерием «1» - выражение (4).

(xi1, xi2) < (xi1,xj2) => (xj1, xi2) < (xj1, xj2) (3)

(xi1, xi2) < (xj1,xi2) => (xi1, xj2) < (xj1, xj2) (4)

Вес критериев, как правило, определяется экспертным методом.

Типичным примером использования метода свёртки критериев является построение интегрального показателя качества продукции.

В литературе встречается утверждение, что мультипликативная и аддитивная формы интегрального показателя эквивалентны. В подтверждение этого ссылаются на взаимную однозначность преобразования интегрального показателя из одной формы в другую, например, с использованием перехода в логарифмическую шкалу и обратно. Следует отметить, что такой переход в общем случае не сохраняет тех же самых отношений предпочтения, то есть может привести к разным выборам. Эквивалентный в смысле сохранения отношения предпочтения переход от мультипликативной формы к аддитивной требует применения весовых коэффициентов, зависящих от значения критерия 2 .

Схемы компромиссов, метод свертывания критериев

Схемы компромиссов смотреть здесь.

Метод свёртывания критериев

Локальные критерии свёртываются в глобальный в соответствии с какой-то функцией.

Линейная аддитивная свёртка:

Линейная мультипликативная свёртка: , где - вес критерия,

Нелинейная свёртка:

Эффективность-стоимость:

После операции свёртки, альтернативы упорядочиваются по значению глобального критерия: .

Основные проблемы применения метода свёртывания критерия:

· Сложно обосновать значения «весов» критериев;

· Недостатки по одним критериям могут компенсироваться большими значениями других критериев;

· Сложно обосновать вид функции свёртки критериев.

ВЫВОДЫ

Для оценки достижения цели организации используется целый ряд показателей – критериев, так как цель хозяйственной системы носит многомерный характер. Каждый из критериев должен быть количественно измерим, определён на одной из шкал измерений.

При принятии управленческих решений могут быть использованы все известные виды шкал: номинальная, ранговая, интервальная и абсолютная.

Важной задачей является построение системы показателей, отражающих генеральную цель ЛПР. В литературе сформулирован целый ряд требований, которые необходимо соблюдать, чтобы использование системы показателей было оправданным. Это требования полноты, действенности, разложимости, неизбыточности и минимальной размерности.

Наиболее распространённым методом решения многокритериальных задач является построение интегральных показателей на основе метода свёртки критериев.

Для использования метода свёртки критериев необходимо измерение значений критериев в абсолютной шкале, а также соблюдение требования независимости критериев.

Лексикографический метод решения многокритериальных задач заключается в последовательном применении упорядоченных по важности критериев.

В случае, когда разнокачественность сравниваемых объектов принципиальна, единственным адекватным подходом является выделение множества Парето.

Множество Парето образует набор таких объектов, что переход от одного к другому обязательно повысит значение хотя бы одного критерия и ухудшит значение минимум одного критерия. Выбор одного из объектов требует дополнительных соображений.

Многокритериальная задача выбора формулируется в следующем виде. Дано множество допустимых альтернатив, каждая из которых оценивается множеством критериев.

Требуется определить наилучшую альтернативу. При ее решении основная трудность состоит в неоднозначности выбора наилучшего решения. Для ее устранения используются две группы методов. В методах первой группы стремятся сократить число критериев, для чего вводят дополнительные предположения, относящиеся к процедуре ранжирования критериев и сравнения альтернатив. В методах второй группы стремятся сократить число альтернатив в исходном множестве, исключив заведомо плохие альтернативы.

К методам первой группы относятся метод свертки, метод главного критерия, метод пороговых критериев, метод расстояния. Следует отметить, что строгое обоснование этих методов отсутствует и их применение определяется условиями задачи и предпочтением ЛПР.

Метод свертки состоит в замене исходных критериев (их называют также локальными или частными) Kj одним общим критерием K. Эта операция называется сверткой или агрегированием частных критериев. Метод целесообразно применять, если по условиям задачи частные критерии можно расположить по убыванию важности так, что важность каждой пары соседних критериев различается не сильно, либо, если альтернативы имеют существенно различающиеся оценки по разным критериям. Наиболее часто используются следующие виды сверток: аддитивная, мультипликативная, расстояние до идеала.

Алгоритм метода линейной свертки

  • 1. Определяем коэффициенты важности (веса для каждой функции). Для этого используем метод пропорциональных коэффициентов.
  • 2. заменяем знаки функций, для того чтобы перейти от задачи минимизации к задаче максимизации.
  • 3. Выполнить нормировку критериев по формуле.

4. Строим функцию взвешенной аддитивной свертки и исследуем ее.

Решение

Используя пропорциональный метод, определим коэффициенты важности.

Тема 10: Формирование решений в условиях многокритериальности

Вопросы:

10.1. Основные подходы к решению многокритериальных задач. Система критериев. Методы «свертки» критериев

10.2. Решения, оптимальные по Парето

10.3. Процедура многокритериального сравнения и выбора объектов («Электра»)

Критерий – это правило или показатель, позволяющий оценивать и сравнивать анализируемые объекты (альтернативные решения, результаты деятельности, варианты производства и т.д.). Критерии могут быть объективными (например, рентабельность) и субъективными (например, престижность), формальными и содержательными, количественными и качественными.

На рис. 5.6 представлена классификация ситуаций принятия решений в зависимости от количества критериев и фактора неопределенности.

Рис. 5.6. Классификация ситуаций принятия решений

По сложности решения делятся на однокритериальные и многокритериальные.

1. Однокритериальные методы выбора . Считается известным:

Исходное множество альтернатив ;

Оценки результатов выбираемых альтернатив ;

Критерий выбора или .

В процессе решения задачи опреде­ляется альтернатива А*, для которой или .

2. Многокритериальные методы выбора . В достаточно большом количестве случаев принятия решений приходится учитывать не один, а несколько критериев.

Пример : Выбор интегрированной информационной системы предприятия осуществляется по следующим критериям :

1. Соответствие функций системы требованиям, выработанным в процессе анализа и построения информационной модели предприятия.

2. Соответствие системы современным технологическим стандартам (архитектура клиент-сервер, используемые СУБД, возможность распределенной работы и интеграция с Интернет).

3. Возможности системы по настройке и изменению.

4. Уровень сложности сопровождения и администрирования.

5. Адаптивность системы к конкретным условиям деятельности.

6. Стоимость системы.

7. Другие.

Известен целый ряд методов решения многокритериальных задач , которые можно разбить на следующие группы:

1. Сведение многих критериев к одному путем введения весовых коэффициентов для каждого критерия (более важный критерий получает больший вес).

2. Минимизация максимальных отклонений от наилучших значений по всем критериям.

3. Оптимизация одного критерия (почему-либо признанного наиболее важным), а остальные критерии выступают в роли дополнительных ограничений.

4. Упорядочение (ранжирование) множества критериев и последовательная оптимизация по каждому из них.

5. Поиск согласованного по некоторым правилам экспертного решения.

Чаще всего задачу выбора пытаются решить на основе построения интегрального (обобщающего) критерия . Для этого используются разнообразные способы «свертки» показателей, т.е. построение различных обобщающих показателей, прежде всего, аддитивных и мультипликативных.

Аддитивный обобщающий показатель (критерий) получается как взвешенная сумма оценок по частным показателям (критериям).

Мультипликативный обобщающий показатель строится как взвешенное произведение оценок по отдельным показателям.

,

где pi – значение i-го показателя (критерия);

li – вес (значимость) i-го показателя (критерия).

Общей особенностью данных обобщающих критериев является то, что они предусматривают возможность малой степени достижения одних целей за счет большей степени достижения других. При этом в оценке «стираются» различия отдельных критериев. Также проблемой является определение весов критериев.

В целом ряде хозяйственных ситуаций нежелательно сведение оценок объектов по разным критериям к одной, так как противоречивость критериев имеет существенное значение.

Для преодоления этого недостатка исследователи стараются представить пространство критериев. Одним из возможных средств решения этой задачи являются различные графические представления альтернатив в пространстве критериев. Примером подобного подхода, получившего широкое распространение в маркетинговых исследованиях, является так называемый «профильный анализ» (табл. 5.6). Пример:

Таблица 5.6

«Профили» программных продуктов

ПП Критерии ПП - 1 ПП - 2 ПП - 3 ПП - 4 ПП - 5
В С Н В С Н В С Н В С Н В С Н
Универсальность
Интегрируемость
Модульность
Развиваемость
Надежность
Защита информации
Соответствие техническим стандартам
Квалификация
Стоимость ПП
Стоимость обслуживания
Экономическая эффективность

Обозначения приоритетов:

В – высокий,

С – средний,

Н – низкий.

В таблице сравниваются 5 программных продуктов (ПП) по нескольким критериям.



Поделиться