Кто производит вторичный титан. Мировой рынок диоксида титана

Мировые поставки титана увеличились в последние годы, после перерыва в сильном цикла роста с 2005 по 2008 год, когда производство титановой губки возросло с 104 тыс. тонн до 176 тысяч тонн. Рост с 2005 года в результате ввода новых и перезапуска законсервированных ранее предприятий, частично был обусловлен ростом спроса со стороны аэрокосмической отрасли, а также ростом спроса на титан на химических заводах в Китае. Китайское производство титановой губки увеличилось в пять раз между 2005 и 2008 годах.

В конце 2008 года глобальный экономический спад и задержки в производстве самолетов нового поколения, например, таких как A380 и B787, вызвали резкое снижение спроса на титан. В то же время, новые заводы по производству губки в США и Японии, заложенные во времена бума, начали производство. В 2009 и 2010 годах на мировом рынке титановой губки образовался излишек, и производители задерживали дальнейшее расширение мощностей, приостанавливая выпуск продукции и (в Китае) закрывая мелкие нерентабельные заводы. В 2010 году Китай был основным двигателем роста, и производство титановой губки в этой стране снова сильно увеличилось, так как несколько новых заводов были введены в строй.

В 2009 году производство титановой губки ограничивалось шестью странами, в порядке производства, Китаем, Японией, Россией, Казахстаном, США и Украиной. Многие из крупных производителей губки выпускали из нее титановые слитки и полуфабрикаты, а другие, играли важную роль в качестве поставщиков губки на рынок. В 2010 году казахстанская UTMK, один из ведущих поставщиков губки, начала выплавлять слитка на экспериментальной основе и заключила соглашение с Posco на строительство завода по выпуску титановых плит в восточном Казахстане.

По состоянию на 2010 год в мире насчитывалось 18 компаний, производящих титановую губку, девять из которых находятся в Китае, по сравнению со всего двумя заводами десять лет назад. Многие компании объявили о дальнейших планах расширения, хотя некоторые из них позже объявили о приостановке реализации своих планов. Если бы все компании реализовали задуманное, то совокупные мощности по производству титановой губки достигли бы 400 тысяч тонн в год к 2015 году, а при учете четырех новых проектов в Китае, вместе с расширениями в Японии и России, можно было бы добавить еще 85 тысяч тонн к общей сумме.

В 2010 году мировые мощности по производству титановых слитков составили 340 тысяч тонн, при этом 85% из них находилось в России, США, Японии и Китае. Мощности по выплавке слитков, по крайней мере, в два раза больше, чем производство губки, отчасти из-за практики двойного и тройного плавления, а отчасти из-за использования лома в сырье расплава. США доминируют в производстве проката для аэрокосмической промышленности, а производители в Японии и Китае сосредоточены на промышленных и потребительских сферах применения титана.

Мировой рынок титановых продуктов в 2009 году составлял 100 тысяч тонн по сравнению со 130 тысячами тонн в 2008 году, при этом спрос на прокат распределялся между аэрокосмической промышленностью (39%), другими отраслями промышленности (48%) и конечным потреблением (13%).

Вместе с тем, существуют значительные региональные различия. В США на аэрокосмическую промышленность приходится более 70% спроса, в то время как в Китае доминирует спрос со стороны других отраслей промышленности. Быстрый рост промышленных рынков титана в Китае сместил мировой баланс потребления от аэрокосмической к промышленной сфере, но спрос на высококачественную губку и слитки по-прежнему сильно зависит от цикличности в аэрокосмической промышленности.

Промышленное использование титана сосредоточено, в основном, на химических и нефтехимических заводах и в теплообменниках; этот сектор продемонстрировал очень высокие темпы роста в последние годы, почти полностью из-за быстрого увеличения строительства химических заводов и электростанций в Китае.

В связи с возобновлением производства больших пассажирских самолетов нового поколения A380 и A350 от Airbus и B787 от Boeing, в которых используется большое количество укрепленные углеродным волокном полимеры (CFRP), которые совместимы с титаном, а не с алюминием, позиции титана как ключевого материала в авиакосмической промышленности были гарантированы. Использование CFRP было одобрено авиакомпаниями, поскольку этот материал не имеет усталости и требует намного менее дорогостоящего времени простоя и обслуживания. В 2010 и 2011 годах, отсроченные программы строительства самолетов A380 и B787, а также нового A350, начали реализовываться, и спрос на титан космического сорта резко повысился. В то же время, возобновился устойчивый рост пользующегося спросом, главным образом в Китае, материала промышленного сорта. Это привело к расширению мирового рынка металлического титана на 60% к уровню 2009 года. В 2012 году размер рынка, согласно оценкам, выровнялся, однако аналитики предсказывали небольшой рост и в 2013 году. В то время как космические применения составляют половину спроса на титан в США, Европе и России, промышленное применение, особенно на химических заводах, доминирует в Азии. Эти дифференцированные рынки продолжат быть главными двигателями спроса и обусловят рост потребления металла на 4,6% ежегодно до 2018 года.

После падения до 123,5 тысяч тонн в 2009 году, глобальные поставки титановой губки увеличивались в среднем на 26,5% в год в период с 2010 по 2012 год, достигнув 241 тысяч тонн; образовав излишек на рынке приблизительно в 20 тысяч тонн по отношению к потреблению. Производство, как ожидается, упадет приблизительно до 230 тысяч тонн в 2013 году из-за растущих материальных запасов и замедляющегося роста спроса. Мировые мощности по производству губки титана составляют 330 тысяч тонн в год, что намного больше объема спроса и предложения. Большая часть излишка производственных мощностей находится в Китае и эти мощности предназначены для производства материала промышленного сорта, хотя мощности по производству губки космического сорта, главным образом, в Японии, России, США и Казахстане, более, чем достаточны, чтобы удовлетворить спрос. Тем не менее, новые предприятия, вероятно, начнут функционировать в США, Китае и Украине. Поставки губки, как прогнозируется, будут расти на 5% в год до 2018 года.


По данным Roskill, на импорт США приходится в последние годы более половины мировой торговли губкой. Американские производители титана также "полагаются" на поставки из Японии и Казахстана, хотя роль последней страны сокращается по мере все большего производства собственной губки.

Титан, продающийся для промышленного применения более "чувствительный к цене", чем для аэрокосмической, поскольку промышленные спецификации не являются жесткими, как в аэрокосмической и есть конкуренция на промышленном рынке от других металлов, отмечают в Roskill. Эта чувствительность цены "более очевидна" в Северной Америке и Европе, чем в Китае, где титан часто предпочитают менее дорогостоящим материалам, и теперь на страну приходится половина промышленного спроса.

После падения в 2012 году, мировой спрос на титановый прокат возобновил рост в 2013 году и будет расти на 4 до 5 процентов в год до 2018 года, хотя избыток губчатого титана на рынке будет сохраняться.

Roskill отмечает, что в то время как спрос на прокат - на основе видимого потребления - достиг рекордных 165 тысяч тонн (363,8 млн. фунтов) в 2011 году в результате быстрого восстановления после резкого спада в 2008 году, рост "застопорился" в 2012 году, едва увеличившись от уровня предыдущего года.

Roskill сообщил, что мировое производство проката составило около 152,5 тыс. тонн (336,2 млн. фунтов) в 2012 году, увеличившись на 3 процента со 148 тыс. тонн (326,3 млн. фунтов) в предыдущем году, при этом на долю Китая пришлось примерно 38 процентов мирового производства титановой продукции.

Хотя титан используется в различных областях, Roskill отмечает, что аэрокосмическая промышленность остался крупнейшим рынком с объемом потребления в 60 тыс. тонн (132,3 млн. фунтов стерлингов) в виде титановых продуктов в покупной массе самолета в 2012 году. Рост в аэрокосмической был также обусловлен расширением использования композиционных материалов из углепластика, которые "совместимы с титаном, но не с алюминием", в последнем поколении авиалайнеров, таких как Боинг 787 Dreamliner чикагской компании Boeing Co. и A380 и A350 французской компании Airbus SAS, которые помогают обеспечивать будущую роль титана, сообщает Roskill. Российская компания ВСМПО-Ависма, крупнейший в мире производитель титановых продуктов для аэрокосмической промышленности, поставил более 20 тысяч тонн (44,1 млн. фунтов) в 2012 году.

Между тем, в соответствии с обстоятельствами, загрузка мощностей по производству титана в Питтсбурге у компании RTI International Metals Inc. резко упала с начала 2013 года. Перед тем как новая электронно-лучевая (EB) печь компании RTI вступила в строй, "мы работали почти на полную мощность", отметила вице-председатель, президент и главный исполнительный директор Дауни С. Хиктон (Dawne С. Hickton). "Теперь, когда мы ее запустили, мы, очевидно, имеем больше возможностей", сказала она по поводу новой печи плавильного подразделения RTI в Кантоне, штат Огайо.

Хиктон оценивает, что общая загрузка производственных мощностей RTI находится в пределах 60-70 процентов с учетом новой печи, указывая на то, что компанией RTI было произведено 0,45 тыс. тонн (1 миллион фунтов) титановых продуктов в печи EB по состоянию на конец июня 2013 года при годовой мощности в 3,6 тыс. тонн (8 млн. фунтов).

Компания имеет мощности по производству титановой продукции в 10,0-10,5 тыс. тонн (22-23 млн. фунтов) в год на своем заводе Niles в штате Огайо, где осуществляется вакуумно-дуговая плавка; и 6,4 тыс. тонн (14 млн. фунтов) в год на заводе в Martinsville в штате Вирджиния, стоимостью $135 млн., где компания начала коммерческое производство в 2012 году.

В настоящее время в мире продолжаются исследования, направленные на создание новых технологий непрерывного производства, позволяющих обеспечить восстановление металлического титана по более низкой стоимости, однако к середине 2013 года в мире функционировало только одно предприятие (мощностью 2 тысячи тонн в год), которое не использовало процесс Кролла.

Рынок губки, необработанного металла и проката характеризуется наличием долгосрочных договоров на поставку между крупнейшими производителями и потребителями, без участия трейдеров. Тем не менее, нехватка губки в 2006 году привела к большей активности на спотовом рынке и цены на губку, которые исторически колебалась вокруг 7 долл./кг, поднялись до 30 долларов США к концу этого года. По мере увеличения мощностей по производству губки рынок начал падать и в 2010 году цены на губку опустились ниже 10 долл./кг. Цены на слитки и прокат также были значительно ниже максимальных значений, достигнутых в 2006 и 2007 годах. Цены на металлолом, с другой стороны, укрепились в 2010 году, после сокращения поставок.

Тем не менее, цены на титановую губку, по мнению аналитиков Roskill, останутся "относительно низкими" в течение ближайших лет, несмотря на растущий спрос со стороны Китая.

Сегодня никто не станет отрицать, что Россия сидит на «нефтегазовой игле». При этом в мировой торговле нефтью , газом, углем Россия занимает лидирующие позиции - это общепризнанный факт. Но он совсем не означает, что предложить миру ей больше нечего. А отечественный экспорт включает в себя множество самых разнообразных товаров, среди которых и сырье, и готовая продукция разных отраслей экономики. Многое из того, что создают промышленные предприятия России, особенно ценится мировым потребителем. Так, например, на сегодняшний день Российская Федерация - один из крупнейших в мире поставщиков титановой продукции и самого металла.

Титан уникален по своим свойствам, его справедливо считают одним из удивительнейших металлов Вселенной. Он прочен, плавится при температуре 1660 ºС (у железа - ниже, но титан намного его легче). Он инертен, а потому стоматология и ортопедия активно использует его для изготовления протезов. Главный же потребитель металлического титана - авиакосмическая промышленность. Он идеален для важнейших деталей корпуса самолета, шасси и крыльев. Он нашел применение также в судостроении, машиностроении, нефтегазовой промышленности, автомобилестроении, строительстве, при изготовлении спортивных товаров, украшений, часов и многого другого.

Мировой рынок

По данным USGS, компаний, ITA, мировое производство титановой губки в 2016 году увеличилось на 8,3% до 196 тыс. тонн.

Губчатый титан - титан, получаемый магнийтермическим способом и являющийся исходным материалом для титановых сплавов.

Китай является основным в мире продуцентом титановой губки.

Источник: USGS

Объем мировой торговли титаном и титановой продукцией в натуральном выражении, как сообщают таможенные комитеты стран мира, в 2016 году составил 234,3 тыс. тонн, в денежном выражении - 5 млрд долларов.

Рис. 1. Сегменты мировой торговли титаном в 2016 году (в натуральном выражении), процентов
Источник: USGS

И если в натуральном выражении эти сегменты занимают в мировой торговле примерно равные позиции, то в денежном - наибольшая доля, а именно, 83% приходится на прочие изделия из титана.

Экспорт титана из России

«Россия традиционно еще со времен Советского Союза производит титан. У нашего государства есть запасы. А вот у Европы таких запасов нет. При этом необходимо отметить один важный момент: зачем им производить весь ассортимент продукции, если можно купить в другом месте? …Это дорого и не всегда выгодно. …невозможно производить все, что нужно. Поэтому хорошо, что мы продаем, что у России есть технологии и конкурентоспособные ниши» (Галина Кузнецова, Институт бизнеса и делового администрирования РАНХиГС).

Доля его в общероссийском экспорте совсем не велика, и в 2017 году составляла всего 0,15%, но позволяет РФ сохранять на этом рынке лидерские позиции.

Источник: ФТС

В натуральном выражении продажи этого металла составили 28,8 тыс. тонн.

Рис. 2. Продажи титана за рубеж в натуральном выражении, тыс. тонн
Источник ФТС

Согласно товарной номенклатуре ВЭД, Россия экспортирует:

  1. прочие трубы и трубки с фитингами для гражданской авиации;
  2. титан необработанный, порошки;
  3. отходы и лом.

Источник: ФТС

В структуре продаж продукция «прочие трубы…» составляет 88,3%. На долю лома и отходов приходилось лишь 5,1%, но в 2013-м она была очень мала (0,04%).

Рис. 3. Изменение структуры экспорта титана по группам товара, процентов
Источник: ФТС

Импортеры титановой продукции

К числу ключевых стран-импортеров российского титана относятся США, Германия и Соединенное Королевство. На долю этих стран пришлось почти 70% от всего объема экспорта данной продукции в России.

Рис. 4. ТОП-3: изменение долей импорта титана из РФ за 2013-2017 гг., %
Источник: ФТС

В 2017 году титан из России поставлялся в более чем 30 стран мира. По сравнению с 2013-м изменилась и география экспортных поставок.

Является одним из важнейших конструкционных материалов, поскольку сочетает прочность, твердость и легкость. Однако другие свойства металла весьма специфичны, что делает процесс получения вещества тяжелым и дорогостоящим. И сегодня нами будет рассмотрена мировая технология производства титана, кратко упомянем и .

Существует металл в двух модификациях.

  • α-Ti – существует до температуры в 883 С, обладает плотной гексагональной решеткой.
  • β-Ti – имеет объемно-центрированную кубическую решетку.

Переход осуществляется с очень небольшим изменением плотности, поскольку последняя при нагревании постепенно уменьшается.

  • Во время эксплуатации титановых изделий в большинстве случаев имеют дело с α-фазой. А вот при плавке и изготовлении сплавов металлурги работают с β-модификацией.
  • Вторая особенность материала – анизотропия. Коэффициент упругости и магнитная восприимчивость вещества зависит от направления, причем разница довольно заметная.
  • Третья черта – зависимость свойств металл от чистоты. Обычный технический титан не годится, например, для использования в ракетостроении, поскольку из-за примесей теряет свою жаростойкость. В этой области промышленности применяют только исключительно чистое вещество.

О составе титана поведает это видео:

Производство титана

Использовать металл начали только в 50-е годы прошлого века. Его добыча и производство являются сложным процессом, благодаря чему этот относительно распространенный элемент относили к условно редким. И далее мы рассмотрим технологию, оборудование цехов по производству титана.

Сырье

Титан занимает 7 место по распространенности в природе. Чаще всего это оксиды, титанаты и титаносиликаты. Максимальное количество вещества содержится в двуокисях – 94–99%.

  • Рутил – самая устойчивая модификация, представляет собой минерал синеватого, буровато-желтого, красного цвета.
  • Анатаз – довольно редкий минерал, при температуре в 800–900 С переходит в рутил.
  • Брукит – кристалл ромбической системы, при 650 С необратимо переходит в рутил с уменьшением объема.
  • Более распространены соединения металла с железом – ильменит (до 52,8% титана). Это гейкилит, пирофанит, кричтон – химический состав ильменита весьма сложен и колеблется в широких переделах.
  • Используется в промышленных целях результат выветривания ильменита – лейкоксен . Здесь происходит довольно сложная химическая реакция, при которой из ильменитовой решетки удаляется часть железа. В результате объем титана в руде повышается – до 60%.
  • Также используют руду, где металл связан не с закисным железом, как в ильмените, а выступает в виде титаната окисного железа – это аризонит, псевдобрукит .

Наибольшее значение имеют месторождения ильменита, рутила и титаномагнетита. Разделяют их на 3 группы:

  • магматические – связаны с участками распространения ультраосновных и основных пород, проще говоря, с распространением магмы. Чаще всего это ильменитовые, титаномагнетитовые ильменит-гематитовые руды;
  • экзогенные месторождения – россыпные и остаточные, аллювиальные, аллювиально-озерные месторождения ильменита и рутила. А также прибрежно-морские россыпи, титановые, анатазовые руды в корах выветривания. Наибольшее значение имеет прибрежно-морские россыпи;
  • метаморфизированные месторождения – песчаники с лейкоксеном, ильменит-магнетитовые руды, сплошные и вкрапленные.

Экзогенные месторождения – остаточные или россыпные, разрабатываются открытым методом. Для этого используют драги и экскаваторы.

Разработка коренных месторождений связана с проходкой шахт. Полученную руду на месте дробят и обогащают. Применяют гравитационное обогащение, флотацию, магнитную сепарацию.

В качестве исходного сырья может использоваться титановый шлак. Он содержит до 85% диоксида металла.

Технология получения

Процесс производства металла из ильменитовых руд состоит из нескольких стадий:

  • восстановительная плавка с целью получения титанового шлака;
  • хлорирование шлака;
  • производства металла восстановлением;
  • рафинирование титана – как правило, проводится с целью улучшения свойств продукта.

Процесс это сложный, многоэтапный и дорогостоящий. В результате достаточно доступный металл оказывается весьма дорогим в производстве.

О производстве титана расскажет данный видеосюжет:

Получение шлака

Ильменит является ассоциацией оксида титана с закисным железом. Поэтому целью первого этапа производства является отделение диоксида от оксидов железа. Для этого оксиды железа восстанавливают.

Процесс осуществляют в электродуговых печах. Ильменитовый концентрат загружают в печь, затем вводят восстановитель – древесный уголь, антрацит, кокс, и прогревают до 1650 С. При этом железо восстанавливается из оксида. Из восстановленного и науглероживающегося железа получают чугун, а оксид титана переходит в шлак. Последний в итоге содержит 82–90% титана.

Чугун и шлак разливают по отдельным изложницам. Чугун используют в металлургическом производстве.

Хлорирование шлака

Целью процесса является получение тетрахлорида металла, для дальнейшего применения. Непосредственно хлорировать ильменитовый концентрат оказывается невозможным, из-за образования большого количества хлорного железа – соединение очень быстро разрушает оборудование. Поэтому без стадии предварительного удаления оксида железа обойтись нельзя. Хлорирование проводится в шахтных или солевых хлораторах. Процесс несколько отличается.

  • Шахтный хлоратор – футерованное цилиндрическое сооружение высотой до 10 м и диаметром до 2 м. Сверху в хлоратор укладывают брикеты из измельченного шлака, а через фурмы подают газ магниевых электролизеров, содержащий 65–70% хлора. Реакция между титановых шлаком и хлором происходит с выделением тепла, что обеспечивает требуемый для процесса температурный режим. Газообразный тетрахлорид титана отводят через верх, а остатки шлака непрерывно удаляют снизу.
  • Солевой хлоратор , камера, футерованная шамотом и наполовину заполненная электролитом магниевых электролизеров – отработанным. В расплаве содержаться хлориды металлов – натрия, калия, магния и кальция. В расплав сверху подают измельченный титановый шлак и кокс, снизу вдувают хлор. Поскольку реакция хлорирования экзотермична, температурный режим поддерживается самим процессом.

Тетрахлорид титана очищают, причем несколько раз. Газ может содержать углекислый газ, угарный газ, другие примеси, так что очистка производится в несколько этапов.

Отработанный электролит периодически заменяют.

Получение металла

Металл восстанавливают из тетрахлорида магнием или натрием. Восстановление происходит с выделением тепла, что позволяет проводить реакцию без дополнительного обогрева.

Для восстановления используют электрические печи сопротивления. Сначала в камеру помещают герметичную колбу из хромо- сплавов высотой в 2–3 м. После того как емкость прогреют до +750 С, в нее вводят магний. А затем подают тетрахлорид титана. Подача регулируется.

1 цикл восстановления длится 30–50 ч, чтобы температура не повышалась выше 800–900 С, реторту обдувают воздухом. В итоге получают от 1 до 4 тонн губчатой массы – металл осаждается в виде крошек, которые спекаются в пористую массу. Жидкий хлорид магния периодически сливают.

Пористая масса впитывает довольно много хлорида магния. Поэтому после восстановления осуществляют вакуумную отгонку. Для этого реторту прогревают до 1000 С, создают в ней вакуум и выдерживают 30–50 часов. За это время примеси испаряются.

Восстановление натрием протекает почти таким же образом. Разница наличествует только в последнем этапе. Чтобы удалить примеси хлорида натрия, титановую губку измельчают и выщелачивают из нее соль обычной водой.

Рафинирование

Полученный описанным выше образом технический титан вполне годится для производства оборудования и емкостей для химической промышленности. Однако для областей, где требуется высокая жаростойкость и однородность свойств, металл не годится. В этом случае прибегают к рафинированию.

Рафинирование производится в термостате, где поддерживается температура в 100–200 С. В камеру помещают реторту с титановой губкой, а затем с помощью специального устройства в закрытой камере разбивают капсулу с йодом. Йод реагирует с металлом, образуя йодид титана.

В реторте натянуты титановые проволоки, по которым пропускают электрический ток. Проволока раскаляется до 1300–1400 С, полученный йодид разлагается на проволоке, формируя кристаллы чистейшего титана. Йод освобождается, вступает в реакцию. С новой порцией титановой губки и процесс продолжается, пока не исчерпается металл. Получение останавливают, когда благодаря наращиванию титана диаметр проволоки становится равным 25–30 мм. В одном таком аппарате можно получить 10 кг металла с долей в 99,9–99,99%.

Если необходимо получить ковкий металл в слитках, поступают иначе. Для этого титановую губку переплавляют в вакуумной дуговой печи, поскольку металл при высокой температуре активно впитывает газы. Расходуемый электрод получают из титановых отходов и губки. Жидкий металл затвердевает в аппарате в кристаллизаторе, охлаждаемом водой.

Плавку, как правило, повторяют дважды, чтобы улучшить качество слитков.

Из-за особенностей вещества – реакции с кислородом, азотом и впитывание газов, получение всех титановых сплавов также возможно лишь в электрических дуговых вакуумных печах.

Про Россию и другие страны-производители титана читайте ниже.

Популярные изготовители

Рынок производства титана достаточно закрытый. Как правило, страны, производящие большое количество металла, сами же и являются его потребителями.

В России самой большой и едва ли не единственной компанией, занимающейся получением титана, является «ВСМПО-Ависма». Она считается крупнейшим изготовителем металла, но это не совсем верно. Компания производит пятую часть титана, однако мировое потребление его выглядит иначе: около 5% расходуется на изделия и приготовление сплавов, а 95% – на получение диоксида.

Итак, производство титана в мире по странам:

  • Ведущей страной-производителем является Китай. Страна обладает максимальными запасами титановых руд. Из 18 известных заводов по получению титановой губки 9 расположены в Китае.
  • Второе место занимает Япония. Интересно, что в стране на авиакосмический сектор уходит только 2–3% металла, а остальной используется в химической промышленности.
  • Третье место в мире по производству титана занимает Россия и ее многочисленные заводы. Затем следует Казахстан.
  • США – следующая в списке страна-производитель, расходует титан традиционным образом: 60–75% титана использует авиакосмическая промышленность.

Производство титана – процесс технологически сложный, дорогостоящий и длительный. Однако потребности в этом материале настолько велики, что прогнозируется изрядное увеличение выплавки металла.

О том, как происходит резка титана на одном из производств в России, расскажет это видео:

Титан отличается высокой механической прочностью, коррозионной стойкостью, жаропрочностью (Тпл = 1660 °С) и малой плотностью (4,51 г/см 3) . Его применяют как конструкционный материал в самолетостроении, а также при постройке сосудов, предназначенных для транспортирования концентрированной азотной и разбавленной серной кислот.

Применяют также диоксид TiO 2 для производства титановых белил и эмали. Наиболее распространенным сырьем для производства титана и диоксида Ti служит ильменитовый концентрат, выделяемый при обогащении титаномагнетитовых железных руд, в котором содержится, %: 40-60 TiO 2 , ~30 FeO, ~20 Fe 2 O 3 и 5-7 пустой породы (CaO, MgO, Al 2 O 3 , SiO 2), причем титан в виде минерала ильменита FeO TiO 2 .

Технологический процесс производства титана из ильменитового концентрата состоит из следующих основных стадий:

  • получение титанового шлака восстановительной плавкой,
  • получение тетрахлорида титана хлорированием титановых шлаков,
  • производство титана (губки, порошка) восстановлением из тетрахлорида.

Восстановительная плавка ильменитового концентрата имеет целью перевести TiO 2 в шлак и отделить оксиды железа путем их восстановления . Плавку проводят в электро дуговых печах. Сначала загружают концентрат и восстановитель (кокс, антрацит), их нагревают до ~ 1650 °С. Основной реакцией является: FeO TiO 2 + С = Fe + TiO 2 + CO. Из восстановленного и науглероживающегося железа образуется чугун, а оксид титана переходит в шлак, который содержит 82-90% TiO 2 .

Получение тетрахлорида титана TiCl 4 осуществляют воздействием газообразного хлора на TiO 2 при температурах 700-900 °С, при этом протекает реакция:

TiO 2 + 2Cl 2 + 2С = TiCl 4 + 2СО.

Хлорирование осуществляют в шахтных хлораторах непрерывного действия или в солевых хлораторах. Шахтный хлоратор - это футерованный цилиндр диаметром до 2 и высотой до 10 м, в который сверху загружают брикеты из измельченного титанового шлака и снизу вдувают газ магниевых электролизеров, содержащий 65-70 % Cl 2 . Взаимодействие TiO 2 брикетов и хлора идет с выделением тепла, обеспечивающего необходимые для процесса температуры (~ 950 °С в зоне реагирования). Образующийся в хлораторе газообразный TiCl 4 отводят через верх, остаток шлака от хлорирования непрерывно выгружают снизу.

Солевой хлоратор представляет собой футерованную шамотом камеру, наполовину заполненную отработанным электролитом магниевых электролизеров, содержащим хлориды калия, натрия, магния и кальция. Сверху в расплав загружают измельченные титановый шлак и кокс, а снизу вдувают хлор. Температура 800-850 °С, необходимая для интенсивного протекания хлорирования титанового шлака в расплаве, обеспечивается за счет тепла протекающих экзотермических реакций хлорирования.

Газообразный TiCl 4 из верха хлоратора отводят на очистку от примесей, отработанный электролит периодически заменяют. Основное преимущество солевых хлораторов состоит в том, что не требуется дорогостоящее брикетирование шихты. Отводимый из хлораторов газообразный TiCl 4 содержит пыль и примеси газов - СО, СO 2 и различные хлориды, поэтому его подвергают сложной, проводимой в несколько стадий очистке.

Металлатермическое восстановление титана из тетрахлорида TiCl 4 проводят магнием или натрием. Для восстановления магнием служат аппараты, представляющие собой помещенную в печь герметичную реторту высотой 2-3 м из хромо-никелевых сталей. После ввода в разогретую до ~ 750 °С реторту магния в нее подают тетрахлорид титана
.

Восстановление титана магнием TiCl 4 + 2Mg = Ti + + 2MgCl 2 идет с выделением тепла, поэтому электронагрев печи отключают и реторту обдувают воздухом, поддерживая температуру в пределах 800-900 °С; ее регулируют также скоростью подачи тетрахлорида титана. За один цикл восстановления длительностью 30-50 ч получают 1-4 т титана в виде губки (твердые частицы титана спекаются в пористую массу - губку). Жидкий MgCl 2 из реторты периодически выпускают.

Титановая губка впитывает много MgCl 2 и магния, по-этому после окончания цикла восстановления проводят вакуумную отгонку примесей. Реторту после нагрева до ~ 1000 °С и создания в ней вакуума выдерживают в течение 35-50 ч; за это время примеси испаряются. Иногда отгонку примесей из губки проводят после ее извлечения из реторты.

Восстановление титана натрием проводят в аппаратах, схожих с применяемыми для магниетермического восстановления. В реторте после подачи TiCl 4 и жидкого натрия идет реакция восстановления титана: TiCl 4 + 4Na = Ti + 4NaCl. Температура в 800-880 °С поддерживается за счет выделяющегося при восстановлении тепла.

Полученную твердую массу, содержащую 17 % Ti и 83 % NaCl извлекают из реактора, измельчают и выщелачивают из нее NaCl водой, получая титановый порошок.
Рафинирование титана .
Для получения титана высокой чистоты применяют так называемый иодидный способ, при котором используется реакция Ti + 2I 2 = TiI 4 . При температуре 100-200 °С реакция протекает в направлении образования Til 4 , а при температуре 1300-1400 °С - в обратном направлении.

Титановую губку (порошок) загружают в специальную реторту, помещаемую в термостат, где температура должна быть на уровне 100-200 °С, и внутри нее спеиальным приспособлением разбивают ампулу с иодом. Через несколько натянутых в реторте титановых проволок пропускают ток, в результате чего они накаливаются до 1300-1400 °С. Пары иода реагируют с титаном губки по реакции Ti + 2I2 - TiI 4 .

Полученный TiI 4 разлагается на раскаленной титановой проволоке, образуя кристаллы чистого Ti и освобождая иод. Пары иода вновь вступают во взаимодействие с рафинируемым титаном, а на проволоке постепенно наращивается слой кристаллизующегося чистого титана. Процесс заканчивают при толщине получаемого прутка титана 25-30 мм. Получаемый металл содержит 99,9-99,99 % Ti, в одном аппарате получают ~ 10 кг чистого титана в сутки.

Для получения ковкого Ti в виде слитков губку переплавляют в вакуумной дуговой печи. Расходуемый (плавящийся) электрод получают прессованием губки и титановых отходов. Жидкий титан затвердевает в печи в водоохлаждаемом кристаллизаторе.

Источники титанового сырья и его использование

В природе известно 70 минералов в различных количествах содержащих титан. На сегодняшний день, промышленными источниками титанового сырья являются месторождения, содержащие ильменит, рутил, лейкоксен и, в последнее время, анатаз. Львиная (около 90%) часть ильменитовых, лейкоксеновых и рутиловых концентратов используются для производства диоксида титана. Из ильменитовых концентратов получают синтетический рутил и титановые шлаки, которые можно использовать как для производства губчатого титана, так и диоксида титана. На производство металлического титана используется 7-10% сырья. Природный рутил, кроме того, используется частично и для обмазки сварочных электродов. Значительные количества титана содержатся в титаномагнетите и его рудах, однако титаномагнетитовый концентрат преимущественно используется как источник железорудного сырья и выплавки природнолегированных сталей, а шлаки, образующиеся при его переработке и содержащие ванадий - для получения пентоксида ванадия.

Наиболее богатыми по содержанию диоксида титана являются рутиловые концентраты (93–96%), ильменитовые содержат 44–70% диоксида титана, а концентраты из лейкоксеновых руд содержат до 90% TiO 2 . Всего в мире выявлено более 300 месторождений титановых минералов, в т. ч. 70 магматических (69% мировых запасов), 10 в корах выветривания (около 10% запасов) и более 230 россыпных (20%). Мировые запасы титана содержатся в ильмените (более 82%), анатазе (менее 12%) и рутиле (6%). Россыпи получили наибольшее промышленное значение и являются наиболее вовлеченными в коммерческую эксплуатацию источниками рутилового сырья и примерно половины ильменитового. В настоящее время, в мире эксплуатируются два коренных месторождения ильменита в Канаде и Норвегии с содержанием диоксида титана соответственно 26 и 18%.

Запасы и ресурсы титана

Мировые запасы и база запасов титановых минералов на конец 2006г., по оценке Геологической службы США (вероятно, базируется на коммерческих запасах), характеризовались следующими данными (млн. тонн, по содержанию TiO2):

Тип сырья и страна

Ильменит

База запасов

База запасов

Австралия*

Норвегия

Мозамбик

Бразилия

Сьерра-Леоне

*Наиболее крупными эксплуатируемыми месторождениями являются прибрежные россыпи, содержащие титан, цирконий и редкоземельные элементы, расположенные вдоль берегов Индии, Бангладеш, Шри-Ланки, Вьетнама, Австралии, Новой Зеландии.

**Большинство месторождений в Китае относятся к магматическим рудам и являются источником титана и железа.

Производство концентратов ильменита и рутила из титана

96% объемов производства ильменитового концентрата в 2005-2006гг. было сосредоточено в 10 странах, три из которых обеспечили около 70% мирового производства: это Австралия (45%), Норвегия (13%) и Украина (12%). В 2005г в мире было выпущено 4,8 млн. тонн, в пересчете на двуокись титана, ильменитового концентрата (включая рутил США). Австралия является также единственным крупным продуцентом лейкоксенового концентрата, выпуск которого составил 57 тыс. тонн.

Производство рутилового концентрата в 2005-2006гг. велось в шести странах, около 90% его произведено в трёх из них: Австралии (44%), ЮАР (30%) и Украине (15%). Всего в мире в 2005г. было выпущено 360 тыс. тонн рутилового концентрата, в пересчете на двуокись титана (без рутила США).

Продукты переработки титановых концентратов

Кроме ильменитового, рутилового, лейкоксенового и анатазового концентратов, коммерческими видами титановой продукции являются титановые шлаки, синтетический рутил, диоксид титана, губчатый титан, компактный (металлический) титан, полуфабрикаты из сплавов титана. Основными продуктами переработки ильменитовых и рутиловых концентратов являются титановые шлаки и диоксид титана (постепенно вытесняет прочие пигменты), который затем используется в лакокрасочной промышленности, производстве бумаги, пластмасс, резинотехнических изделий и пр. Производство диоксида титана осуществляется двумя способами: сульфатным, основанным на разложении ильменитовых концентратов, содержащих 45-56% TiO2, или титановых шлаков с содержанием 75-80% TiO2 серной кислотой с последующим переводом сульфатов титана в диоксид. Хлоридный, более экономичный, способ заключается в хлорировании природных рутиловых концентратов, синтетического рутила или титановых шлаков с содержанием TiO2 равным и большим 85%, а также специальных шлаков, прошедших дополнительную обработку и содержащих более 92% TiO2, и получении тетрахлорида титана с последующим его окислением в диоксид титана.

Металлический титан производится из рутиловых концентратов, синтетического рутила и титановых шлаков, иногда из технического диоксида титана, полученного сульфатным способом. Из этого сырья хлорированием получают тетрахлорид титана, который подвергают магние - или натриетермическому восстановлению до металлического титана в виде губки (процесс происходит при температуре 750-850 (C), значительно ниже температуры плавления титана (1668 (C)). Компактный (металлический) титан получают дуговой вакуумной плавкой титановой губки. Металлический титан находит все большее применение как конструкционный материал в авиа -, ракето -, кораблестроении и других отраслях машиностроения, благодаря своим свойствам: легкости, тугоплавкости, ковкости, вязкости, коррозионностойкости. В последние годы сфера применения расширяется: из титановых сплавов производятся профессиональное спортивное снаряжение, медицинское оборудование и пр.

Титановые рынки

Региональные рынки конечного применения титана весьма различаются - наиболее ярким примером своеобразия является Япония, где на гражданский авиакосмический сектор приходится всего 2-3% при использовании 30% от общего потребления титана в оборудовании и конструкционных элементах химических заводов. Примерно 20% от общего спроса в Японии приходится на атомнуюэнергетику и на электростанции на твёрдом топливе, остальная доля приходится на архитектуру, медицину и спорт. Противоположная картина наблюдается в США и Европе, где исключительно большое значение имеет потребление в аэрокосмическом секторе - 60-75% и 50-60% для каждого региона соответственно. В США традиционно сильными конечными рынками являются химическая промышленность, медицинское оборудование, промышленное оборудование, в то время как в Европе наибольшая доля приходится на нефтегазовую промышленность и строительную промышленность.Сильная зависимость от аэрокосмической отрасли была давним предметом беспокойства титановой промышленности, которая пытается расширить области применения титана, что особенно актуально в условиях текущего спада в гражданской авиации в мировом масштабе.По данным Геологической службы США в первом квартале 2003 года произошёл значительный спад импорта титановой губки - всего лишь 1319 тонн, что на 62% меньше 3431 тонн за аналогичный период 2002 года.

Российский производитель титана ВСМПО-АВИСМА

1 июля1933 года в Подмосковье был пущен завод № 45. С этого дня начинается отсчет истории Верхнесалдинского металлургического производственного объединения (ВСМПО). Предприятие должно было стать основным поставщиком полуфабрикатов из алюминия и его сплавов для зарождавшегося советского самолетостроения. Это была главная задача. Но кроме этого заводу отводилась роль научной базы, где разрабатывались новые сплавы. Например, для изготовления силовых элементов скоростного бомбардировщика АНТ-40 был создан сплав повышенной прочности М-95. А в 1935 году освоены ковкие алюминиевые сплавы АК 5 и АК 6.

Великая Отечественная война резко нарушила привычный ритм работы. В октябре 1941 года Государственный комитет обороны СССР постановил полностью эвакуировать завод в Свердловскую область, в город Верхняя Салда. В тех же цехах бывшей верхнесалдинской «Стальконструкции» разместился завод № 519 Наркомата цветной металлургии, оборудование которого прибыло из Кольчугино и с двух ленинградских предприятий. Новаторские традиции подмосковных алюминщиков были перенесены на уральскую землю. Уже в декабре 1941-го, буквально полтора месяца спустя после постановления об эвакуации, завод выдал первую продукцию на новом месте.

Весной 1942 года производство алюминиевых деталей уже вышло на довоенный уровень, а в 1943 году проектная мощность предприятия была перекрыта в 6 раз! Потребности советского авиастроения были удовлетворены полностью. Помимо этого производимые в Верхней Салде полуфабрикаты широко использовались в судо- и танкостроении, производстве боеприпасов и вооружения.

Стремительное развитие передовых технологий в послевоенный период потребовало применения новых материалов. Решением Совета министров СССР от 21 июня 1956 года заводу была поставлена историческая задача: начать крупносерийное производство слитков и полуфабрикатов из титановых сплавов. В феврале 1957 года из заводских печей вышел первый титановый слиток диаметром 100 мм и весом 4 кг. Этот небольшой металлический цилиндр стал первой ступенькой к восхождению будущего ВСМПО-АВИСМА на мировой титановый Олимп. Мы стали вторыми в мире, сумевшими начать производство «космического металла». США опередили нас на 9 лет. Но с этого исторического момента начала отсчет новая эра производства ВСМПО – титановая.

Генеральный директор корпорации ВСМПО-АВИСМА Владислав Тетюхин, участник первой титановой плавки на заводе, отмечает: «Говоря о начале промышленного освоения производства титана, мы отдаем дань уважения и признательности первопроходцам и основателям высокотехнологичной отрасли нашей страны, которая сегодня позволяет вести на равных диалог с руководителями самых представительных фирм и компаний в области мирового самолетостроения. Более того, они протягивают нам руку сотрудничества и готовы к совместному продвижению вперед самых грандиозных проектов».

В маленьком уральском городке Верхняя Салда должно было производиться порядка 80% всего титанового проката Советского Союза. Такое решение приняло Министерство авиапромышленности СССР.

Предприятие стало одним из крупнейших в мире производителей слитков и большинства видов проката из титановых сплавов. Все авиакосмические проекты в нашей стране проходили с его участием. До 75% титановой продукции и до 95% изделий из алюминиевых сплавов направлялись для авиационно-космического комплекса и оборонных отраслей промышленности.

Объединение в содружестве со специалистами ВИЛСа, ВИАМа, с КБ самолетостроительных и двигателестроительных заводов создавало изделия для критических узлов всех отечественных авиадвигателей, а также для планеров и шасси самолетов и вертолетов: ИЛ-76, ИЛ-86, ИЛ-114, Ту-204, Ту-160, АН-124 («Руслан»), АН-225 («Мрия»), АН-22 («Антей»), Су-27, МиГ-29, Ми-26, ИЛ-96-300, АН-70, МиГ-31 и других. ВСМПО участвовало в научно-технических разработках стыковочного узла космического комплекса «Союз-Аполлон», в корабле многоразового использования «Буран», в ракетоносителе «Энергия».

В 1982 году предприятие стало называться ВСМПО – Верхнесалдинское металлургическое производственное объединение. Продолжает развиваться титановое производство, поставившее в конце восьмидесятых абсолютный мировой рекорд ежегодного производства слитков – свыше 100 тыс. тонн.

ВСМПО производит изделия и детали для авиаракетостроения и для оборонной промышленности, это предприятие использует титановую губку высокого качества и к продукции ОАО «АВИСМА» предъявляет соответствующие требования. Однако на мировом рынке «продвинутого» титанового передела продукция ВСМПО пока практически неконкурентоспособна, так что объединению, по сути, приходится ограничиваться поставками полуфабрикатов. Металлургические же предприятия используют в своём производстве губчатый титан низших марок. Отношения «Ависмы» и ВСМПО осложняются желанием верхнесалдинцев, как основных владельцев березниковского предприятия, покупать губку по фиксированнму курсу доллара, на много меньше установленного ЦБ РФ.

В США самыми крупными потребителями российской губки являются компании RMI Titanium, которая в недавнем прошлом оставила своё производство губчатого титана из-за экологической вредности производства, Axel Johnson, Wyman-Gordon, Titanium Heart Technologies. Американские потребители титановой губки составляют 30% от мировых потребителей губчатого титана. Если в 1996 году мировой лидер самолётостроения, американская компания Boeing, выпустила 220 самолётов, то в 1997 году - 340, а в 1998 году планирует довести производство до 43 лайнеров в месяц. Причём, если на самолёте Boeing 747 масса деталей и узлов из титановых сплавов составляет около 4,5 тонны, то на новейшей 777-й модели, по некоторым оценкам, от 40 до 45 тонн! Предполагается, что потребности в титане одной только корпорации Boeing в 1998 году достигнут 12 тыс. тонн. Растет потребление титана и в такой экзотической сфере применения, как изготовление клюшек для гольфа. В 1996 году на долю гольф-клубов приходилось 11% общего объёма потребления металлического титана в США.



Поделиться