Что такое параметры твердости стали. Твердость материалов, способы её определения

Cтраница 1


Твердость металла характеризуется сопротивлением деформации, осуществляемой проникновением в деталь идентора - постороннего предмета определенной формы под действием приложенной силы.  

Твердость металла, наплавленного электродами К-2-55, так же, как и у электродов У-340 п / б, зависит от скорости охлаждения.  

Твердость металлов определяется также по методу вдавливания алмазного конуса (твердость по Роквеллу. В испытуемый образец вдавливается алмазный конус (или стальной шарик) под действием двух последовательно прилагаемых нагрузок (PL и Р2; Р, 10 кг, Pf60, 100 или 150 кг. Разность предварительной и окончательной глубин внедрения конуса (или шарика) характеризует твердость металла.  

Твердость металла может быть определена несколькими способами, из которых наиболее распространенным является способ вдавливания. Испытание по Бринеллю производят путем вдавливания в образец стального закаленного шарика на специальном прессе. В результате на поверхности образца остается отпечаток в форме шарового сегмента. Диаметр отпечатка измеряют специальной лупой с делениями. Это отношение называется числом твердости по Бринеллю и обозначается НВ. Способом Бринелля нельзя пользоваться для определения твердости очень прочных металлов, так как под значительной нагрузкой стальной шарик изменяет свою форму, дает неправильный отпечаток и может быть разрушен.  


Твердость металла на участке неполной перекристаллизации при сварке термически упрочненной стали выше, чем в случае сварки горячекатаной и нормализованной сталей.  

Твердость металла может быть измерена несколькими методами, из которых наиболее распространенными являются метод Бринелля и метод Роквелла.  


Твердость металла не влияет существенно на стойкость образцов при испытании на коррозионно-эрозионный износ.  

Твердость металла при этом возрастает до 95 - 96 HRB. Повышение содержания углерода до 0 5 % не ухудшает механических свойств и улучшает деформируемость.  

Твердость металлов связана с их тугоплавкостью; она, как и последняя, обусловлена прочностью кристаллической решетки. Для металлов твердость изменяется в очень широких пределах и не является их характерным свойством.  

Твердость металлов по этому методу определяют вдавливанием в образец правильной четырехгранной алмазной пирамиды с углом между противоположными гранями 136 и выражают числом твердости, полученным путем деления величины нагрузки Р в килограммах, приложенной в течение определенного времени, на поверхность отпечатка в квадратных миллиметрах. Поверхность отпечатка, имеющего форму пирамиды, вычисляют, исходя из средней величины обеих диагоналей его основания. Диагонали измеряют с помощью микроскопа или специальной масштабной линейкой, если отпечаток проектируется на экране в увеличенном виде.  

Измерение твердости металлов

В промышленности, связанной с обработкой металлов, испытания на твердость являются наиболее распространенными из всех видов механических испытаний. Они производятся значительно чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

Для определения твердости служат специальные приборы, называемые твердомерами. Рабочим органом каждого твердомера, входящим в контакт с поверхностью испытуемого металла, является наконечник (индентор). Наконечниками могут быть тела различной геометрической формы: шарик, конус, пирамида и др., изготовленные, из материала более твёрдого, чем испытуемый, например, из закаленной стали, алмаза, твёрдого сплава.

В зависимости от характера нагрузки, прикладываемой в процессе испытания, различают статическую и динамическую твердость. В первом случае к индентору нагрузка прикладывается плавно, во втором – ударом.

Наиболее распространено определение статической твердости на твердомерах Бринелля, Роквелла и Виккерса путем вдавливания в испытуемый металл соответственно шарика, конуса, пирамиды. Величина внедрения наконечника в поверхность испытуемого металла характеризует его твердость. Чем тверже металл, тем внедрение будет меньше, и наоборот. Таким образом, твердость - свойство металла сопротивляться внедрению другого более твердого тела. При внедрении наконечника происходит контактное (местное) приложение нагрузки, под действием которой испытуемый металл пластически деформируется в ограниченном объеме. При этом деформация тем меньше, чем тверже металл. Поэтому можно сказать и так: твердость - это сопротивление металла пластической деформации при контактном приложении нагрузки.

Примерами определения динамической твердости могут служить способы Польди и Шора. В первом случае стальной шарик ударом вдавливается одновременно в испытуемый металл и эталонный образец, твердость которого известна. Сравнение полученных отпечатков на эталоне и испытуемом металле позволяет определить твердость последнего. Во втором случае твердость оценивается высотой отскока от испытуемой поверхности бойка, падающего с постоянной высоты: чем выше отскочил боек, тем тверже испытуемый металл. Способ основан на упругих свойствах металла, поэтому его называют способом определения твердости методом упругой отдачи. Выполняется он на приборе, называемом склероскопом Шора. Шкала склероскопа имеет 140 делений. Отскоку в 100 делений соответствует твердость закаленной высокоуглеродистой стали. Вес бойка 2,5 г, его наконечник выполнен из алмаза или закаленной стали. В практике механических испытаний определение динамической твердости по Шору в настоящее время ограничено. Широкое распространение испытаний на твердость объясняется рядом причин. Испытания проводятся быстро, требуют мало времени на подготовку, просты по технике выполнения. При этом часто не требуется изготовление специальных образцов, так как испытания могут выполняться непосредственно на детали без ее разрушения. С помощью переводных таблиц можно сравнить твердость металла, измеренную разными методами (приложение 1).

Между твердостью и другими механическими свойствами существует в ряде случаев зависимость. Например, зная твердость, можно судить о величине прочности на растяжение, пользуясь формулой

σ В = К ·НВ ,

где: σ В - предел прочности на растяжение (временное сопротивление), кгс/мм 2 ;

К - коэффициент;

НВ - число твердости по Бринеллю.

Значение К , по данным Н. А. Минкевича, И. А. Одинга, Н. В. Гевелинга, следующее:

сталь твердостью НВ 120-175 .............. 0,34

сталь твердостью НВ 175-450 . ……... 0,35

медь, латунь и бронза отожженные... .. 0,55

медь, латунь и бронза наклепанные. .…. 0,10

алюминий и его сплавы твердостью НВ 20-45 ...0,33-0,36

дуралюмин отожженный......………......... 0,36

дуралюмин после закалки и старения.….. 0,36.

Однако следует иметь в виду, что общего точного метода перевода чисел твердости, измеренных одним методом, на числа твердости по другим шкалам, а также на прочность при растяжении не существует. Такие переводы делаются, когда для них имеется надежная основа благодаря ранее выполненным сравнительным испытаниям.

Твердость металлов измеряют методами Бринелля, Роквелла, Виккерса, Польди и др.

2.1. Определение твердости по Бринеллю

Твердость определяется вдавливанием в изделие стального шарика определенного диаметра (D) с определенной нагрузкой (Р).

Число твердости по Бринеллю НВ (Н/м 2) равно отношению нагрузки к площади отпечатка (F).

НВ = Р/ F = Р / π D h = 2P/ π (D – D 2 – d 2)

где d – диаметр отпечатка, измеренный после снятия нагрузки, h – глубина отпечатка, вычисленная по D и d.

Для определения твердости металла применяют шарики следующих диаметров: 2,5 мм; 5 мм и 10 мм, для металла толщиной, соответственно, до 3 мм; 3-6 мм; более 6 мм.

Между диаметром шарика и нагрузкой существует определенная зависимость:

    Для черных металлов Р = 30 D 2 ;

    Для меди, латуни, бронзы Р = 10 D 2 ;

    Для алюминия и его сплавов Р = 2,5 D 2 .

2.2. Определение твердости по Роквеллу.

В поверхность испытуемого материала вдавливают наконечник под действием предварительной (Р 1 = 100 Н) и окончательной (Р 2) нагрузок. В качестве наконечников для твердых металлов применяют алмазный конус с углом при вершине 120º или стальной закаленный шарик диаметром 1,59 мм для мягких металлов. В зависимости от типа испытуемого материала выбирается тип наконечника и назначается окончательная нагрузка. (см. табл. 1.1). Показания снимают по одной из шкал прибора (А, В или С). В зависимости от шкалы, по которой определяют число твердости, приняты следующие обозначения: HRA, HRB и HRC.

Таблица 1.1.

Тип испытуемого металла

Тип наконечника

Обозначение марки

Твердость по Роквеллу определяют по формуле:

HR = K – (h 2 – h 1) / b

где h 1 и h 2 – глубины внедрения наконечника под действием предварительной (Р 1) и окончательной (Р 2) нагрузок соответственно, мм; К – постоянное число, имеющее размерность в мм; b – цена деления шкалы индикатора, соответствующая углублению наконечника на 0,002 мм.

2.3. Определение твердости по Виккерсу.

При определении твердости в испытуемый материал вдавливают четырехгранную алмазную пирамиду с углом при вершине 136º. При этом применяют нагрузки от 50 до 1200 Н. После действия нагрузки на образце остается отпечаток в виде квадрата.

Число твердости определяют как нагрузку, приходящуюся на единицу поверхности отпечатка.

НV = 2 P sin 0,5α / d 2

где Р – нагрузка на пирамиду; α – угол при вершине пирамиды; d – длина диагонали отпечатка.

3. ИЗМЕРЕНИЕ ПРОЧНОСТИ И ПЛАСТИЧНОСТИ АРМАТУРЫ

МЕТОДОМ СТАТИЧЕСКОГО РАСТЯЖЕНИЯ

Испытание на растяжение производят на разрывных машинах с автоматической записью кривой растяжения.

Образцы для испытания бывают в зависимости от площади поперечного сечения нормальные и пропорциональные . Нормальные образцы имеют площадь поперечного сечения 314 мм 2 (d 0 = 20 мм). Они бывают двух видов:

    длинные (длина расчетной части ℓ 0 = 200 мм, а отношение ℓ 0 / d 0 =10);

    короткие (ℓ 0 = 100 мм, ℓ 0 / d 0 = 5);

Площадь поперечного сечения пропорциональных образцов может быть произвольная, а расчетную длину определяют по формуле:

ℓ 0 = 11,3 F 0 или ℓ 0 = 6,65 F 0

где F 0 – исходная площадь поперечного сечения образцов, мм 2 .

Литые образцы и образцы из хрупких материалов изготавливают с расчетной длиной ℓ 0 = 2,82 F 0 .

На вертикальной оси диаграммы откладывается нагрузка Р, по горизонтальной абсолютное удлинение образца Δℓ.

На участке ОР р удлинение Δℓ образца увеличивается прямо пропорционально нагрузке Р р, называемой нагрузкой предела пропорциональности. На этом участке происходят упругие (обратимые) деформации образца и сохраняется закон Гука (ε = σ / Е). Пределом пропорциональности σ р называется наибольшее напряжение, до которого относительное удлинение образца остается прямо пропорциональным нагрузке Р р.

σ р = Р р / F 0

Нагрузку Р е, при которой образец получает остаточное удлинение, равное 0,005 % расчетной длины, называют нагрузкой предела упругости. Пределом упругости σ е называют такое напряжение, при котором остаточное удлинение получается равным 0,005 % первоначальной длине образца.

σ е = Р е / F 0

Нагрузку Р т, при которой начинается течение металла, называют нагрузкой предела текучести, а горизонтальный участок кривой – площадкой текучести.

σ т = Р т / F 0

Пределом текучести σ т называют наименьшее напряжение, при котором образец деформируется без заметного увеличения нагрузки.

За площадкой текучести нагрузка снова растет до некоторой максимальной величины Р в, после которой на образце начинается образование местного сужения (шейки). Уменьшение сечения в области шейки вызывает снижение нагрузки, и в точке К при нагрузке Р z происходит разрыв образца. Наибольшую нагрузку Р в, при которой начинается образование шейки, называют нагрузкой предела прочности при растяжении.

Пределом прочности при растяжении называют отношение наибольшей нагрузки, при которой начинается образование шейки к площади поперечного сечения образца.

σ в = Р в / F 0

Истинное сопротивление разрыву σ z определяют по формуле

σ z = Р z / F 1

где F 1 – площадь поперечного сечения образца в месте разрыва.

Полная деформация образца Δℓ п складывается из остаточной Δℓ ост и упругой деформации Δℓ упр. Для определения этих деформаций необходимо на диаграмме растяжения из точки К провести прямую, параллельную прямолинейному участку кривой (рис. 1) до пересечения с осью абсцисс.

Р

Рис. 1. Диаграмма растяжения

Относительным удлинением δ называют отношение приращения длины образца после разрыва к его расчетной длине, выраженное в процентах

δ = 100 (ℓ 1 – ℓ 0) / ℓ 0 (%)

где ℓ 1 – длина образца после разрыва, мм; ℓ 0 – расчетная длина образца, мм.

Относительным сужением ψ называют отношение уменьшения площади поперечного сечения после разрыва к начальной площади поперечного сечения, выраженное в процентах.

Ψ = 100 (F 0 – F 1) / F 0 (%)

где F 0 – начальная площадь поперечного сечения образца, мм 2 ; F 1 – конечная площадь поперечного сечения образца, мм 2 .

    МЕТОДИКА ЭКСПЕРИМЕНТА

      Ознакомиться с теоретической частью работы. Дать определение металлографического макроанализа. Записать, чем обусловлено волокнистое строение стали. Выписать основные дефекты сварного шва. Дать определение цементации, с какой целью и как производится цементация сталей. Дать определение ликвации и влияние ликваций серы и фосфора на свойства сталей.

      Описать методику подготовки шлифов предназначенных для изучения волокнистости стали, дефектов сварного соединения, глубины цементации и ликваций серы и фосфора. Зарисовать шлифы изученных на занятии изделий.

      Ознакомиться с принципом работы твердомеров Роквелла и Виккерса и с их помощью определить твердость трех эталонных образцов металла. Результаты испытаний занести в таблицу.

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Что называют металлографическим макроанализом?

    Чем обусловлено волокнистое строение металлов? Метод определения волокнистсти стали?

    Как определяется глубина цементация стали?

    Влияние ликваций серы и фосфора на свойства стали.

    Метод определения ликваций серы и фосфора в сталях.

    Структура сварного шва и методы его исследования.

    Методы определения твердости металлов.

    В чем отличие твердости HRC, HRB, HRA?

    Как определяется прочность, пластичность и текучесть металла?

Все мы знаем, что каждый материал на земле обладает разными свойствами: физическими, химическими, механическими, технологическими, эксплуатационными и многими другими. Также сюда можно отнести и твердость. Все они вместе позволяют предопределить их применение в той или иной сфере человеческой жизнедеятельности. Но что такое твердость металлов, сплавов или любых других материалов? Среди прочих свойств это наиболее интересно, поскольку нет четкого его определения.

Что представляет собой твердость?

Твердость любого материала является его важной характеристикой, поскольку от этого зависит стойкость и долговечность изготавливаемых конструкций. А так как четкого определения нет, то сам термин можно «расшифровать» так - это свойство материала оказывать сопротивление проникновению в него другого тела (инструмента). Эта характеристика позволяет оценить качество многих объектов:

  • металла (сплавы);
  • керамики;
  • древесины;
  • пластика;
  • камня;
  • графита.

Помимо этого, твердость влияет на степень обработки того или иного материала. То есть чем он тверже, тем труднее с ним работать. Справедливо и обратное. Поэтому с деревом приятно иметь дело при изготовлении различных поделок.

У разных специалистов свое понятие твердости. К примеру, в области минералогии под этим определением понимается сопротивление одного материала к появлению царапин при воздействии другого объекта.

В металлургии несколько иначе понимают, что такое твердость - сопротивляемость пластической деформации. Но основное определение, на которое ссылается большинство специалистов любой профессии, уже приведено в самом начале раздела.

Тем не менее твердость может проявляться по-разному:

  • жесткость;
  • сопротивляемость:
    • царапанию;
    • истиранию;
    • резанию;
  • деформация:
    • изгиб;
    • излом;
    • изменение формы.

Чем выше величина твердости, тем большая степень сопротивляемости у материала. Исходя из такого многообразия проявления такого свойства, существуют разные способы по его измерению.

Способы измерения твердости

Что характерно, испытание на твердость проводится чаще, чем определение всех остальных свойств материалов - прочности, относительного удлинения и прочих. Способов узнать, насколько тверда сталь или любой другой минерал, несколько. Но все они основываются на общем принципе: на испытываемый образец воздействуют другим объектом, прилагая определенное давление. Это может быть шарик, пирамида, пуансон.

Определение твердости производится по глубине внедрения и показателям давления. Минимальные усилия и большая глубина говорят о низких свойствах материала. Равносильно и наоборот, большие усилия и малая глубина - твердость высокая.

При этом испытания могут быть двух основных видов:

  • Статические.
  • Динамические.

Если контакт исследуемого образца и объекта происходит в течение определенного промежутка времени, то испытание носит статичный характер. В ином случае речь идет о динамичном способе определения твердости.

В настоящее время для определения твердости материалов применяют:

  • Метод Виккерса (ГОСТ 2999-75).
  • Метод Бринелля (ГОСТ 9012-59).
  • Метод Роквелла (ГОСТ 9013-59).
  • Метод Шора.
  • Метод Мооса.

Выбор того или иного испытания зависит от специфики применения деталей, необходимой точности результата, а также способности воспроизвести исследования при различных условиях.

Способ Виккерса

Что такое твердость по Виккерсу? Суть данной методики заключается во вдавливании пирамиды, изготовленной из алмаза, в образец. У пирамидального индентора соотношение сторон должно быть строго определенным. В результате проведения испытания на исследуемом образце остается ромбовидный отпечаток, причем иногда он может быть неправильной формы.

Твердость обознается двумя латинскими буквами - HV - и устанавливается в зависимости от значения диагонали полученного ромба. Иногда используется среднее арифметическое значение обеих диагоналей.

Оборудование, с помощью которого измеряется твердость по Виккерсу, относится к статичному типу и может быть стационарным либо переносным. При этом сама процедура выполняется следующим образом:

  • Образец помещается на рабочий стол оборудования исследуемой поверхностью кверху. Затем она вместе со столом поднимается вверх до легкого соприкосновения с рабочим наконечником.
  • При помощи реле времени задается определенный час воздействия, после чего остается опустить рычаг, который приводит в действие нагружающий механизм. По окончании времени испытания нагрузка с детали снимается и наконечник возвращается в прежнее положение.
  • Оборудование оснащено отсчетным микроскопом, поэтому после завершения операции нужно развернуть стол с образцом к нему и измерить диагонали отпечатка.

В некоторых случаях твердость стали или любого другого материала по данной методике указывается со значением нагрузки. К примеру, такое обозначение HV 50 940 говорит о том, что твердость равна 940 единиц при воздействии нагрузки, равной 50 кг.

Достоинствами данного способа испытания являются:

  • Можно измерять детали практически с любой толщиной за счет малой площади поверхности, которую занимает индентор (самое крайнее положение).
  • Высокая точность результата, что обусловлено идеальной степенью твердости алмазного наконечника. Как следствие, сам он не подвержен деформации.
  • Диапазон измерений довольно широкий и способен охватывать как относительно непрочные металлы наподобие алюминия и меди, так и высокопрочные стали, сплавы.
  • Есть возможность определения твердости отдельно взятого слоя металлов. К примеру, образец прошел процесс цементации либо у детали изменен химический состав вследствие поверхностного упрочнения или легирования.

Как показывает практика, диапазон измерений твердости составляет от 145 до 1000 HV. Чтобы измерить твердость большой партии образцов, существует автоматизированное оборудование компании Reicherter из Германии, имеющее гидравлический или электромеханический привод. Расчет результата проводится автоматизировано, после чего выводится на монитор.

Твердость по Бринеллю

Твердость по этому методу обозначается тоже двумя, но уже другими буквами - HB - и тоже является статичным испытанием. Температура при исследовании должна быть в пределе 20±10 °С. Его суть в следующем - образец сдавливается стальным закаленным шариком. Также в комплекте к оборудованию имеется еще один шарик, который изготовлен из вольфрамокобальтового твердого сплава. Это позволяет увеличить диапазон измерения твердости.

Согласно стандарту, определены некоторые условия в отношении того, что такое твердость по Бринеллю:

  • Нагружать образец стоит в пределах от 12,25 до 29420 Н.
  • Размер шариков составляет 1-10 мм.
  • Длительность воздействия не должна превышать 10-15 с.
  • Отпечаток на образце не должен выходит за пределы: 0,2-0,7 D (D - диаметр шарика.)

Процесс измерения проходит так:

  • Образец помещается на стол и закрепляется по упору.
  • На приводе ставится необходимое значение нагрузки, после чего задействуется шпиндель.
  • По окончании процедуры рабочий наконечник принимает первоначальное положение. На экране можно увидеть стрелочный индикатор, который укажет величину диаметра отпечатка. Сама твердость устанавливается с помощью таблицы, расположенной на станине оборудования. Если необходимо поменять нагрузку, то для этого есть комплект переустанавливаемых штырей.

Существуют переносные инструменты, которые хорошо использовать в полевых условиях. Они оснащены струбциной, к которой крепится образец, а нагрузка создается рукояткой.

Рабочий диапазон по измерению твердости сплавов составляет 8-450 HB, что соответствует большинству марок сталей и сплавов, которые используются в производстве разных металлоконструкций. Но стоит только превысить верхний предел измерений, как точность уже не соответствует действительности, что обусловлено деформацией индентора. Не рекомендуется использовать твердосплавные шарики, если ожидаемая твердость 350-450 HB.

Главным преимуществом метода Бринелля можно считать возможность определять твердость горячих образцов. В то же время нельзя определить ее на кромках или краях деталей либо у тонких образцов.

Метод Роквелла

Буквы, обозначающие твердость по Роквеллу, - это HR. При этом методе в образец вдавливается стальной шарик либо алмазный конус.

Испытание проводится при следующих условиях:

  • Предварительно образец нагружается, что позволяет избежать влияния ряда поверхностных факторов: шероховатость, температура, скорость внедрения индентора.
  • Производится основная нагрузка, по которой проводится расчет результата.
  • Процедура завершается снятием нагрузки.

Если данный метод сравнивать с предыдущими способами определения твердости, то здесь фигурируют три шкалы.

  • A - обозначается HRA, индентор - алмазный конус, диапазон измерений: 60-80 HRA. Применима к высокоуглеродистым легированным инструментальным сталям, а также твердым сплавам.
  • B - обозначается HRB, индентор - закаленный шарик, диапазон измерений: 35-100 HRB. Это уже стали средней твердости и сплавы цветных металлов.
  • C - обозначается HRC, индентор - алмазный конус, диапазон измерений: 20-90 HRC. Для сталей средней твердости.

Если речь заходит про специфические условия вычисления твердости, к примеру, холоднокатаная тонколистовая сталь, то используется методика Супер-Роквелла с обозначением твердости HRN и HRT.

Оборудование тоже может быть как стационарным, так и переносным. При этом первый тип управляется при помощи электромеханического либо гидравлического привода.

Измерения по Роквеллу проводить сложнее, поскольку необходимо задавать первичную, а потом вторичную скорость перемещения индентора. К тому же алмазный рабочий наконечник имеет форму конуса, что отражается на получении результата. И определить размеры полученного отпечатка здесь гораздо сложнее.

Твердость по Шору

Метод Шора обладает главной отличительной чертой. Все описанные выше способы определения твердости металлов и прочих материалов обладали общим недостатком - на поверхности исследуемого образца появляется отпечаток. В этом случае при необходимости испытываемую деталь невозможно обратно установить в узел либо конструкцию. Методика Шора полностью исключает такую деформацию.

К тому же замер, к примеру, твердости стали, относится уже к испытанию динамического типа, и его суть сводится к следующему. К поверхности исследуемого образца подводится склероскоп (портативный твердомер), внутри которого находится стальной баек с наконечником из алмаза. Твердость определяется так: чем мягче материал, тем меньшим будет расстояние отскока, вследствие поглощения удара самим материалом. А чем тверже образец, тем большим будет отскок.

Диапазон измерений составляет от 30 до 140 HS. Закаленная высокоуглеродистая сталь соответствует значению 100 HS. А поскольку оборудование не повреждает поверхность изделий, то оно актуально для испытаний тех деталей, которые входят в конструкцию действующего узла или агрегата.

Методика проста в реализации, оценка производится довольно быстро и деталь можно снова установить в узел. Все это можно считать главными преимуществами. Тем не менее есть некоторые ограничения.

Шкала твердости HS не имеет стандарта, но есть таблицы и графики, которые позволяют перевести единицы по ШОРу в значения HV, HR или HB. На расстояние отскока бойка влияет такая характеристика, как модуль Юнга. Поэтому невозможно сопоставить единицы HS разных материалов.

К тому же твердость по ШОРу - это всего лишь сравнительное значение. Вдобавок точность результатов заметно ниже, чем у всех перечисленных выше аналогов.

Шкала Мооса

Немецкий ученый Фридрих Моос еще в далеком 1811 году предложил свой способ определения твердости разных материалов. При этом его шкала содержит значения от 1 до 10, что соответствует самым распространенным минералам, начиная с талька (самый мягкий камень) и заканчивая алмазом (самый твердый).

Сама методика очень проста и основывается на сопротивляемости исследуемого образца царапанию. К примеру, объект B может поцарапать тело C, но никак не воздействует на деталь A. Или, напротив, материал A только слегка царапает деталь B, но может сильно повредить объект C.

Несмотря на то что способ определения твердости по шкале Мооса был предложен чуть более двух веков назад, он успешно применяется по сей день. Только полученный результат дает далеко не полную информацию, поскольку здесь нет абсолютных значений и невозможно определить соотношение по твердости. Иными словами, нельзя сказать, во сколько раз один из материалов тверже либо мягче другого.

Эталоны твердости Мооса

В качестве эталона по определению твердости по методу Мооса берутся эти 10 минералов (далее в скобках будет указан присвоенноезначение):

  1. Тальк.
  2. Гипс.
  3. Кальцит.
  4. Флюорит.
  5. Апатит.
  6. Ортоклаз.
  7. Кварц.
  8. Топаз.
  9. Корунд.
  10. Алмаз.

Что же представляют собой эти минералы? Опишем их все вкратце ниже.

Первая пятерка

Тальк настолько мягок, что можно царапнуть ногтем. Такая же твердость у карандашей (точнее графита). По шкале соответствует единице. Многим людям он хорошо известен, так как из него изготавливается детская присыпка.

Следующий по твердости - это гипс (2), который тоже легко царапается и имеет особенное свойство. Стоит его измельчить в порошок и смешать с водой - получится пластинчатая масса, которой можно придать любую форму. Помимо белого цвета, есть оригинальные варианты желтого оттенка.

На третьем месте кальцит не случайно (3). Ногтем его уже не поцарапать, зато это можно сделать медной монетой. Такая же степень твердости у золота и серебра. Его второе название - биоминерал, и именно из него состоят раковины.

Флюорит по-другому именуется как плавиковый шпат и переводится как «текучий». Ни ногтем, ни монетой он не царапается, чего нельзя сказать про стекло или обычный нож. Его твердость, как можно понять, - 4.

На пятом месте располагается апатит (5), который еще поддается царапанию при помощи ножа или стекла (такой же характеристикой может похвастать лазурит). При помощи этого минерала добывается фосфор либо фосфорная кислота.

Вторая пятерка

Шестым в списке идет ортоклаз, который уже не берет стекло, но напильнику он противостоять не сможет. Для промышленности он ценен как источник для производства электрокерамики и фарфора. Аналогичная твердость у опала, только его нельзя использовать в качестве эталона, поскольку есть много его разновидностей и у всех свои прочностные характеристики.

На седьмом месте в нашем «рейтинге» свойств твердости располагается всем известный кварц, что соответствует его показателю - 7. Многие знают его как обычный песок. Однако он может быть и в прочих формах: в виде горного хрусталя, агата, аметиста.

Среди рассмотренных минералов самым твердым является топаз (8). Он с трудом поддается обработке, и в большинстве случаев для этого используется алмаз. Впервые он был обнаружен на острове Топазиос, что расположен в Красном море. Отсюда и пошло его название.

Корунд вроде бы идентичен по твердости алмазу, тем не менее при помощи других методик были определены его характеристики. И как итог - алмаз гораздо тверже корунда (в 90-180 раз). Рубины и сапфиры тоже приравниваются к этому минералу, а за счет своей твердости он идеально подходит для изготовления абразивных инструментов.

Замыкает всю десятку алмаз, которому из всех существующих минералов нет равных по части прочности, и его показатель по шкале твердости - заслуженная 10!

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Определение твердости является одним из распространенных испытаний металлов. Оно отличается простотой техники, быстротой измерений и возможностью проведения их непосредственно на изделии.

Твердость металлов измеряют при помощи воздействия на их поверхность специального наконечника (индентора), изготовленного из малодеформирующегося материала (закаленная сталь, алмаз, твердый сплав) и имеющего форму шарика, конуса, пирамиды или иглы.

По способу воздействия индентора на испытуемый материал различают:

* статические методы определения твердости (метод вдавливания и метод царапания);

* динамические методы определения твердости (метод отскока падающего наконечника) и другие методы.

Метод вдавливания характеризует сопротивление металла пластической деформации при внедрении в него индентора из более твердого материала. Метод царапания характеризует сопротивление разрушению при воздействии на материал индентора в виде алмазной иглы. Метод отскока падающего наконечника характеризует сопротивление упругой деформации при динамическом воздействии на материал индентора в виде шарика.

Самым распространенным из перечисленных методов является метод вдавливания, который используется в приборах - твердомерах:

Роквелла

Виккерса

приборе для определения микротвердости (ПМТ).

Между твердостью пластичных материалов и другими механическими свойствами существует зависимость. Чем больше твердость металла определяемого вдавливанием, тем выше и его прочность, т.к. оба эти свойства представляют сопротивление пластической деформации. По этой же причине, чем тверже данный металл, тем ниже его пластичность.


Принципиальное устройство перечисленных твердомеров одинаково и может быть рассмотрено на примере прибора Бринеля (рис. 1). Основными узлами твердомеров являются станина, рабочий столик для измерения твердости образца или детали, наконечник (индентор), нагружающее устройство и прибор для измерения деформации.

Рисунок 1 – Устройство прибора Бринеля

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЮ

Измерение твердости по Бринелю производится в соответствии с ГОСТ 9012-59, срок действия которого продлен до настоящего времени.

При измерении твердости по Бринелю стальной закаленный шарик диаметром D вдавливается в испытуемый образец или изделие под действием нагрузки P в течение определенного времени. После удаления нагрузки измеряется диаметр d полученного при этом сферического отпечатка (рис. 2.а).

Рисунок 2. Схемы определения твердости:

а- по Бринелю;

Б - по Роквеллу;

в - по Виккерсу

В качестве индентора при работе на приборе Бринеля используют стальной закаленный шарик диаметром d = 1; 2; 2,5; 5 и 10 мм.

Для того, чтобы значения твердости при разных испытаниях были сопоставимы, величину нагрузки при данном диаметре шарика следует выбирать используя соотношение:

ЗначенияK могут быть равны 30; 15; 10; 5; 2,5; 1 в зависимости от твердости контролируемого материала. Так для черных металлов и их сплавов (железо, сталь) и других высокопрочных материалов K = 30; для алюминия, меди, никеля и их сплавов K = 10; для олова, свинца и сплавов на их основе K = 2,5.

При выборе условий испытания также важно учитывать толщину металла и продолжительность выдержки образца под нагрузкой, в соответствии со стандартами.

Перед началом испытаний выбранный индентор закрепляется в шпинделе твердомера, с помощью сменных грузов устанавливается выбранная нагрузка. Затем, образец подлежащий измерению, устанавливается на столик прибора и столик поднимается вверх, прижимая образец к шарику, пока не загорится сигнальная лампочка. Таким образом на образец подается предварительная нагрузка, которая на приборе Бринеля составляет 100 кгс (981 Н). Затем нажатием кнопки на корпусе прибора включается механизм, который автоматически осуществляет полное нагружение, выдержку образца под нагрузкой и ее снятие.

После этого нужно опустить столик, снять образец, измерить диаметр полученного отпечатка с помощью специального микроскопа (рис. 3) и определить твердость.

Рисунок 3 – Измерение диаметра отпечатка по шкале лупы

Твердость, определяемая на приборе Бринеля обозначается HB и определяется как отношение нагрузки, действующей на индентор, к площади поверхности сферического отпечатка F :

А так как площадь сферического отпечатка равна:

(4)

Следовательно значение твердости будет равно:

(5)

Если нагрузка выражена в ньютонах, то значение твердости умножается на коэффициент равный 0,102 .

Таким образом, диаметр отпечатка является критерием твердости по Бринелю.

Обычно вычисления твердости по вышеуказанной формуле не производят, а определяют твердость по таблице, которая приведена в ГОСТ 9012-59 или справочной литературе.

Зная число твердости по Бринелю, можно приближенно оценить временное сопротивление металла разрыву (предел прочности), используя количественное соотношение между этими характеристиками, установленное опытным путем. Например, для углеродистых сталей с твердостью HB от 120 до 175 используется соотношение:

s В = 3,4 HB (6)

Временное сопротивление определяется в МПа (Н/мм 2).

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО РОКВЕЛЛУ

В ряде случаев определение твердости на приборе Бринеля оказывается невозможным. Нельзя, например, испытывать закаленную сталь, так как, индентор прибора Бринеля также изготовлен из закаленной стали. Нельзя измерять твердость тонких поверхностноупрочненных слоев изделий, подвергнутых химико-термической обработке, и твердость различных поверхностных покрытий.

В этих случаях возможно применение других приборов - Роквелла, Виккерса, ПМТ.

Измерение твердости по Роквеллу проводится в соответствии с ГОСТ 9013-59. При этом индентором может служить алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,588мм (1/16 дюйма). При проведении испытаний индентор вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р о и основной:

Р = Р о + Р 1 , (7)

Принципиальное отличие измерения твердости на приборе Роквелла от измерения на приборе Бринеля состоит в том, что твердость определяют не по площади отпечатка, полученного при вдавливании индентора, а по его глубине, которая и является критерием твердости при этом испытании.



Глубину вдавливания h определяют после снятия основной нагрузки и по ее значениям вычисляется величина твердости по Роквеллу HR. Естественно, чем больше глубина полученного отпечатка, тем меньше значение твердости.

Твердость по Роквеллу выражается в условных единицах. За единицу твердости принята безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

При испытаниях твердость можно измерять по трем шкалам: А , В , С .

При использовании в качестве индентора алмазного конуса твердость определяют по двум шкалам: А и С , при использовании шарика - по шкале В .

Число твердости по Роквеллу вычисляется по формулам:

При измерении по шкалам А и С:

HRC (HRA) = 100 – e (8)

При измерении по шкале В:

HRB = 130 – e (9)

где e = (h - ho) / 0,002 (10)

При выборе условий испытания целесообразно руководствоваться следующими данными (табл. 1):

Таблица 1

Результаты определения твердости фиксируются на индикаторе прибора, где имеются две шкалы - черная ми красная. Черная используется при измерениях с помощью алмазного конуса или конуса таких же размеров, изготовленного из твердого сплава (А и С ). Красная шкала для измерений с помощью шарика (В ).

Испытания проводятся в следующем порядке:

Устанавливается образец на столике прибора; образец приводится в соприкосновение с индентором с помощью механизма подъема и осуществляется предварительное нагружение. При этом индентор вдавливается в поверхность образца на глубину h о . Достижение предварительной нагрузки Р о = 10 кгс (98 Н) отмечается на шкале установкой маленькой стрелки на красной точке. Положение большой стрелки должно при этом совпадать с цифрой “0” черной шкалы. Если этого не произошло необходимо повернуть шкалу маховичком до точного совпадения этой стрелки с указанной отметкой.

Нажать на клавишу механизма нагружения, в результате чего на индентор подается основная нагрузка Р 1 , под действием которой он углубляется в образец. Выдержка под нагрузкой и снятие нагрузки происходит автоматически. В конечном положении большая стрелка указывает на значение твердости по соответствующей шкале.

Твердость по Роквеллу обозначается цифрами, характеризующими величину твердости, и буквами HR с указанием шкалы, например: 61,0 HRC; 42,0 HRB.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ И МИКРОТВЕРДОСТИ

В ряде случаев необходимо определить твердость тонких поверхностных слоев или распределение ее по сечению образца. Выполнить эти задачи на приборах Бринеля или Роквелла невозможно из-за больших размеров отпечатков. Для таких измерений используют приборы Виккерса или микротвердости (ПМТ).

В указанных приборах в качестве индентора используется четырехгранная алмазная пирамида с углами при вершине 136° (рис. 2.в). Число твердости по Виккерсу и микротвердость определяются как отношение действующей нагрузки Р к площади боковой поверхности полученного пирамидального отпечатка:

(11)

где d - среднее арифметическое длин обеих диагоналей отпечатка.

Для удобства и ускорения вычислений следует пользоваться таблицами, рассчитанными по приведенной формуле.

Испытательные нагрузки при измерениях на приборе Виккерса (ГОСТ 2999 - 75) выбираются в пределах от 5 до 120 кгс (от 49 до 1176 Н). При измерениях микротвердости нагрузки значительно ниже: от 0,005 до 0,5 кгс (от 0,05 до 5 Н). Благодаря этому в последнем случае значительно меньше и размеры полученных отпечатков, что делает возможным определение твердости отдельных структурных составляющих.

Измерение диагоналей полученных отпечатков проводится с помощью микроскопов.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

1. Перед проведением практической части работы необходимо ознакомиться с приборами, на которых предстоит проводить измерения, с техникой измерений и методикой определения результатов.

2. Провести измерение твердости углеродистой отожженной стали (40, 60), дюралюминия и меди на приборе Бринеля. Для этого:

a. Выбрать нагрузку, исходя из данных, приведенных в методических указаниях;

b. Получить отпечаток индентора на перечисленных материалах;

c. При помощи специального микроскопа определить диаметр полученного отпечатка с точностью до сотых долей миллиметра;

d. Используя формулу для определения твердости по Бринелю (5) определить значение твердости испытуемых материалов и занести данные в таблицу 2;

e. При помощи таблиц проконтролировать правильность определения значений твердости и табличные данные также занести в таблицу 2.

3. Провести измерение твердости инструментальной закаленной стали У8 и конструкционной низкоуглеродистой стали 30 на приборе Роквелла. Для этого:

a. В соответствии с таблицей выбрать шкалу, по которой будет проводиться измерение твердости;



Поделиться