Василиса явикс - интеллектуальная поисковая система. завтра уже здесь! Воронежская атомная станция теплоснабжения

Горьковская атомная станция теплоснабжения - одна из двух АСТ в нашей стране, строительство которых стартовало в начале 1980-х, но так и не было завершено по ряду причин, включая протесты общественности и, само собой, развал Союза.
Станция не была достроена, реакторная установка не была собрана, топливо еще даже и не думали привозить...

Строительство Горьковской АСТ (ГАСТ) началось в 1982 г.
Станция строилась по проекту ГИ ВНИПИЭТ и включала два энергоблока с реакторными установками АСТ-500 единичной тепловой мощностью 500 МВт. Каждый блок должен был обеспечивать отпуск тепла в количестве 430 Гкал/ч в виде горячей воды с давлением до 1,6 МПа и температурой до 150 ОС. Планировалось, что ГАСТ будет снабжать тепловой энергией Нагорную часть г Горького. При вводе в действие ГАСТ предполагалось закрыть около 300 низкоэффективных котельных различной мощности в Нагорной части города.

Структура системы ЦТ на базе основного теплоисточника ГАСТ выглядела следующим образом:
■ базисный теплоисточник - ГАСТ установленной тепловой мощностью 1000 МВт (2x500 МВт);
■ пиковые котельные (ПК) - пять существующих промышленных и отопительных котельных тепловой мощностью от 35 до 750 МВт;
■ магистральные тепловые сети - кольцевые с тупиковыми ответвлениями;
■ распределительные станции теплоснабжения (РСТ) для подключения магистральных тепловых сетей по зависимой и независимой схемам.
Общая тепловая нагрузка нагорной части города, обеспечиваемая системой ЦТ, составляла примерно 2380 МВт.
Отпуск теплоты в системе ЦТ на базе ГАСТ планировался в объеме примерно 7,4 ГВт.ч, в том числе от ГАСТ 5,8 ГВт.ч (78%).
Выдача тепловой мощности от АСТ в транзитные тепловые сети обеспечивалась теплоносителем - сетевой водой с максимальной температурой 150 *С при температуре на входе в обратном трубопроводе 70 *С.
Крупные ПК предусматривались «полупиковыми» с возможностью выдачи свободной тепловой мощности в транзитные тепловые сети параллельно АСТ
Общая протяженность транзитных тепловых сетей от ГАСТ около 30 км. Рельеф местности переменный с абсолютными отметками от 90 до 200 м. Диаметры транзитных трубопроводов 800, 1000 и 1200 мм. Насосные подкачивающие станции располагались в РСТ.
При разработке системы ЦТ на базе ГАСТ было применено несколько новых технологических решений, в том числе:
1. количественное регулирование отпуска теплоты в транзитных тепловых сетях с постоянной температурой теплоносителя в подающих трубопроводах: в отопительный период - 150 *С, в летний - 90 *С;
2. последовательное включение (отключение) и изменение тепловой мощности ПК при уровнях теплопотребления более 1000 МВт при температурах наружного воздуха ниже +3 *С;
3. схема подключения ПК к АСТ через транзитные тепловые сети - параллельная, а не традиционная последовательная при дальнем теплоснабжении;
4. аккумулирование теплоты в баках запаса подпиточной воды (2 бака по 10000 м3) для стабильной работы ГАСТ.

Здесь стоит отметить, что для теплоснабжения заречной части г. Горького с учетом того, что рядом расположено несколько небольших промышленных городов, предлагалось сооружение АТЭЦ с реакторами ВВЭР-1000 для энергоснабжения не только заречной части города, но и Дзержинска, Заволжья, Правдинска, Балахны и других населенных пунктов. Были приняты три варианта размещения АТЭЦ и выполнен полный комплекс изыскательских работ по всем трем площадкам. Соответствующее ТЭО было разработано ГоТЭПом в 1986 г., но эти планы так и остались на бумаге.

Решающие этапы сооружения ГАСТ совпали с Чернобыльскими событиями, последующей «ломкой» структур власти и ожесточенной политической борьбой в «перестроечный» период.
В середине 1988 г. в Горьком началось движение общественности за прекращение строительства ГАСТ (статьи в местной прессе, демонстрации и митинги с лозунгами о запрете строительства АСТ, требования о проведении референдума).
Не смогло переломить общий настрой против ГАСТ и положительное заключение международной экспертизы проекта и самой станции, проведенной МАГАТЭ в 1989 г., хотя эта экспертиза была предпринята по требованию общественности.
Нижегородский областной Совет народных депутатов, учитывая мнение населения, выступил против продолжения строительства станции и в августе 1990 г. принял решение «О прекращении строительства ГАСТ».







































Реактор предназначался для проекта атомных станций теплоснабжения, предназначенных для генерации тепловой энергии, обеспечения горячего водоснабжения и отопления жилых и промышленных объектов.

Вопрос о строительстве АСТ был рассмотрен в ЦК КПСС и Правительстве СССР, после чего было принято решение о начале проектирования. Перед Минсредмашем и Минэнерго была поставлена задача спроектировать АСТ с гарантированной безопасностью для размещения её вблизи крупных городов. Главным конструктором реакторной установки было назначено ОКБМ (в настоящее время ОАО «ОКБМ Африкантов»), разработчиком технико-экономического обоснования головных станций в Горьком и Воронеже был назначен ГоТЭП. Научное руководство обеспечивалось Курчатовским институтом. По указанию Правительства проектирование АСТ лично курировал Президент Академии наук СССР Анатолий Александров .

Институтом ГоТЭП были выполнены технико-экономического обоснования и проект строительства АСТ в Воронеже, Брянске, Архангельске, Хабаровске, а также проекты на строительство атомных ТЭЦ в Одессе и Минске. В 1978 года был создан технический проект реакторной установки АСТ-500, а в марте 1979 года вышло постановление Совета министров СССР о сооружении двух головных станций теплоснабжения в Горьком и Воронеже. Генеральным проектировщиком Горьковской АСТ был назначен Головной институт ВНИПИЭТ , подчинявшийся Минсредмашу, а Воронежской АСТ - ГоТЭП, входивший в структуру Минэнерго. Сооружение головных АСТ было начато в 1982 и 1983 гг. в Горьком и Воронеже, соответственно.

С канальными уран-графитовыми реакторами малой мощности, вырабатывающими электрическую и тепловую энергию. Они относятся к первому поколению АС.

На первой в России промышленной атомной теплоэлектроцентрали (АТЭЦ) установлен водографитовый реактор с кипящей водой в топливных каналах и естественной циркуляцией теплоносителя. Контур естественной циркуляции состоит из шести петель, замкнутых на барабан-сепаратор. Из барабанов-сепараторов пар поступает на турбину мощностью 12 МВт, а затем в бойлерные установки. С ростом присоединенной тепловой нагрузки удельные капитальные вложения и относительные приведенные затраты на АТЭЦ уменьшаются. При тепловой нагрузке, превышающей 1200 МВт, АТЭЦ становится эффективнее ТЭЦ, работающей на органическом топливе. Поэтому в настоящее время разработаны проекты АТЭЦ с установкой на них реакторов ВВЭР-1000 и турбин конденсационно-теплофикационного типа.

Атомные станции теплоснабжения

Важным направлением использования ЯЭУ является теплоснабжение. Внедрение ядерной энергетики в сферу производства низкопотенциального тепла для отопления и горячего водоснабжения обусловлено стремлением снизить долю расхода органического топлива и тем самым внести вклад в решение экологической проблемы, связанной с загрязнением атмосферы и нагревом водоемов.

Размещение атомной станции теплоснабжения (ACT) вблизи крупных населенных пунктов вытекает из требования достижения приемлемых экономических показателей из-за высокой стоимости магистральных трубопроводов. Обеспечение высоких показателей безопасности ACT заставило пересмотреть традиционные схемные, режимные и компоновочные решения реакторного контура. При выборе типа реактора одним из важных аргументов была многолетняя успешная эксплуатация отечественного кипящего корпусного реактора ВК-50 с естественной циркуляцией теплоносителя.


В России были сооружены две крупные АСТ-500 в Горьком и Воронеже. Но из-за протестов общественности после чернобыльской катастрофы, они так и не были введены в эксплуатацию. В целях обеспечения высокой надежности и безопасности работы реакторной установки в АСТ-500 были заложены следующие основные технические решения:

  • естественная циркуляция теплоносителя в первом контуре, отсутствие ГЦН;
  • трехконтурная схема РУ [давление в первом контуре 1,6 МПа (на порядок ниже, чем в ВВЭР), во втором контуре — 1,2 МПа, в третьем — 1,6 МПа: давление в промежуточном контуре меньше, чем в третьем, что исключает попадание протечки из второго контура в сетевую воду, направляемую потребителю];
  • интегральная компоновка оборудования первого контура позволила свести к минимуму разветвленность контура и избежать применения трубопроводов большого диаметра;
  • низкая удельная энергонапряженность активной зоны способствует повышению надежности охлаждения активной зоны и снижению уровня аварийных последствий;
  • обеспечение сохранения активной зоны под водой при разгерметизации основного корпуса реактора и локализации радиоактивных продуктов вследствие использования двойного корпуса реактора; высокая степень защищенности реактора от аварий обеспечивается применением трехиетлевой схемы системы теплоотвода, при которой возможен отвод остаточного энерговыделения даже при выходе из строя двух петель из трех, и ряда других схемных и компоновочных решений.


Основные характеристики АСТ-500 в сравнении с шведско-финским проектом ACT Secure и французской ACT Thermos приведены в таблице ниже. Первый и промежуточный контуры АСТ-500 содержат также системы очистки и подпитки теплоносителя, системы газовой компенсации и байпас аварийного отвода тепла. При рабочем давлении теплоносителя первого контура 1,6 МПа обеспечивается полная компенсация утечки теплоносителя через разрыв трубопровода диаметром 100 мм, при этом динамические параметры РУ отклоняются незначительно. Спринклерные установки легко справляются с конденсацией образовавшегося из вытекающего теплоносителя пара, не давая повышаться давлению в помещениях ACT.

Принятые конструкционные и схемные решения позволили обеспечить уровень безопасности реактора, допускающий размещение ACT в непосредственной близости от крупных городов.

Таким образом, с позиций теории надежности и теории систем рассмотренные ЯЭУ имеют следующие свойства:

1. Уникальность, малосерийность и крупносерийность элементов. Хотя различные типы элементов ЯЭУ имеют свои характерные особенности, однако достаточно отчетливо просматриваются общие закономерности. Все многообразие элементов ЯЭУ с точки зрения анализа их надежности целесообразно разделить (несмотря на всю условность любой классификации) на три класса: уникальные элементы, малосерийные и элементы массового изготовления.К первому классу следует отнести такое оборудование, как корпус реактора, активная зона в целом, системы управления, системы обеспечения безопасности ЯЭУ. Малосерийным оборудованием ЯЭУ можно считать ГЦН. теплообменники, парогенераторы, сепараторы, трубопроводы большого диаметра. К элементам ЯЭУ массового изготовления относятся твэлы и ТВС, топливные каналы, запорно-регулирующая аппаратура, трубки парогенераторов, узлы и блоки системы управления.

2. Восстанавливаемость и плановая профилактика ЯЭУ. Во-первых, ряд элементов при появлении отказов заменяются новыми, т.е. являются невосстанавливаемыми. К восстанавливаемым элементам следует отнести уникальное и малосерийное оборудование, а к невосстанавливаемым — элементы массового изготовления. Во-вторых, оборудование ЯЭУ, как правило, имеет плановую профилактику.

3. ЯЭУ — сложная система. Анализ конструкционных схем современных ЯЭУ показывает, что ЯЭУ — как объект исследования надежности — представляет собой сложные последовательнопараллельные структуры. С точки зрения теории систем необходимо определить, является ли ЯЭУ «простой» или «сложной» системой. Ответ на этот вопрос кардинально изменяет методологию исследования надежности ЯЭУ.

Под системой в теории надежности понимается совокупность элементов (или подсистем), объединенных конструкционно или функционально в соответствии с заданным алгоритмом взаимодействия при выполнении определенной задачи в процессе применения по назначению. В теории систем считается, что система является сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов (подсистем) и способна выполнять сложную функцию. Деление систем на простые и сложные возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности.

Простая система может находится только в двух состояниях: состоянии работоспособности (исправном) и состоянии отказа. При отказе элемента простая система либо полностью прекращает выполнение своей функции, либо продолжает ее выполнение в полном объеме, если отказавший элемент резервирован. Сложная система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижается ее эффективность. Это свойство сложных систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы. Отказ сложной системы целесообразно определять как событие, обусловленное выходом характеристик эффективности за установленный допустимый предел. Величину этого предела обычно связывают с частичным или полным невыполнением системой своих функций.

4. Функциональная избыточность ЯЭУ обеспечивается различными конструкционными мерами. Корпусные реакторы ВВЭР, ВР и ВТГР имеют петлевую схему. Отказы элементов одной петли могут не приводить к остановке ЯЭУ. Выключение отдельных петель приводит лишь к снижению мощности реакторной установки, т.е. ЯЭУ в этом случае может функционировать, но с меньшей эффективностью. Корпусы реакторов ЯЭУ выполняются с большими запасами прочности, т.е. они тоже фактически функционально избыточны. При отдельных отказах твэлов активная зона реакторов ВВЭР и БР может сохранять работоспособность, если изменение радиационной обстановки на ЯЭУ не приводит к нарушению соответствующих требований и норм.

По сравнению с корпусными канальные реакторы РБМК имеют еще большую функциональную избыточность. Наличие нескольких сотен и даже тысяч отдельных топливных каналов (на РБМК-1000 их насчитывается около 1650) с контролем ряда параметров в каждом из них, возможность индивидуальной перегрузки ТВС без остановки реактора свидетельствует о высокой степени функциональной и структурной избыточности энергоблоков АЭС с реакторами канального типа.

Кроме структурного и функционального резервирования в элементах оборудования ЯЭУ используются и другие виды избыточности: временная, информационная, алгоритмическая, программная.

5. Широкий спектр конструкционных элементов и разнообразие отказов оборудования ЯЭУ. Большое число механических, гидравлических, электротехнических, электронных и других систем ЯЭУ и, как следствие этого, разнообразие отказов (по характеру, экономическим потерям, влиянию на персонал и окружающую среду) под воздействием комплекса эксплуатационных нагрузок (силовых, тепловых, радиационных, электромагнитных и т.д.) существенно усложняют процессы диагностирования и анализ надежности оборудования энергоблоков АЭС.

6. Большое число точек контроля и объектов управления ЯЭУ. Это привело к использованию на АЭС сложных автоматических и автоматизированных систем контроля и управления (САУ и АСУ), что, в свою очередь, обусловило появление проблемы обеспечения надежности самих САУ и АСУ.

7. Наличие человека в контуре управления ЭБ АС. Попытки компенсировать недостаточную надежность оборудования ЯЭУ за счет повышения глубины контроля работоспособности технологических систем и диагностики предаварийных состояний привели к необходимости обработки огромных массивов информации. Так, на современных энергоблоках АЭС электрической мощностью 1000 МВт только в АСУ ТП обрабатывается до 20 000 и более аналоговых и дискретных сигналов. Возможности человека-оператора (как основного звена в контуре управления ЭБ АС) находятся в явном противоречии с теми необходимыми для управления ЭБ объемами даже тщательно отобранной информации. При появлении аномальных ситуаций на ЭБ оперативное распознавание последовательности и причин срабатывания автоматики, учитывая современный уровень технических средств и психофизиологические характеристики человека, без применения специальных систем практически невозможно.

90 брендов вилочных погрузчиков с доставкой по России для работы на складах, в том числе промышленных предприятий.

Cтраница 1


Атомные станции теплоснабжения (ACT) предназначаются для отпуска теплоты на отопление, вентиляцию и горячее водоснабжение и выполняются по трехконтурной схеме. В первом (реакторном) контуре и в теплосети поддерживается давление 1 5 - 2 МПа, а в промежуточном контуре оно составляет 1 2 МПа. При этом исключаются перетечки как радиоактивной воды в теплосеть, так и минерализованной сетевой воды в реакторный контур. Водный режим промежуточного контура поддерживается его продувкой в сочетании с очисткой продувочной воды.  

Разработанные отечественные атомные станции теплоснабжения (ACT) состоят из двух блоков общей тепловой мощностью 1000 МВт с реакторами АСТ-500. Для того чтобы устранить возможность попадания радиоактивных веществ в поток горячей воды, направляемый к потребителю теплоты, схема ACT выполнена трехонтурной. В первом контуре (реакторном) теплообмен происходит при естественной циркуляции воды, давление здесь поддерживается равным 1 6 - 2 МПа. Во втором и третьем контурах циркуляция, конечнс, принудительная.  

Ведется строительство первых атомных станций теплоснабжения (АСТ) тепловой мощностью по 3600 ГДж / ч (860 Гкал / ч) в Горьком и Воронеже.  

В настоящее время разрабатываются атомные станции промышленного теплоснабжения для снабжения предприятий технологическим паром с давлением 2 МПа и горячей водой.  

С целью покрытия промышленных и смешанных промышленно-отопительных нагрузок необходимо создание специальных атомных станций промышленного теплоснабжения (АСПТ), на которых можно получать тепло в виде технологического пара и горячей воды.  

Энергетическая программа СССР предусматривает создание атомных теплоэлектроцентралей, атомных станций теплоснабжения и атомных станций промышленного теплоснабжения (АСПТ), которые обеспечат значительную экономию дорогостоящего органического топлива, на котором в настоящее время работает большинство ТЭЦ.  


В качестве источников теплоты в ближайшие годы, по-видимому, начнут широко внедряться атомные станции теплоснабжения (ACT), представляющие собой по существу атомные парогенераторы. В настоящее время уже сооружаются две головные ACT - под Горьким и Воронежем, каждая с двумя реакторами (из-соображений резервирования) по 500 МВт. Строительные площадки находятся на расстоянии 1 5 - 2 км от города. Эти ACT будут обеспечивать теплом районы городов, насчитывающие примерно по 300 - 400 тыс. жителей. К 1990 г. строительство таких станций будет экономически оправдано для сотен населенных пунктов СССР. ACT позволят сэкономить большое количество нефти, равное трети ее сегодняшней добычи в стране. Предполагается, что атомная теплота будет вдвое дешевле, чем та, ко -, торую дают котельные на органическом топливе.  

Описываются конструкции атомных электростанций (АЭС), атомных теплоэлектроцентралей (АТЭЦ) и атомных станций теплоснабжения (ACT) с корпусными, канальными и другими типами ядерных реакторов. Рассматриваются принципиальные вопросы технологии работы, оборудование и основы эксплуатации. Основное внимание уделяется выбору площадок для строительства, конструкциям зданий и сооружений комплекса АЭС, защите от излучения, организации производства строительных работ.  

В 1978 - 1980 гг. проводились первоначальные технические и экономические исследования в направлении создания атомных станций промышленного теплоснабжения (АСПТ), предназначаемых для подачи потребителям как горячей воды, так и пара разных параметров для технологических целей, что могло бы дополнительно расширить возможность замены органического топлива ядерным. В одиннадцатой пятилетке соответствующие разработки будут продолжены и при благоприятных технических и экономических результатах решится вопрос о строительстве первых АСПТ.  

Конструктивные особенности корпусов реакторов, специфические условия эксплуатации и повышенные требования к надежности и безопасности атомных станций промышленного теплоснабжения требуют проведения комплекса НИР и ОКР по созданию норм расчета на прочность, разработке правил устройства и безопасной эксплуатации, общих положений по сварке и правил контроля сварных соединений многослойных корпусов атомных реакторов.  

Предусматривается дальнейшая централизация теплоснабжения за счет сооружения преимущественно мощных ТЭЦ на органическом и ядерном топливе, атомных станций теплоснабжения и крупных котельных.  

Использование в системах теплоснабжения атомных источников тепла позволит значительно экономить дефицитное органическое топливо. При этом достигается улучшение экологической обстановки в районах теплопотребления от АЭС, повышение конкурентоспособности централизованных систем теплоснабжения, вследствие низкой себестоимости тепла на АЭС, увеличение надёжности систем теплоснабжения за счёт вытеснения устаревшего оборудования.

Атомные станции по виду отпускаемой энергии можно разделить на:

Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии

Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

Атомные станции теплоснабжения (АСТ), вырабатывающие только тепловую энергию

На всех атомных станциях России есть теплофикационные установки, предназначенные для подогрева сетевой воды.

Атомные станции в России.

В настоящее время в Российской Федерации на 10 действующих АЭС эксплуатируется 31 энергоблок общей мощностью 23243 МВт, из них 15 реакторов с водой под давлением - 9 ВВЭР-440, 15 канальных кипящих реакторов - 11 РБМК-1000 и 4 ЭГП-6, 1 реактор на быстрых нейтронах.

Информация об атомных станциях теплоснабжения. Воронежская АСТ (не путать с Нововоронежской АЭС) - атомная станция теплоснабжения (ВАСТ), в составе двух энергоблоков мощностью по 500 МВт предназначена для круглогодичной работы в базовом режиме в системе централизованного теплоснабжения г. Воронежа с целью покрытия существующего в городе дефицита тепла (ВАСТ должна была обеспечить 23% годовой потребности города в тепле и горячей воде). Строительство станции велось с 1983 по 1990 год и в настоящее время заморожено.

Россия - единственная страна, где серьёзно рассматриваются варианты строительства атомных станций теплоснабжения. Объясняется это тем, что в России существует централизованная система водяного отопления зданий, при наличии которой целесообразно применять атомные станции для получения не только электрической, но и тепловой энергии. Первые проекты таких станций были разработаны ещё в 70-е годы XX века, однако из-за наступивших в конце 80-х гг экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был. Исключение составляют Билибинская АЭС небольшой мощности, снабжающая теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (главной задачей которых является производство плутония):

Сибирская АЭС, поставлявшая тепло в Северск и Томск.

Реактор АДЭ-2 на Красноярском горно-химическом комбинате, с 1964 г. поставляющий тепловую и электрическую энергию для города Железногорска.

Было также начато строительство следующих АСТ на базе реакторов, в принципе аналогичных ВВЭР-1000:

Воронежская АСТ (не путать с Нововоронежской АЭС)

Горьковская АСТ 

Ивановская АСТ (только планировалась).

Строительство всех трёх АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В настоящий момент (2006) концерн «Росэнергоатом» планирует построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах. Есть вариант малой необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем». Источник: ЭнергАтом (www.abkord.com).

Решение вопросов, связанных с учетом роли атомных станций в теплоснабжении (в первую очередь - паровым) промышленных потребителей, находится на начальной стадии. Обусловлено это тем, что пароснабжение от атомных источников сопряжено с более значительными трудностями, чем отпуск теплоты в горячей воде.

Трудности эти определяются главным образом требованиями ядерной безопасности, существенной разнохарактерностью промышленных технологий, особенностью транспортировки пара и т.д. и поэтому более жесткими требованиями к атомным энергоисточникам, как в части схемных решений, так и по режиму отпуска теплоты. Принципиально атомные источники теплоснабжения, как и источники, применяемые в традиционной «огневой» энергетике, могут предназначаться либо для производства теплоты, либо для комбинированного производства тепловой и энергетической энергии. В последнее время начаты проработки проектов атомных станций промышленного теплоснабжения, предназначенных для снабжения потребителей, как горячей водой, так и паром; тем не менее, принимая во внимание более высокую энергетическую и технико-экономическую эффективность комбинированного производства тепловой и электрической энергии, экономически более целесообразным представляется строительство специализированных промышленно-отопительных АТЭЦ.

Отличительной способностью атомных источников, используемых для обеспечения потребностей промпредприятий в технологическом паре, является необходимость удовлетворения двух трудно совместимых требований. С одной стороны, по условиям транспорта пара источник теплоты должен быть максимально приближен к потребителям. Предельное расстояние от источника до потребителей определяется технико-экономическими расчетами и зависит от параметров пара, необходимых по техническим условиям производства, параметров пара, отпускаемого источником, и других показателей и не превышает 8–15 км, даже при значительной расчетной нагрузке района (1500 МДж/с). С другой стороны, желательно расположение источника на значительном расстоянии от потребителей, поскольку, чем ближе источник к району теплоснабжения, тем более жесткими являются требования радиационной безопасности и, соответственно, тем сложнее технически и дороже их обеспечение. Указанные требования делают практически невозможным отпуск значительного количества пара традиционным способом от намечаемых к сооружению и действующих АЭС первого поколения.

В России отпуск пара в небольших количествах на нужды промплощадки и стройбазы производится от действующих АЭС. Однако санитарными правилами [СТ ТАС 84. Санитарные требования к проектированию и эксплуатации систем централизованного теплоснабжения от атомных станций. - М., 1984.] и общими положениями обеспечения безопасности атомных станций [ОПБ 82. Общие положения обеспечения безопасности атомных станций при проектировании, сооружении и эксплуатации. - М., 1982.] регламентируется отпуск теплоты в паре внешним потребителям. Так, на АЭС с реакторами ВВЭР отпуск пара может производиться из коллектора собственных нужд или непосредственно из отбросов турбин, что находится в противоречии с п. 3.7 санитарных правил: «…Отпуск пара из отборов турбин и редукционных установок для внешних потребителей (промышленной зоны, жилищно-коммунального сектора и др. потребителей) не допускается…». На АЭС с реакторами РБМК отпуск пара производится через промежуточный контур от генератора «чистого» пара, подключенного к первому нерегулируемому отбору цилиндра высокого давления. От парогенератора в номинальном режиме работы турбины может быть обеспечен отпуск 16 МДж/с теплоты и пара давлением 0,6 МПа. В этом случае нарушается п/п. 4.4.3.1.3 общих положений обеспечения безопасности: «…Давление греющей среды должно быть не ниже давления сетевого теплоносителя…». В современных двухконтурных АЭС такими свойствами обладает основной поток пара в турбоагрегате после прохождения сепараторов - пароперегревателей (СПП). Однако использование его в качестве греющей среды приводит к значительной недовыработке электроэнергии, поэтому целесообразность создания таких схем пароснабжения неочевидна, и необходимо проведение детальных технико-экономических исследований.

В связи с этим особую актуальность приобретает поиск новых решений, позволяющих использовать для целей промышленного теплоснабжения уже освоенные атомные энергоисточники. Одним из путей создания систем является использование в промконтуре теплоносителя, отличного от водяного, например, инертного газа или органического соединения. В этом случае необходимо проведение как технико-экономических исследований по определению их конкурентоспособности по сравнению с альтернативными вариантами пароснабжения, так и специальных исследований, подтверждающих техническую возможность создания и работоспособность указанных систем отпуска пара от АЭС.

Другим решением, наиболее технически подготовленным в настоящее время, является использование высокотемпературной сетевой воды для транспорта теплоты АЭС с последующим получением пара в местных парогенераторах. В роли такого парогенератора могут выступать водопаро-преобразовательные установки. Применение указанной схемы позволяет охватить значительное количество потребителей, однако даже при достаточно высокой температуре сетевого теплоносителя, отпускаемого со станции (≈ 170 °С), в местном контуре предприятия может быть получен насыщенный пар с давлением не более 0,6 МПа, что существенно ограничивает возможности применения такой схемы пароснабжения. Использование этой схемы пароснабжения в настоящее время затруднено по ряду причин:

❏ отсутствие технологического оборудования необходимых мощностей;

❏ недостаточная проработка режимных вопросов отпуска теплоты от АЭС;

❏ необходимость подбора соответствующего соотношения паровой и водяной нагрузок в регистре и т.п.

Свободным от указанных недостатков и наиболее просто реализуемым в настоящее время представляется способ удовлетворения паровой нагрузки от АЭС по схеме с «огневым» догревом . Предпосылкой для рассмотрения таких схем служит широкое распространение паровых котельных на органическом топливе в системах пароснабжения промышленных потребителей. В этом случае АЭС отпускается теплота в виде горячей воды. Часть ее поступает в систему коммунально-бытового теплоснабжения, часть - в модифицированные паровые котельные на органическом топливе. Там она испаряется, при необходимости полученный пар перегревается и поступает к потребителям. При такой организации паровой котельной отпадает необходимость в использовании органического топлива на подогрев воды в системах регенерации и экономайзерах. В широко распространенных паровых котлах ДКВР подача в котельный агрегат питательной воды с температурой 170 °C с одновременной заменой экономайзера воздухоподогревателем позволяет сэкономить до 25 % расхода органического топлива.

На рис. 3.2 показана принципиальная схема теплоподготовительной установки атомной ТЭЦ с реактором ВВЭР. Между реактором 17 и пароперегревателем включён промежуточный контур. В пароперегревателе вырабатывается «чистый» пар. Это существенно упрощает схему и оборудование теплоподогревательной установки АТЭЦ, так как пар, отработавший в турбине, может напрямую использоваться в подогревателях сетевой воды 5-7. В связи с размещением АТЭЦ на значительных расстояниях от городов экономически оправдано существенное повышение расчётной температуры в подающей линии транзитной магистрали (коллектор 16) с целью снижения расчётного расхода теплоносителя, диаметров и количества теплопроводов. Поэтому в ряде случаев для подогрева сетевой воды используют пар более высокого давления (0,6 0,8МПа) из разделительного отсека, в котором устанавливается сепаратор пара 21 и промежуточный пароперегреватель 36 на основном потоке пара.

Рис. 3.2 Принципиальная схема теплоподготовительной установки атомной ТЭЦ (АТЭЦ) с реактором ВВЭР: 1 – парогенератор; 2 – паровая турбина; 3 – электрический генератор; 4 – конденсатор; 5 – 7 - теплофикационные подогреватели соответственно нижней, средней и верхней ступеней; 8 – бустерный насос; 9 – сетевой насос; 10 – химводоочистка; 11 – деаэратор подпиточной воды; 12 – подпиточный насосс; 13 – регулятор подпитки; 14 – насос химводоподготовки; 15, 16 – обратный и подающий коллекторы сетевой воды; 17 – ядерный реактор; 18 – компенсатор объёма; 19 – насос промежуточного контура; 20 – конденсатный насос; 21 – сепаратор влаги; 22 – регенеративные подогреватели низкого давления; 23 – деаэратор; 24 – питательный насос; 25 - – регенеративные подогреватели высокого давления; 26 – пароперегреватель; 27 – редукторы; 28 - – регенеративные подогреватели среднего давления.

Принципиальная схема теплоподготовительной установки атомной станции теплоснабжения (АСТ) приведена на рис. 3.3.

Рис. 3.3. Принципиальная схема теплоподготовительной установки атомной станции теплоснабжения (АСТ): 1 – ядерный реактор; 2 – второй контур; 3 – подогреватель сетевой воды; 4 – компенсатор объёма; 5 – насос второго контура: 6 – сетевой насос; 7 – деаэратор подпиточной воды; 8 – тепловая сеть; 9 – система продувки второго контура; 10 – подогреватель очищенной воды; 11 – охладитель продувочной воды; 12 – фильтр; 13 – насос системы продувки; 14 – подпиточный насос тепловой сети.



Поделиться